PFAS drinking water treatment trade-offs: comparing the health burden of GAC treatment to the health benefits of reduced PFAS exposure

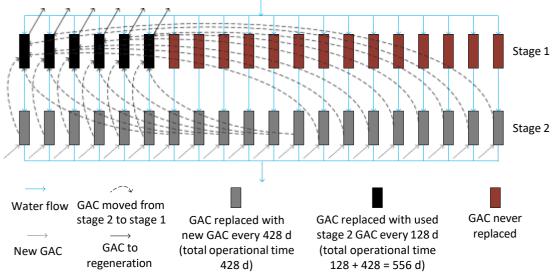
Sanne J. Smith^{1*}, Émile Sylvestre¹, Anne Marieke Motelica-Wagenaar^{2,3}, Beatrice Cantoni⁴, Parvathi Suresh Nair¹, Mar Palmeros Parada¹

¹Delft University of Technology, Department of Water Management, Stevinweg 1, 2628 CN, Delft, the Netherlands.

²Waternet, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, the Netherlands.

³Radboud University, Department of Ecology, Radboud Institute for Biological and

Environmental Sciences, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.


⁴ Politecnico Milano, Department of Civil and Environmental Engineering (DICA) -

Environmental Section, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abbreviation	Full name	Relative potency factor (RPF)
PFOA [*]	Perfluorooctanoic acid	1
PFOS [*]	Perluorooctane sulfonic acid	2
PFNA [*]	Perfluorononanoic acid	10
PFHxS [*]	Perfluorohexane sulfonic acid	0.6
PFBA	Perfluorobutanoic acid	0.05
PFPeA	Perfluoropentanoic acid	0.05
PFHxA	Perfluorohexanoic acid	0.01
PFHpA	Perfluoroheptanoic acid	1
PFDA	Perfluorodecanoic acid	10
PFUnDA	Perfluoroundecanoic acid	4
PFDoDA	Perfluorododecanoic acid	4
PFTrDA	Perfluorotridecanoic acid	3
PFTeDA	Perfluorotetradecanoic acid	0.3
PFHxDA	Perfluorohexadecanoic acid	0.02
PFODA	Perfluorooctadecanoic acid	0.02
PFBS	Perfluorobutane sulfonic acid	0.001
PFPeS	Perfluoropentane sulfonic acid	0.6
PFHpS	Perfluoroheptane sulfonic acid	2
PFDS	Perfluorodecane sulfonic acid	2
HFPO-DA	Hexafluoropropylene oxide dimer acid	0.06
DONA	4,8-Dioxa-3H-perfluorononanoic acid	0.03
6:2 FTOH	6:2 fluorotelomer alcohol	0.02
8:2 FTOH	8:2 fluorotelomer alcohol	0.04

SI Table 1: Full names and relative potency factors (RPF) of PFAS included in the calculation of PFOA-equivalent (PEQ) concentrations.^{1,2} Compounds indicated with an ^{*} are included in the EFSA-4 tolerable weekly intake.

Concentrations in PEQ are calculated by summing the concentrations of individual PFAS multiplied with their RPF. For example, a water sample that contains 1 ng/L of each of the EFSA₄ compounds will have a PEQ concentration of 1.1 (PFOA) + 1.2 (PFOS) + 1.10 (PFNA) + 1.0.6 (PFHxS) = 13.6 ng PEQ/L.

SI Figure 1: Overview of GAC treatment process at the Leiduin drinking water treatment site from Waternet. Operational times shown are calculated based on the average reactivation frequency in 2024.

SI Figure 2: Breakthrough of PEQ, from raw water (C_{Raw}) to drinking water (C_{DW}) versus operational time of GAC filters, fit to a linear regression model. Note that the operational time used to determine the required reactivation frequency was twice the operational time found from the fitted equation: since multiple GAC filters are operated in parallel, this ensures that the average operational time over all filters is equal to the determined maximum.

