Supplementary Information (SI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2025

Environmental Science: Processes & Impacts - Supplementary Material

Regulation of ammonium loss under contrasting upwelling conditions: sensitivity of Feammox to environmental drivers

Guillermo Samperio-Ramos^{a*}; Oscar Hernández-Sánchez^a; Jorge A. Velásquez-Aristizábal^{ab}, Víctor F. Camacho-Ibar^a; Silvia Pajares^c; Aaron Gutiérrez^a; Ariadna Aldrich-Rodríguez^a; Francisco J. Cervantes^d

spajares@cmarl.unam.mx

d. Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, 76230 Querétaro, México.

fcervantesc@iingen.unam.mx

*Corresponding author. E-mail address: guillermo.samperio@uabc.edu.mx (G. Samperio-Ramos)

^{a.} Nutrient Cycling in Marine Ecosystems (CiNEMa) Research Group. Instituto de Investigaciones Oceanolóogicas, Universidad Autónoma de Baja California, 22860 Ensenada, México. guillermo.samperio@uabc.edu.mx; oskrgabo@gmail.com; velasquez.jorge@uabc.edu.mx; <a href=

b. Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, México.

^{c.} Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.

Supporting Methods

Anammox rates measured through isotopic tracer incubations.

Potential anammox rates were determined through a slurry-based ¹⁵N isotope-tracing experiment ^{1,2}. The slurries were prepared as indicated for Feammox (See section 2.4 "Isotopic tracer incubations" in "Material and Methods"). Afterward, a ¹⁵NO₃- (99.5 atom%, ¹⁵N) stock solution was added to each vial, yielding a final concentration of 100 μM ¹⁵N. Subsequently, 200 μL of saturated ZnCl₂ solution was added to half of the vials with the objective of halting the reactions and establishing the initial samples. The remaining half of the slurries was further incubated for 8 h and treated as the final samples. The concentrations of ²⁹N₂ and ³⁰N₂ in the incubation vials were determined by a GasBench + Precon gas concentration system interfaced with a Delta V Plus Isotope-Ratio Mass Spectrometer (IRMS, Thermo-Scientific) at UC Davis Stable Isotope Facilities. The ²⁹N₂ and ³⁰N₂ production rates were calculated by the difference in ²⁹N₂ and ³⁰N₂ concentrations between the final and initial samples ^{3,4}. Then, the anammox rates were calculated based on Eq. (1).

$$R_A = (P_{29} - P_{30} \times (1-F_N) \times F_N^{-1}) \rho_s \times h_s$$
 (Eq. 1)

where R_A (mg · N m⁻² · d⁻¹) represents the potential anammox rates. The P_{30} and P_{29} indicate the total $_{30}N_2$ and $^{29}N_2$ production rates ($\mu g \ N \cdot g^{-1} \cdot d^{-1}$), respectively, and F_N is the fraction of ^{15}N in NO_3^- , estimated from the concentrations of added $^{15}NO_3^-$ and residual NO_3^- in the incubation slurries. The ρ_s and h_s refer to the density ($g \cdot cm^{-3}$) and depth (5 cm) of sediments.

■ Contribution of Feammox to total NH₄⁺ loss

According to the reaction stoichiometry of Feammox and Anammox, 2 mol of NH_4^+ are required to yield 1 mol of N_2 through Feammox, while Anammox requires 1 mol of NH_4^+ to generate 1 mol of N_2 through Anammox ^{1,5}. Consequently, the contributions of both processes to NH_4^+ loss were calculated based on the potential rates of both processes, as outlined in the following equations:

$$C_{Fe} = \frac{R_{Fe}}{R_{Fe} + R_A} \cdot 100$$
 (Eq. 2)

$$C_A = \frac{R_A}{R_A + R_{Fe}} \cdot 100$$
 (Eq. 3)

where C_{Fe} and C_A represent the contribution of Feammox and Anammox to NH_4^+ loss, while R_{Fe} and R_A denote the potential rates of Feammox and Anammox, respectively.

