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Table S1.Surface characteristics of iron oxyhydroxides.

 * The Brunauer–Emmett–Teller (BET) equation was used to calculate surface areas 

from the nitrogen isotherm data. Barrett, Barrett, Joyner, Halenda (BJH) theory was 

used to obtain mesopore (pore diameter 1.7–300 nm) distributions from the desorption 

branch of the nitrogen isotherm. BJH cumulative and differential pore volume 

distributions were determined for the desorption branch of the isotherm. (Fig. S3)

Table S2. PARAFAC components and their comparison to other studies. 

 
Specific Surface Area

(m²/g)

Pore Volume

(cm³/g)

Pore Size

(nm)

Hema 4.5165 m²/g 0.000337 cm³/g 18.0758 nm

Goet 9.6892 m²/g 0.000102 cm³/g 12.0826 nm

Component

Excitation

wavelength 

(nm)

Emission

wavelength 

(nm)

Interpretation Literature

C1 225/285 340
Tryptophan-like, 

protein-like
C5(1)

C2 220/275 340
Tryptophan-like, 

protein-like
C1(2)

C3 225/280 305
Tyrosine-like,

protein-like,
C1(3)

C4 320 425

Marine/

microbial

humic-like

C2(4)



Table S3. 2D-SF-COS results on the assignment and sign of each cross-peak in a 

synchronous map of EPS.

Position 

(v1/v2 nm)

Sign

230      280     328     365

Assignment 

of EPS

EPS-Hema

230

280

328

365

+

+(-)      +

+(-)      +(-)      +

+(-)      +(-)      +(-)     +

Tyrosine

Tryptophan

Fulvic-like

Fulvic-like

  EPS-

Goet

230

280

328

365

+

+(-)      +

+(-)      +(-)      +

+(-)      +(-)      +(-)     +

Tyrosine

Tryptophan

Fulvic-like

Fulvic-like

Table S4. PARAFAC components and their comparison to other studies.

Component
Excitation
wavelength 

(nm)

Emission
wavelength 

(nm)
Interpretation Literature

C1 220/275 340
Tryptophan-like, 

protein-like
C1(5)

C2 225/275 305
Tyrosine-like, 

protein-like
C7(6)

C3 220/310 290/370

 Marine/ 

microbial 

humic-like

C4(7)

C4 270/355 310/435
Fulvic acid-like 

component
C3(8)



Table S5. Cross-peak signs in the SF synchronous and asynchronous (in parentheses) 

maps of EPS fractions with Cu addition.

Position 

(v1/v2 nm)

Sign

230     280    328

Assignment of 

EPS

EPS-Cu
230

280

328

+

+        +

+(-)      +(-)    +

Tyrosine

Tryptophan

Fulvic-like

EPS-Hema-Cu

230

280

328

+

+(-)      +

+(-)      +(-)    +

Tyrosine           

Tryptophan

Fulvic-like

EPS-Goet-Cu

230

280

328

+

+        +

+(-)      +(-)    +

Tyrosine

Tryptophan

Fulvic-like



Table S6. Cross-peak signs in the FTIR synchronous and asynchronous (in parentheses) maps of EPS with Cu addition.

Sites(cm-

1)
Assignment

Signs

620    1052     1400     1620     1706

Refere

nces

620 ring vibrations from aromatic 
amino acids and nucleotides + (9)

1052

vibrations from the C-O-C

rings and stretches of the P=O 

bond in the phosphate group from 

polysaccharide

+       +

(10)

1400
COO- stretches associated with

amino acid
+       +         +

(11)

1620
C＝O extension of the amide I 

band
+(-)     +(-)       +(-)       + (11)

EPS-Cu

1706 C=O stretching vibration of free 
carboxylic groups      +       +         +(-)       +       + (12)



Sites(cm-

1)

Assignment
Signs

982        1070          1400        1620

Refere

nces

982 O-P-O stretches associated with 
nucleic acids

+
(13)

1070

C-O-C ring vibrations and C-OH 

stretches derived from 

polysaccharides

+(-)         + (10)

1400
COO- stretches associated with

amino acid
+(-)         +            +

(11)

EPS-Hema-

Cu

1620
C＝O extension of the amide I 

band
+(-)         +(-)          +(-)          + (11)

Sites(cm-

1)
Assignment

Signs

620        1052         1425        1620

Refere

nces

EPS-Goet-Cu

620 ring vibrations from aromatic 
amino acids and nucleotides + (9)



1052

vibrations from the C-O-C rings 

and stretches of the P=O bond in 

the phosphate group from 

polysaccharides

+          +
(10)

1425
COO- stretches associated with

amino acid
+(-)        +(-)           +

(11)

1620
C＝O extension of the amide I 

band
+          +(-)           +          + (11)
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