Inputs	Amounts	Unit	Comments
GAC:	(a) 931; (b)2002; (c) 1774; (d) 2298		<u>Coal-based GAC</u> : Ecoinvent dataset 'Activated carbon, granular {RER} activated carbon production, granular from hard coal Cut-off, U' <u>Wood-based GAC</u> : Project data, as in SI table 6.
Tap Water	70726271	m ³	Tap water {Europe without Switzerland} market for Cut-off, U
Electricity	3823756	kWh	Electricity, medium voltage {NL} market for Cut-off, U. Estimation of WTP use data for GAC treatment.
Transport of Wood- GAC	(a) 32585; (b)70070; (c) 62074; (d) 80430	tkm	Transport, freight, lorry 16-32 metric ton, euro6 {RER} market for transport, freight, lorry 16-32 metric ton, EURO6 Cut-off, U. Distance of transport from GAC Activation to WTP – 35km.
Transport of Spent GAG	(a) 23250; (b) 50050; (c) 44350; (d) 57450	tkm	Transport, freight, lorry 16-32 metric ton, euro6 {RER} market for transport, freight, lorry 16-32 metric ton, EURO6 Cut-off, U. Spent GAC to Incineration plant - 20 km.
Output			
Drinking water	70653937	m ³	Project defined, WTP data
Waste			
Spent WoodGAC, wet	(a) 1163.75; (b) 2502.5; (c) 2217; (d) 2873	ton	Hazardous waste, for incineration {Europe without Switzerland} market for hazardous waste, for incineration Cut-off, U, as in Ellis et al. 2023. Spent GAC is assumed to contain 25% moisture as in Vilen, 2022.

SI Table 2: Inventory for Water Treatment Process (GAC focus) - Single Use Coal and Wood GAC

(a) 2024 GAC requirements
(b) average estimated GAC requirements
(c) minimum estimated GAC requirements
(d) maximum estimated GAC requirements

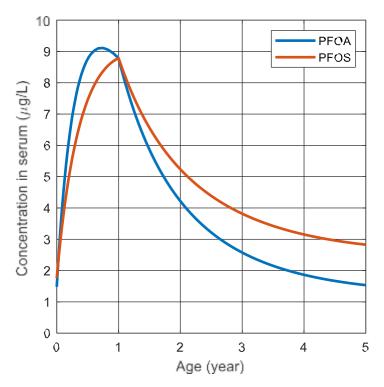
Inputs	Amounts	Unit	Comments
Virgin GAC	(a) 116.4 (b) 250.3 (c) 221.7 (d) 287.3	ton	Coal-based GAC: Ecoinvent dataset 'Activated carbon, granular {RER} activated carbon production, granular from hard coal Cut-off, U' <u>Wood-based GAC</u> : Project defined, as in table SI 6.
Reactivated GAC	(a) 814.6; (b) 1751.8; (c) 1551.9; (d) 2010.8	ton	<u>Coal-based GAC</u> : Project defined, based on ecoinvent dataset 'Activated carbon, granular {RER} treatment of spent activated carbon, granular from hard coal, reactivation Cut-off, U' <u>Wood-based GAC</u> : Project defined, as in SI 7.
Tap Water	70726271	m ³	Tap water {Europe without Switzerland} market for Cut-off, U
Electricity	3823756	kWh	Electricity, medium voltage {NL} market for Cut-off, U
Transport	(a) 32585; (b) 70074; (c) 62076; (d)80434	tkm	Sum of transport need for virgin and reactivated GAC. Transport, freight, lorry 16-32 metric ton, euro6 {RER} market for transport, freight, lorry 16-32 metric ton, EURO6 Cut-off, U. Distance of transport from GAC (re)activation to WTP – 35km.
Outputs	Amounts	Unit	Database process
Drinking water	70653937	m ³	Project defined
Spent GAC	(a) 1164; (b) 2503 (c) 2217; (d) 2873;	ton	Accounted as wet GAC, 25% moisture. <u>Coal-based GAC:</u> 'Activated carbon, granular {RER} treatment of spent activated carbon, granular from hard coal, reactivation Cut-off, U' <u>Wood-based GAC:</u> Project defined, as input for reactivation, as in SI 7,

SI Table 3: Inventory for Water Treatment Process (GAC focus) - Reactivated Coal and Wood GAC .