Supporting results in sediment characteristics distribution

The PERMANOVA results indicated that moisture significantly differed among stations (P < 0.001; $r^2 = 0.44$) and between bottom types (P < 0.001; $r^2 = 0.45$), but not between upwelling conditions (Table S3). The highest mean moisture value (86%) was recorded in 3S. The Station factor notably accounted for the greatest degree of variation (P < 0.001; P = 0.88) in granulometry (Table S3), with 1B exhibiting the highest proportion of sand (82–91%) and the lowest (21-28%) in station 3.

Significant differences (P < 0.001) in the NH_4^+ concentration were also found in the interactions of Upwelling-conditions × Station ($r^2 = 0.12$), Station × Bottom-type ($r^2 = 0.08$), and Upwelling-conditions × Station × Bottom-type ($r^2 = 0.07$). Urea levels in the sediments ranged from 0.09 ± 0.02 to 0.58 ± 0.06 µg N · g⁻¹. The effects of Station (P < 0.001; $r^2 = 0.44$) and Bottom-type (P < 0.001; P = 0.15) on the urea concentration were observed. The PERMANOVA also revealed that the interactions between both factors significantly affected the distribution of urea (P < 0.001; P = 0.21), with a more pronounced effect in seagrass sediments (pairwise test: P < 0.05).

Upwelling-conditions (P < 0.05), Bottom-type (P < 0.001), and the interaction of Upwelling-conditions × Station (P < 0.05) contributed 6%, 15%, and 7% to the total variation of SOC, respectively. The C:N ratio was different between upwelling conditions (P < 0.001; $r^2 = 0.26$) and bottom types (P < 0.05; $r^2 = 0.09$), with significant interaction of both factors (P < 0.05; $r^2 = 0.08$). Although the CCHO concentrations in vegetated sediments (382.6 ± 146.8 μ g C · g⁻¹) were consistently higher (pairwise test: P < 0.001) than those in bare bottoms (108.1 ± 24.3 μ g C · g⁻¹) across all stations and both upwelling conditions, the most minor differences were noted at station 1 during HB (Table S2). In addition, MPB varied significantly among stations (P < 0.001; $r^2 = 0.37$) with a significant interaction of Station × Upwelling-conditions (P < 0.05; $r^2 = 0.16$).

Tables:

■ Table S1. Thermal cycling conditions and protocols used in the qPCR. All reactions* were performed in triplicate.

Target gene	Primer set	Sequence (5'-3')	Thermal profile*	Efficiencies	Reference
16S rRNA	Geo564F	AAGCGTTGTTCGGAWTTAT	40x(95°C - 30 s, 57°C -	95-110 %	6
Geobacteraceae	Geo840R	GGCACTGCAGGGGTCAATA	30 s, 72°C - 30 s)	93-110 %	v
16S rRNA	Acm342F	GCAATGGGGGAAACCCTGAC	40x(95°C - 30 s, 57°C -	113-118 %	7
Acidomicrobiaceae A6	Acm439R	ACCGTCAATTTCGTCCCTGC	30 s, 72°C - 30 s)		,

^{*}Thermal conditions started at 95°C for 5 min and finished at 72°C for 5 min. Reactions finished with a melting curve starting at 60°C and increasing by 1°C until 95°C to verify the amplicon specificity.

Table S2. Sediment characteristics along Bahía de San Quintin under low BEUTI (LB) and high BEUTI (HB) conditions.

