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Fig. S1. Scanning electron microscope (SEM) images of B. subtilis before and after the
removal of EPS (a) (b), along with SEM images and XPS high resolution spectra of the
extracted EPS (¢) (d).
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Fig. S2.XRD diffractograms of (a) Hema and Goet.
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Fig. S3. Nitrogen adsorption isotherms at 77 K and BJH pore size distributions of
Hema (a, ¢), Goet (b, d).
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Fig. S4. FTIR spectra of Hema (a) and Goet (b) before and after EPS adsorption.



Fig. S5. 3D-EEM change of original EPS and EPS after equilibrium reaction with Hema and

Goet where the sequence of #1~#5 shows the gradual increase of initial EPS concentration

(10~80 mg C/L). H is represented Hema, G is represented Goet (background electrolyte was

0.01 M NaCl, temperature was 25 = 1 °C and pH was ~7.0).



Fig. S6. Loading plots of the four fluorescent components of EPS before and after adsorptive

fractionation on mineral surfaces.
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Fig. S7. Synchronous fluorescence spectra of EPS: (a) without mineral adsorptive
fractionation; (b) after adsorptive fractionation on Hema; (¢) after adsorptive fractionation on

Goet.



Fig. S8. Loading plots of the four fluorescent components of EPS binding to Cu before and

after adsorptive fractionation on mineral surfaces.
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Table S1.Surface characteristics of iron oxyhydroxides.

Specific Surface Area Pore Volume Pore Size
(m?/g) (cm?/g) (nm)
Hema 4.5165 m¥/g 0.000337 cm®/g 18.0758 nm
Goet 9.6892 m?/g 0.000102 cm?/g 12.0826 nm

* The Brunauer—-Emmett—Teller (BET) equation was used to calculate surface areas

from the nitrogen isotherm data. Barrett, Barrett, Joyner, Halenda (BJH) theory was

used to obtain mesopore (pore diameter 1.7-300 nm) distributions from the desorption

branch of the nitrogen isotherm. BJH cumulative and differential pore volume

distributions were determined for the desorption branch of the isotherm. (Fig. S3)

Table S2. PARAFAC components and their comparison to other studies.

Excitation Emission
Component  wavelength wavelength Interpretation Literature
(nm) (nm)

Tryptophan-like,

C1 225/285 340 o C5M
protein-like

Tryptophan-like,

C2 220/275 340 - C1@
protein-like

Tyrosine-like,
C3 225/280 305 C1®
protein-like,

Marine/

C4 320 425 microbial 29

humic-like




Table S3. 2D-SF-COS results on the assignment and sign of each cross-peak in a

synchronous map of EPS.

Position Sign Assignment
(v1/v2 nm) 230 280 328 365 of EPS
230 + Tyrosine
EPS-Hema 280 +(-) + Tryptophan
328 +(-) +(-) + Fulvic-like
365 +(-) +(-) +(-) +  Fulvic-like
+ Tyrosine
230
EPS- +(-) + Tryptophan
280
Goet +(-) +(-) + Fulvic-like
328
+(-) +(-) +(-) +  Fulvic-like
365

Table S4. PARAFAC components and their comparison to other studies.

Excitation Emission
Component  wavelength wavelength Interpretation Literature
(nm) (nm)

Tryptophan-like,
Cl 220/275 340 C1®
protein-like

Tyrosine-like,
C2 225/275 305 C7©
protein-like
Marine/
C3 220/310 290/370 microbial C4™
humic-like
Fulvic acid-like

C4 270/355 310/435 C3®
component




Table S5. Cross-peak signs in the SF synchronous and asynchronous (in parentheses)

maps of EPS fractions with Cu addition.

Position Sign Assignment of
(v1/v2 nm) 230 280 328 EPS
+
230 Tyrosine
EPS-Cu + +
280 Tryptophan
+(-) )t o
328 Fulvic-like
230 + Tyrosine
EPS-Hema-Cu 280 +(-) + Tryptophan
328 +(-) +(-) + Fulvic-like
230 + Tyrosine
280 + + Tryptophan

EPS-Goet-Cu
328 +(-) +(-) + Fulvic-like




Table S6. Cross-peak signs in the FTIR synchronous and asynchronous (in parentheses) maps of EPS with Cu addition.

Sites(cm- Signs Refere
Assignment
D) 620 1052 1400 1620 1706 nces
620 ring vibrations from aromatic N ©)

amino acids and nucleotides

vibrations from the C-O-C

1052 rings and stretches of the P=0 (10
bond in the phosphate group from + +
EPS-Cu polysaccharide
COOr stretches associated with + + +
1400 . . an
amino acid

C =0 extension of the amide |
1620 +(-) +(-) +(-) + (11
band

C=0 stretching vibration of free

. v+ )+ o
carboxylic groups

1706



Sites(cm

N

982

EPS-Hema- 1070
Cu
1400

1620

Sites(cm-

)

620

Assignment

O-P-O stretches associated with

nucleic acids

C-O-C ring vibrations and C-OH

stretches derived from

polysaccharides

COQOr stretches associated with

amino acid

C =0 extension of the amide

band

Assignment

ring vibrations from aromatic
amino acids and nucleotides

982

+-)

+-)

+-)

620

Signs
1070

+(-)

Signs
1052

1400

+(-)

1425

Refere
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(13)
(10)
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+ (11
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1620 nces
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vibrations from the C-O-C rings

and stretches of the P=0 bond in

1052
the phosphate group from +
polysaccharides
COOr stretches associated with +(-)
1425 . .
amino acid

C =0 extension of the amide |
1620 +
band

+-)

+-)

(10)
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