(a) 2024 GAC requirements(b) average estimated GAC requirements

(c) maximum estimated GAC requirements

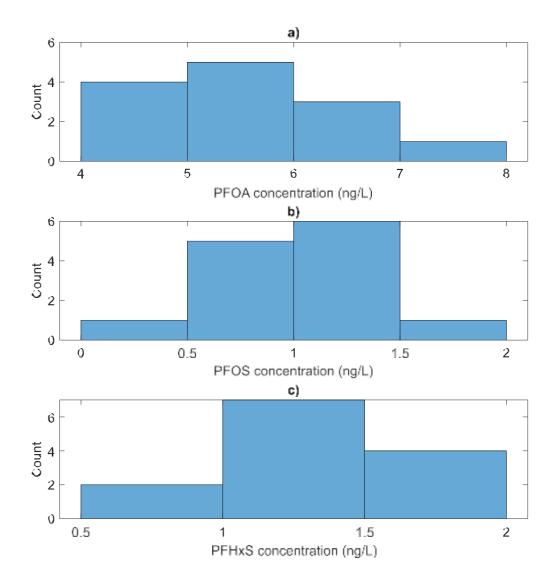
(d) minimum estimated GAC requirements


SI Table 4: Inventory for Wood GAC Production Process

Inputs	Amounts	Unit	Comments	
Wood chips	8,44	kg	Bark chips, wet, measured as dry mass {GLO} market for Cut-off, U.	
Electricity	1,7	kWh	Medium voltage, NL. Amount based on Vilen, 2022.	
Nitrogen	0,15	kg	Nitrogen, liquid {RER} market for Cut-off, U. Amount based on Vilen, 2022 ³¹	
Tap water	2,11	kg	Tap water {Europe without Switzerland} market for Cut-off, S. Amount based on Vilen, 2022. ³¹	
Transport				
Truck	0,422	tkm	Transport, freight, lorry 16-32 metric ton, euro6 {RER} market for transport, freight, lorry 16-32 metric ton, EURO6 Cut-off, U. Transport of wood chips to GAC production only, with an assumed distance of 50km, as in Vilen, 2022. ³¹	
Outputs				
Wood-based GAC	1	kg	Project defined stream.	
Emissions				
Activation				
CO2	1,81E+00	kg	Based on Gu et al, 2018 ³² (originally per kg biochar	
H2O	9,07E-02	kg	feedstock, converted based on 2,11 kg wood biochar /	
N2	1,83E+00	kg	kg wood-based GAC).	
02	1,59E+00	kg		
H2	4,22E-03	kg		
CO	8,86E-03	kg		
CH4	8,44E-04	kg		
SO2	1,27E-03	kg		
HCI	1,39E-06	kg		
Nox	8,84E-05	kg		
N2O	1,39E-06	kg		
Acetaldehyde	1,16E-05	kg		
Benzene	8,36E-05	kg		
Formaldehyde	4,64E-08	kg		
Methanol	4,64E-06	kg		
Naphthalene	9,31E-06	kg		
Phenol	2,04E-06	kg		
Propanal	9,31E-08	kg		
Particulates	4,62E-02	kg		
Carbonization				
Acetaldehyde	9,65029E-06	kg	Taking emissions to air from ecoinvent dataset "wood	
Ammonia	0,000273688	kg	pellets, burned in stirling heat and power co-	
Arsenic	1,58201E-07	kg	generation unit, 3kW electric", with methane, carbon dioxide and carbon monoxide reduced by 43% as in	
Benzene	0,000143963	kg	Vilen, 2022 11 as described in main text.	
Benzene, ethyl-	4,74604E-06	kg		
Benzene, hexachloro-	1,13905E-12	kg		
Benzo(a)pyrene	7,91007E-08	kg		