	Mois	sture	Granu	lometry	pl	Н	°S(С	♭C	НО	C	:N	с М	PB	Ni	- 1₄⁺	Ur	ea	₫ N	O _x -	°Fе	(III)	^f Mn	ı(IV)
Stations	(%	%)	(% s	sand)	(NE	3S)	(mg (C g ⁻¹)	(μg	C g ⁻¹)	(mol C	: mol N)	(μg (C g ⁻¹)	(μ g ľ	۱ g ⁻¹)	(μg N	√g¹)	(μg N	N g ⁻¹)	(mg F	e g ⁻¹)	(mg N	VIn g ⁻¹)
	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ	LB	НВ
1B	35.53 (3.67)	42.50 (3.12)	90.75 (0.62)	81.70 (4.71)	8.01 (0.02)	7.85 (0.01)	3.10 (0.06)	5.43 (0.38)	72.08 (6.05)	109.06 (19.53)	10.05 (0.04)	7.31 (0.84)	202.36 (35.97)	309.24 (33.58)	4.01 (0.28)	9.16 (0.73)	0.09 (0.02)	0.21 (0.03)	0.35 (0.03)	1.06 (0.21)	2.95 (0.53)	3.46 (0.69)	0.09 (0.02)	0.11 (0.01)
18	61.36 (1.78)	65.08 (4.65)	63.19 (0.85)	71.41 (3.68)	8.04 (0.02)	7.89 (0.03)	6.73 (0.98)	8.55 (0.32)	299.01 (9.39)	216.64 (21.43)	10.89 (0.47)	12.02 (0.86)	-		9.75 (0.98)	11.67 (2.09)	0.14 (0.06)	0.13 (0.04)	0.26 (0.02)	0.84 (0.08)	2.40 (0.28)	1.43 (0.76)	0.12 (0.02)	0.10 (0.01)
2B	50.29 (0.50)	49.88 (5.29)	68.01 (4.28)	74.60 (2.31)	8.06 (0.04)	8.01 (0.02)	7.49 (1.34)	5.91 (0.85)	126.47 (9.81)	121.88 (14.97)	11.44 (1.13)	8.69 (0.33)	250.35 (41.96)	269.23 (27.64)	6.10 (0.64)	6.59 (1.71)	0.20 (0.02)	0.25 (0.03)	0.11 (0.02)	0.62 (0.15)	4.97 (0.56)	4.42 (0.68)	0.15 (0.02)	0.14 (0.03)
28	72.57 (1.67)	71.21 (0.69	55.84 (3.45)	63.06 (1.34)	8.08 (0.05)	7.95 (0.03)	9.90 (1.14)	10.05 (0.55)	320.78 (22.47)	274. 06 (38.79)	10.27 (0.18)	9.77 (0.53)	-		18.89 (0.26)	16.84 (1.49)	0.31 (0.05)	0.26 (0.04)	0.38 (0.03)	0.59 (0.07)	4.84 (1.10)	4.19 (0.52)	0.15 (0.02)	0.17 (0.04)
3B	68.11 (2.27)	67.23 (6.24)	25.12 (1.77)	21.29 (1.63)	8.19 (0.05)	8.21 (0.02)	10.47 (0.80)	11.50 (1.50)	115.60 (4.69)	104.38 (6.85)	11.63 (0.71)	9.51 (0.76)	107.00 (30.41)	120.19 (10.80)	5.28 (0.72)	10.33 (0.95)	0.22 (0.02)	0.25 (0.04)	0.25 (0.05)	0.32 (0.07)	4.07 (0.38)	3.82 (0.79)	0.21 (0.04)	0.19 (0.01)
38	83.03 (0.77)	86.06 (1.38)	28.23 (2.06)	23.81 (3.02)	8.15 (0.03)	8.16 (0.04)	18.50 (1.44)	22.83 (1.27)	535.15 (51.36)	604.80 (42.27)	10.63 (0.71)	10.57 (0.63)	-	-	16.02 (3.70)	25.25 (4.33)	0.58 (0.06)	0.47 (0.02)	0.37 (0.13)	0.41 (0.05)	4.37 (0.46)	4.75 (0.63)	0.18 (0.03)	0.15 (0.04)

Note: aSOC: sediment organic carbon; bCCHO: soluble carbohydrates; cMPB: microphytobenthos biomass; dNO $_x$: nitrate + nitrite; cFe(III): microbiologically reducible iron; fMn(IV): microbiologically reducible manganese.

