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19 Figure S1. Concentration (ppb) of Acenaphthylene (A), Fluorene (B), and
20 Benzo[k]fluoranthene (C), respectively, for sites downstream of burned area and creek

21 ocean interface.
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Figure S2. Heatmap of normalized Spearman rank correlation matrix with statistically

significant correlations (p < 0.05, indicated with an asterisk *), of polycyclic aromatic

hydrocarbons (PAHs) and carbon loading rate
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28 Figure S3. Catechol and protocatechuate degradation pathway intersections with the

29 TCA cycle. Adapted from aerobic pathways reported EnviPath' and the University of



30 Minnesota biocatalysis/biodegradation database.?
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Figure S4 Panel A: Average relative abundances of predicted catechol and protocatechuate
degradation pathways in dry and post-fire storms at the CCB site, directly downstream of the
burned area. The log2 fold change compares dry vs. post-fire storm. Panel B: Timeline of Z-
Scores of catechol and protocatechuate degradation pathways in the site directly downstream of

the fire (CCB). Other downstream sites had similar patterns (Sl, Figure S3)
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Figure S5. Z-Scores of predicted catechol and protocatechuate degradation pathways
at further downstream sites of the fire Pacific Coast Highway (Panel A) and the ocean
interface (Panel B). The red section above the dates denotes the dry period after the

fire, the blue section above the dates indicates post-fire storms.
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Figure S6. Timeline showing changes in relative abundance of general predicted

1,5-anhydrofructose degradation:

metabolism for sites CCB (Panel A), ACB (Panel B), and OC (Panel C) with the 20

lowest p-values. Horizontal bands above dates: dry (red), post-fire storms (blue).
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48 Table S1. Differentially abundant genera with carbon loading correlations

Family/Genus Carbon Loading P value Significant  Differentially
Rate Correlation Abundant
f__Microbacteriaceae;g__SV1-3 -0.3635942782 0.0102 Yes Dry
f__Microbacteriaceae;g__Rhodoluna -0.3427809474 0.0159 Yes Dry
f__Microbacteriaceae;g__Candidatus_Plankt -0.1666111286 0.2525 No Dry
:Exfteromonadaceae;g_ParagIaciecoIa -0.1078184644 0.4609 No Dry
f__Flavobacteriaceae;___ -0.145086151 0.3199 No Dry
f__Nitrincolaceae;g__Marinobacterium -0.1587421492 0.276 No Dry
f__Flavobacteriaceae;g__Polaribacter -0.1757967006 0.227 No Dry
f_Sphingomonadaceae;__ 0.5965674592 0 Yes Rain
f_Moraxellaceae;g__Acinetobacter 0.1391146997 0.3404 No Rain
f__Sulfurimonadaceae;g__Sulfuricurvum 0.2618370997 0.0692 No Rain
f__Oxalobacteraceae;g__Massilia 0.7945192026 0 Yes Rain
f__Methylophilaceae;g__Candidatus_Methylo 0.776291707 0 Yes Rain
pumilus
f__Alcaligenaceae;g__GKS98_freshwater_gr 0.5882500239 0 Yes Rain
?ii;’revotelIaceae;g_PrevoteIIa -0.2364904896 0.1018 No Dry
Unassigned;__;_ ; ; ; 0.07091932613 0.6282 No Dry
f_Sphingomonadaceae;g__Sphingomonas 0.7738651767 0 Yes Rain
f__Spirosomaceae;g__Arcicella 0.607299212 0 Yes Rain
f__Diplorickettsiaceae;g__Rickettsiella 0.7526666693 0 Yes Rain
f__Sphingobacteriaceae;g__Pedobacter 0.7344794179 0 Yes Rain
f_Cryomorphaceae;g__Phaeocystidibacter -0.1773061378 0.2229 No Dry
f__Bacillaceae;g__Bacillus 0.6137989701 0 Yes Rain
f__Lachnospiraceae;g__Agathobacter -0.2153164753 0.1373 No Dry
f_Ruminococcaceae;g__Faecalibacterium -0.2051245667 0.1574 No Dry
f__Sphingomonadaceae;g__Sphingobium 0.6548258437 0 Yes Rain
f__Cyclobacteriaceae;g__uncultured -0.3070822579 0.0319 Yes Dry
f__Litoricolaceae;g__Litoricola -0.2479929348 0.0858 No Dry
f__Moraxellaceae;g__Alkanindiges 0.6772403128 0 Yes Rain
f_67-14;9_ 67-14 0.1640338342 0.2601 No Rain
f__Streptomycetaceae;g__Streptomyces 0.749689986 0 Yes Rain
f_Rhodocyclaceae;g__Ferribacterium 0.4409999889 0.0015 Yes Rain
f__Chitinophagaceae;g__Chitinophagaceae 0.3562535815 0.012 Yes Rain
f_Micrococcaceae; 0.684177831 0 Yes Rain
f__Diplorickettsiaceae;__ 0.7936965527 0 Yes Rain
f__uncultured;g__uncultured 0.6509000934 0 Yes Rain
f__Paenibacillaceae;g__Paenibacillus 0.6069368552 0 Yes Rain
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f__Nitrosomonadaceae;g__MND1 0.6384911676 0 Yes Rain
f__Rhodocyclaceae;g__C39 0.1708604108 0.2405 No Rain
f__Sphingobacteriaceae;g__Mucilaginibacter 0.6899341049 0 Yes Rain
f__Azospirillaceae;g__Skermanella 0.6997489486 0 Yes Rain
f__Lachnospiraceae;g__Lachnospira -0.1646954872 0.2581 No Dry
f__Diplorickettsiaceae;g__Aquicella 0.6248478339 0 Yes Rain
f__Beijerinckiaceae;g__Methylobacterium- 0.7709336479 0 Yes Rain
Methylorubrum

f__Lachnospiraceae;g__Dorea -0.1507646598 0.3011 No Dry
f_Moraxellaceae;g__uncultured 0.5442054515 0.0001 Yes Rain
f__Sporichthyaceae;g_Candidatus_PIanktop -0.1471519208 0.313 No Dry
?fLachnospiraceae;g_Coprococcus -0.1806837767 0.2141 No Dry
f_Rhodobacteraceae;g__Marivita -0.1997103474 0.1689 No Dry
f__Lachnospiraceae;g__[Eubacterium]_hallii -0.2294799224 0.1127 No Dry
Ffl?:cl:ohnospiraceae;g_Lachnospiraceae_N -0.2030248027 0.1618 No Dry
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