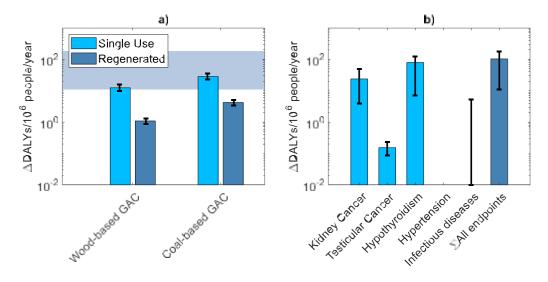
Bromine	9,49209E-06	kg
Cadmium	1,10741E-07	kg
Calcium	0,000925478	kg
Carbon dioxide,		
5	8,711158032	kg
Carbon monoxide,		
0	0,002885594	kg
	2,84763E-05	kg
Chromium	6,26478E-07	kg
Chromium VI	6,32806E-09	kg
Copper	3,48043E-06	kg
Dinitrogen		
	0,000474604	kg
Dioxin, 2,3,7,8		
Tetrachlorodibenzo-	4 00424E 12	ka
	4,90424E-12	kg
	7,91007E-06	kg
,	2,05662E-05	kg
Hydrocarbons,		
aliphatic, alkanes, unspecified	0,000143963	kg
Hydrocarbons,	0,000140000	Ng
aliphatic,		
	0,000490424	kg
Lead	3,95504E-06	kg
	5,69525E-05	kg
	2,68942E-05	kg
•	4,74604E-08	kg
,	3,60699E-05	kg
	1,89842E-05	-
,	,	kg
	9,49209E-07	kg
,	0,011074101	kg
NMVOC, non- methane volatile		
organic		
compounds,		
	0,000363863	kg
PAH, polycyclic		
aromatic		
hydrocarbons	1,75604E-06	kg
Particulates, < 2.5		
	0,001582014	kg
Phenol,		1
1	1,28143E-09	kg
•	4,74604E-05	kg
	0,003701914	kg
	0,000205662	kg
Sulfur dioxide	0,000395504	kg
Toluene	4,74604E-05	kg

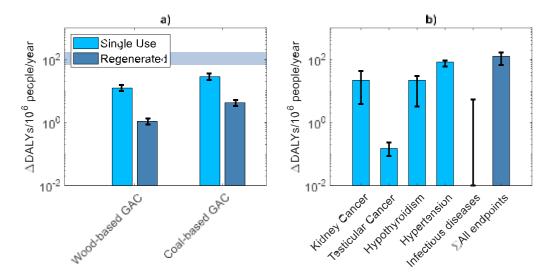
Inputs	Amounts	Unit	Comments
Spent GAC	1,00	kg	Wet, as output from drinking water process
Electricity	0,41	kWh	Medium voltage, NL
Nitrogen	0,04	kg	Liquid, RER
Tap water	0,55	kg	Europe without Swirzerland
Transport			
Truck	0,03	tkm	Transport, freight, lorry 16—32 t, RER. Same transport mode as Wood-GAC. Distance: 30km for return of spent GAC to Norit Activated Carbon for reactivation.
Outputs			
Reactivated Wood GAG	0,89	kg	1 enters, losses are 12,5% on final prod.
Emissions			
CO2	1,81E+0 0	kg	Based on activation of biochar as in Gu et al, 2018 (originally per kg biochar feedstock,
H2O	9,07E-02	kg	converted based on 2,11 kg wood biochar / kg
N2	1,83E+0 0	kg	wood-based GAC). Biogenic CO, CO2 and CH4.
02	1,59E+0 0	kg	
H2	4,22E-03	kg	
CO	8,86E-03	kg	
CH4	8,44E-04	kg	
SO2	1,27E-03	kg	
HCI	1,39E-06	kg	
Nox	8,84E-05	kg	
N2O	1,39E-06	kg	
Acetaldehyde	1,16E-05	kg	
Benzene	8,36E-05	kg	
Formaldehyde	4,64E-08	kg	
Methanol	4,64E-06	kg	
Naphthalene	9,31E-06	kg]
Phenol	2,04E-06	kg	1
Propanal	9,31E-08	kg	
Particulates	4,62E-02	kg	