Table S3. Results of three-way PERMANOVA tests for differences in sediment characteristics among Upwelling conditions (UC), stations (St), and bottom type (BT).

Source Df		Moisture		Granulo	metry	p	Н	SC	C	CCH	Ю	C:	N	MP	В	NH	4*	Ure	ea	NC) _x -	Fe(l	III)	Mn(IV)		
		F	R	F	R²	F	R⁰	F	₽º	F	R²	F	R	F	₽°	F	R⁴	F	Rº	F	R²	F	R²	F	R⁴		
UC	1	1.3	0.01	0.5	0.00	30.3*	0.20	12.3**	0.06	0.0	0.00	16.4**	0.26	3.2	0.06	50.9**	0.16	0.2	0.00	41.6**	0.37	0.4	0.00	0.1	0.00		
St	2	65.7**	0.44	387.8**	0.88	41.9**	0.56	59.4**	0.58	3.1	0.06	1.5	0.05	12.6**	0.32	2.8	0.04	40.0**	0.44	9.2*	0.16	12.6**	0.45	21.3**	0.43		
BT	1	134.8**	0.45	28.9**	0.03	0.0	0.00	30.5**	0.15	390.8**	0.47	5.5*	0.09	-	-	230.7**	0.47	26.3**	0.15	0.2	0.00	0.4	0.01	0.2	0.00		
UCxSt	2	0.9	0.01	3.4	0.01	3.7*	0.05	8.0*	0.07	1.3	0.00	2.5	0.07	8.8*	0.17	28.6**	0.12	1.6	0.01	10.1**	0.18	0.3	0.01	1.6	0.03		
UCxBT	1	0.0	0.00	2.9	0.01	0.1	0.00	1.1	0.00	0.2	0.00	4.8*	0.08	-	-	2.3	0.01	8.8*	0.06	2.0	0.02	0.3	0.01	4.3	0.06		
StxBT	2	1.4	0.01	14.8**	0.03	0.6	0.01	1.4	0.01	45.0**	0.26	2.1	0.07	-	-	19.3**	0.08	18.3**	0.21	2.9	0.05	2.1	0.10	3.4	0.05		
UCxStxBT	2	0.4	0.00	3.2	0.00	1.7	0.02	0.6	0.01	9.3**	0.14	0.7	0.02	-	-	14.5**	0.07	0.1	0.00	0.6	0.01	0.9	0.03	2.8	0.09		
Residuals	24		0.08		0.04		0.16		0.12		0.07		0.37		0.45		0.05		0.13		0.21		0.39		0.34		
								•	F	airwise	post-	hoc co	mpari	sons													
UC				-		LB>	-HB	НВ	>LB			LB>	НВ			HB>	LB			HB>	LB	-	ê	-			
St		3>2	>1	1>2	>3	3>2	2 > 1	3>	2>1	-		-		1=2>3		1=2>3 -		-		3>2>1		1=2>3		3=2>1		3=2>1	
BT		S>	В	B>	S		-	S	>B	S>	В	S>	В	- S>B		S>B		S>B		-							

Note: LB: Low BEUTI; HB: High BEUTI; B: Bare sediments; S: Seagrass sediments; * and ** denote statistical significance at P < 0.05 and P < 0.001, respectively.

Table S4. Results of three-way PERMANOVA tests for differences in dissimilatory Fe(III) reduction rates (FeRR) and Feammox rates among upwelling condition (UC), stations (St), and bottom type (BT).