SI Table 5: Inventory for Reactivated Wood GAC Production Process

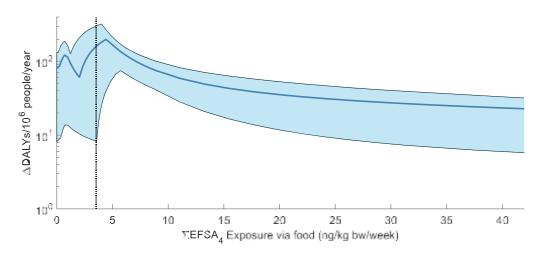
SI Figure 3: Verification that MATLAB PBPK model is an accurate reproduction of EFSA's model: PFOA and PFOS serum concentrations until age 5 using the same parameters as in EFSA's original model, to compare with Figure M.1 (page 379; PFOA) and Figure M.3 (page 382, PFOS) from Schrenk et al., 2020.³

Endpoint	Population	P (per 10 ⁶	W (DALYs/case)	1
		people) ⁴		(cases/person/year)
Kidney cancer	Adults >20	792,000	9.1 ⁵	0.000194 ⁶
Testicular	Males >18	403,000	1.8 ⁷	0.000064 ⁶
cancer				
Hypothyroidism	Females 18- 49	200,000	0.19 ^{8,9}	0.002 ¹⁰
Hypertension	Adults > 20	792,000	0.12 ¹¹	0.008 ¹⁰


SI Table 6: Overview of data used in DALY calculation


SI Figure 4: Distribution of 2024 drinking water concentrations of a) PFOA, b) PFOS and c) PFHxS. Total n = 13 for all.

SI Table 7: Health impacts (DALYs/ 10^6 p/year) from GAC treatment for each scenario, excluding DALYs related to water consumption. 2024 = reactivation frequency as in 2024 (current); Prosp. = prospective reactivation frequency


GAC type	Single u wood	se	Single coal	use	Reactiv coal	vated	Reactiva wood	ated
Scenario	2024	Prosp.	2024	Prosp.	2024	Prosp.	2024	Prosp.
Global warming	29	33	34	45	26	28	25	26
Fine particulate matter formation	31	38	37	50	29	31	28	29
Human carcinogenic toxicity	29	30	30	32	28	28	28	28
Human non- carcinogenic toxicity	8.7	9.1	10	13	8.3	8.7	8.0	8.1
Total	98	110	110	140	92	96	89	90

SI Figure 5: Repeated version of main text Figure 3, but with the dietary exposure set to the lower limit of the most recently estimated exposure of the Dutch population.

SI Figure 6: Repeated version of main text Figure 3, but with the dietary exposure set to the upper limit of the most recently estimated exposure of the Dutch population.

SI Figure 7: Sensitivity analysis over the effect of food exposure on the Δ DALYs between the scenario's with current and targeted drinking water concentrations. The blue line represents the best estimate, and the shaded region the uncertainty range (min-max, derived from 95 % CI over current drinking water concentrations and ERRs). The dotted vertical line is the food exposure at 80 % of the EFSA recommendation. Note that, in the dietary exposure, the ratio between PFOA/PFNA:PFOS/PFHxS is kept constant at the ratio assumed by EFSA (1:2.4).

SI Table 8: Serum/plasma concentrations at age 3 months in exclusively breastfed infants, comparison between measured and modelled results. The EFSA PBPK model assumes exclusive breastfeeding, as a worst-case scenario, so comparisons against plasma levels in breastfed infants are most realistic. Ranges represent the uncertainty from variation in current drinking water concentrations.