Source	df	FeR	RR	Feammox					
Source	uj	F	R ²	F	R ²				
UC	1	0.1	0.0	0.4	0.01				
St	2	21.3**	0.42	37.8**	0.34				
ВТ	1	0.2	0.01	0.7	0.02				
UCxSt	2	1.6	0.03	1.8	0.03				
UCxBT	1	5.8*	0.07	8.2**	0.10				
StxBT	2	7.4**	0.12	17.4**	0.25				
UCxStxBT	2	2.3	0.03	6.5*	0.08				
Residuals	24		0.32		0.17				
UC		-			-				
St		3 = 2	> 1	3=2	2 > 1				
BT		-			-				

Note: LB: Low BEUTI; HB: High BEUTI; B: Bare sediments; S: Seagrass sediments; * and ** indicate statistical significance at P < 0.05 and P < 0.001, respectively.

Table S5. Results of Monte Carlo permutation tests employed to analyze the environmental characteristics that contributed to the RDA models (Fig. 3).

Environmental	Bare so	ediments	Seagrass sediments					
characteristics	Explains rate	p-value	Explains rate	p-value				
BEUTI	12.7	0.009	10.8	0.017				
ССНО	15.1	0.002	9.2	0.025				
C:N	1.5	0.539	2.0	0.611				
d_{m}	7.9	0.046	8.5	0.040				
Fe(III)	16.7	0.001	22.1	0.001				
MPB	10.2	0.020	-	-				
Mn(IV)	8.4	0.031	4.5	0.198				
μ_{m}	4.3	0.138	3.8	0.257				
$NH_4{}^+$	9.0	0.027	5.7	0.072				
NO _x -	8.1	0.034	6.9	0.048				
pН	1.6	0.642	1.3	0.805				
$\phi_{\rm s}$	3.0	0.295	0.8	0.911				
SOC	2.3	0.470	15.9	0.001				
T	11.7	0.015	7.2	0.045				
Urea	14.2	0.006	11.6	0.012				

Note: BEUTI: Biologically Effective Upwelling Transport Index (mmol NO_3 · m^{-1} · s^{-1}); CCHO: soluble carbohydrates (μg C · g^{-1}); d_m : station distance from the inlet (km); Fe(III): microbiologically reducible iron (mg Fe · g^{-1}); MPB: microphytobenthos biomass (μg C · g^{-1}); Mn(IV): microbiologically reducible manganese (mg Mn · g^{-1}); μ_m : moisture (%); NO_x : nitrate + nitrite (μg N · g^{-1}); ϕ_s : granulometry as proportion of sand (%); SOC: sediment organic carbon (μg C · g^{-1}); T: temperature (°C). Bold letters imply statistical significance at the p < 0.05 level.

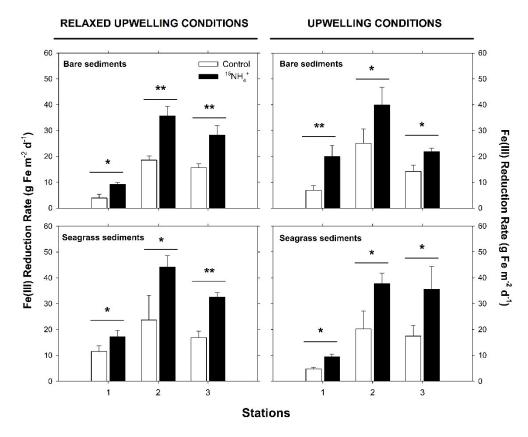


Figure S1. Fe(III) reduction rates (g Fe \cdot m⁻² \cdot d⁻¹) measured through isotope tracer incubations in both bare and seagrass sediments from Bahia de San Quintin, under upwelling-relaxed and upwelling conditions. Asterisks above the horizontal line denote statistically significant differences (* at the level 0.05 and ** at the level 0.001) between treatments (control and $^{15}NH_4^+$ addition), as determined by the t-student test. Values are the means and error bars represent standard errors (n=3).