	Measured concentrations	Modelled serum concentrations; current scenario				
	Plasma conc. in exclusively breastfed infants ¹²	EFSA food exposure ³	LB food exposure 2022 ¹³	UB food exposure 2022 ¹³		
PFOA/PFNA		11.7 (11.1-12.3)	6.1 (5.5-7.1)	16.4 (15.8-17.1)		
PFOS/PFHxS		5.5 (5.3-5.8)	1.7 (1.5-1.8)	2.2 (2.1-2.4)		
∑EFSA₄	7.18	17.2 (16.4-18.1)	7.8 (7.0-8.9)	18.6 (17.9-19.5)		

SI Table 9: Plasma concentrations (ng/mL) at different ages for the different exposure scenario's. EFSA TDI: the tolerably daily intake of 0.63 ng/kg bw/d as calculated by EFSA; 2022 LB: the lower bound dietary exposure calculated by the RIVM for the Dutch population in 2022; 2022 UB: idem, but the upper bound.¹³

Exposur e via food as: Drink. water	EFSA	EFSA TDI	2022 LB DW conc.; meal	2022 UB	80 % of EFSA TDI	2022 LB	2022 UB
scenario	TDI		,		3		
		Blood plas	ma concentrat	ions at birth (ng	g/mL)		
PFOA/ PFNA	1.5	2.4 (2.3-2.6)	1.3 (1.1-1.5)	3.4 (3.3-3.5)	1.6	0.5	2.6
PFOS/ PFHxS	1.8	1.7 (1.6-1.8)	0.5 (0.5-0.6)	0.7 (0.6-0.7)	1.5	0.3	0.5
∑EFSA₄	3.3	4.1 (3.9-4.4)	1.8 (1.6-2.1)	4.1 (3.9-4.2)	3.1	0.8	3.1
		Blood plas	ma concentrati	ions at age 1 (n	g/mL)		
PFOA/ PFNA	8.7	14.2 (13.5- 14.9)	7.4 (6.7-8.7)	20.0 (19.2- 20.7)	9.4	2.7	15.2
PFOS/ PFHxS	8.7	8.3 (8.1-8.7)	2.5 (2.3-2.7)	3.4 (3.1-3.6)	7.3	1.6	2.4
∑EFSA₄	17.4	22.5 (21.6- 23.6)	9.9 (9.0-10.4)	23.4 (22.3- 24.3)	16.7	4.3	17.6
	Blood plasma concentrations at age 35 (ng/mL)						
PFOA/ PFNA	2.0	3.3 (3.1-3.4)	1.7 (1.5-1.9)	4.6 (4.4-4.8)	2.2	0.6	3.5
PFOS/ PFHxS	4.9	4.7 (4.5-4.8)	1.4 (1.3-1.5)	1.9 (1.8-2.0)	4.1	0.9	1.3
∑EFSA₄	6.9	8.0 (7.6-8.2)	3.1 (2.9-3.4)	6.5 (6.2-6.8)	6.3	1.5	4.8

SI Table 10: Identified uncertainties per uncertainty type. Green highlight indicates the uncertainty was discussed in the main text.

Indeterminate	Epistemic	Ambiguity
Future PFAS concentrations in raw water	PFAS breakthrough with different types of GAC and raw water	Endpoints to consider in estimation of health benefits of lower PFAS exposure
Future PFAS regulations	Dose response relationships and DALY weights to relate PFAS serum concentration to health impacts	PFAS molecules to consider and how to account for the impact of the different PFAS molecules (e.g. equipotency, relative potency factors)
Type of treatment used (e.g. GAC, ion exchange, etc) and specific life cycle implications (e.g. transportation, waste management)	Concentrations of PFAS below the limit of quantification	LCA assessment method assumptions (e.g. time horizon of climate change impacts, climate change impacts on human health)
Future dietary exposure to PFAS and distribution across population	Inventory data for GAC production and reactivation, especially for wood GAC at commercial scale.	How to account for localization of health impact (e.g. local benefit from decreased PFAS exposure, global loss from global warming)
	Current dietary exposure to PFAS and distribution across population	