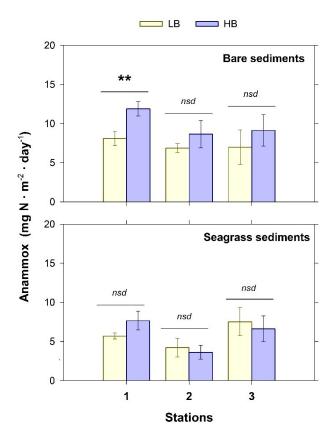


Figure S2. Seasonal changes on potential Anammox rates measured through isotope tracer incubations in bare and seagrass sediments from Bahia de San Quintin. Asterisks above the horizontal line denote statistically significant differences (* at 0.05 and ** at 0.001 level, respectively) between upwelling and relaxed upwelling conditions (n=3).

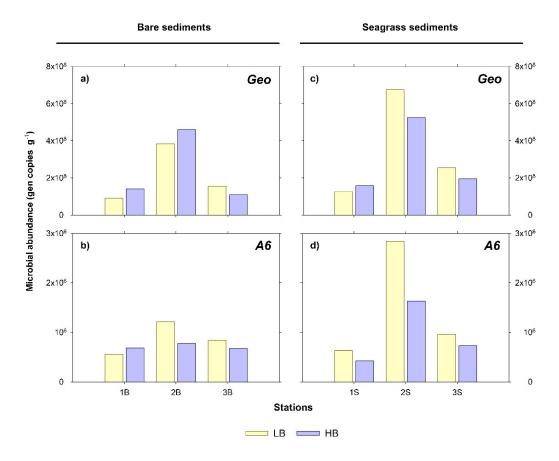


Figure S3. Gene copy numbers of *Geobacteraceae* spp (*Geo*) and *Acidimicrobiaceae* A6 spp quantified through qPCR in bare and seagrass sediments under relaxed (LB) and favourable (HB) upwelling conditions.

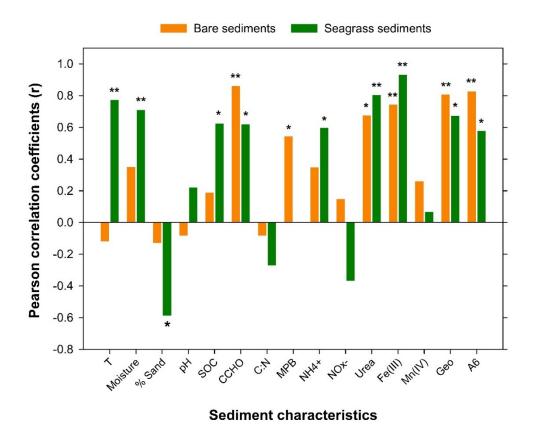


Figure S4. The relationship between Feammox rates and sediment characteristics in Bahia de San Quintin. * and ** denote statistically significant differences P < 0.05 and P < 0.001, respectively.

REFERENCES:

- B. Thamdrup and T. Dalsgaard, *Appl Environ Microbiol*, 2002, **68**, 1312–1318.
- 2 L. Hou, Y. Zheng, M. Liu, J. Gong, X. Zhang, G. Yin and L. You, *J Geophys Res Biogeosci*, 2013, **118**, 1237–1246.
- 3 F. Deng, L. Hou, M. Liu, Y. Zheng, G. Yin, X. Li, X. Lin, F. Chen, J. Gao and X. Jiang, *J Geophys Res Biogeosci*, 2015, **120**, 1521–1531.
- 4 Fozia, Y. Zheng, L. Hou, Z. Zhang, D. Gao, G. Yin, P. Han, H. Dong, X. Liang, Y. Yang and M. Liu, *Mar Pollut Bull*, 2020, **153**, 110971.
- W. H. Yang, K. A. Weber and W. L. Silver, *Nature Publishing Group*, 2012, preprint, DOI: 10.1038/ngeo1530.
- D. E. Cummings, O. L. Snoeyenbos-West, D. T. Newby, A. M. Niggemyer, D. R. Lovley, L. A. Achenbach and R. F. Rosenzweig, *Microbial Ecology*, 2003, **46**, 257–269.
- 7 S. Huang and P. R. Jaffé, 2015, preprint, DOI: 10.5194/bg-12-769-2015.