References

- 1 RIVM, Werkwijze toetsing PFAS in drinkwatermonsters, 2023.
- 2 W. Bil, M. Zeilmaker, S. Fragki, J. Lijzen, E. Verbruggen and B. Bokkers, Risk Assessment of Per- and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach, *Environ Toxicol Chem*, 2021, **40**, 859–870.
- D. Schrenk, M. Bignami, L. Bodin, J. K. Chipman, J. del Mazo, B. Grasl-Kraupp, C. Hogstrand, L. Hoogenboom, J. C. Leblanc, C. S. Nebbia, E. Nielsen, E. Ntzani, A. Petersen, S. Sand, C. Vleminckx, H. Wallace, L. Barregård, S. Ceccatelli, J. P. Cravedi, T. I. Halldorsson, L. S. Haug, N. Johansson, H. K. Knutsen, M. Rose, A. C. Roudot, H. Van Loveren, G. Vollmer, K. Mackay, F. Riolo and T. Schwerdtle, Risk to human health related to the presence of perfluoroalkyl substances in food, *EFSA Journal*, DOI:10.2903/j.efsa.2020.6223.

- 4 Centraal Bureau voor de Statistiek, Bevolkingspiramide, https://www.cbs.nl/nlnl/visualisaties/dashboard-bevolking/bevolkingspiramide, (accessed 7 November 2024).
- S. Safiri, A.-A. Kolahi, M. A. Mansournia, A. Almasi-Hashiani, A. Ashrafi-Asgarabad,
 M. J. M. Sullman, D. Bettampadi, M. Qorbani, M. Moradi-Lakeh, M. Ardalan, A.
 Mokdad and C. Fitzmaurice, The burden of kidney cancer and its attributable risk
 factors in 195 countries and territories, 1990–2017, *Sci Rep*, 2020, **10**, 13862.
- 6 Integraal kankercentrum Nederland, NKR Cijfers Incidentie per jaar, https://nkrcijfers.iknl.nl, (accessed 7 November 2024).
- F. Pishgar, A. Haj-Mirzaian, H. Ebrahimi, S. Saeedi Moghaddam, B. Mohajer, M. R. Nowroozi, M. Ayati, F. Farzadfar, C. Fitzmaurice and E. Amini, Global, regional and national burden of testicular cancer, 1990–2016: results from the Global Burden of Disease Study 2016, *BJU Int*, 2019, **124**, 386–394.
- 8 World Health Organization, *WHO methods and data sources for global burden of disease estimates 2000-2019*, 2020.
- 9 V. Obsekov, L. G. Kahn and L. Trasande, Leveraging Systematic Reviews to Explore Disease Burden and Costs of Per- and Polyfluoroalkyl Substance Exposures in the United States, *Expo Health*, 2023, **15**, 373–394.
- 10 J. Vanhommerig and L. Overbeek, Nivel-cijfers Ziekten op jaarbasis in Nederland incidentie en prevalentie. prevalentie, https://www.nivel.nl/nl/zorg-en-ziekte-incijfers/cijfers-ziekten-op-jaarbasis, (accessed 7 November 2024).
- 11 D. Plass, S. Kienzler, J. Bessems, J. Buekers, J. Cops, A. Purece, A. Beloconi, P. Vounatsou and K. Widmer, *Estimating the burden of disease due to lead, PFAS, phthalates, cadmium, pyrethroids and bisphenol A using HBM4EU data test of feasibility and first results for selected countries*, 2023.
- 12 I. A. L. P. van Beijsterveldt, B. D. van Zelst, S. A. A. van den Berg, K. S. de Fluiter, M. van der Steen and A. C. S. Hokken-Koelega, Longitudinal poly- and perfluoroalkyl substances (PFAS) levels in Dutch infants, *Environ Int*, 2022, **160**, 107068.
- 13 RIVM, Risk assessment of exposure to PFAS through food and drinking water in the Netherlands, 2023.