

Supporting Information

Optical Property, Oxidative Potential and Chemical Composition of Brown Carbon in the Megacity Shenyang of Northeast China

4 Jianwei Zheng^a, Wangjin Yang^{a,*}, Hao Na^a, Hongxing Yang^a, Fu Li^a, Shaojie Yang^a,
5 Ning Tang^b, Chong Han^{a,*}

⁶ ^a School of Metallurgy, Northeastern University, Shenyang, 110819, China

⁷ ^b Institute of Nature and Environmental Technology, Kanazawa University,

8 Kanazawa 920-1192, Japan

9

10

11

12 *To Whom Correspondence Should Be Addressed:

13 hanch@smm.neu.edu.cn; yangwj@smm.neu.edu.cn

14

15

10

18

19

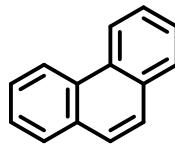
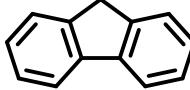
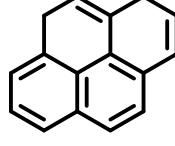
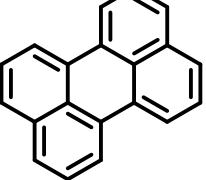
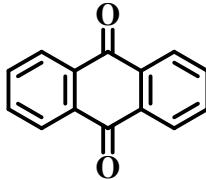
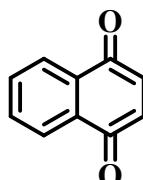
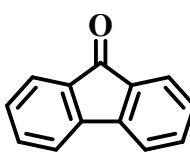
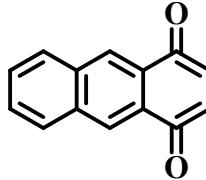
20

22

23

24

24 Summary









25 Text S1

26 Table S1 to S8

27 Fig. S1 to S13

28

Table S1. The structural formula of target compounds.

Type	Compounds	Structural formula
	Phenanthrene	
	(Phe)	
	Fluorene	
	(Flu)	
Polycyclic aromatic hydrocarbons (PAHs)	Fluoranthene	
	(Fla)	
	Pyrene	
	(Pyr)	
	Perylene	
	(Per)	
Oxygenated polycyclic aromatic hydrocarbons (OPAHs)	Anthraquinone	
	(AQ)	
	Naphthalene-1,4-Dione	
	(1,4-NQ)	
	9-Fluorenone	
	(9-Flu)	
	1,4-Anthraquinone	
	(1,4-AQ)	

OPAHs	9,10-Phenanthraquinone (9,10-PQ)	
	5-Nitracenaphthene (5-NAce)	
	2-Nitrofluorene (2-NF)	
Nitrated polycyclic aromatic hydrocarbons (NPAHs)	2,7-Dinitrofluorene (2,7-DNF)	
	9-Nitroanthracene (9-NAnt)	
	1-Nitropyrene (1-NP)	

30

31

Table S2. Sampling dates of PM_{2.5}.

Seasons	Sampling dates
Spring (Spr)	25–27 May. 2023
Summer (Sum)	21–23 Aug. 2023
Autumn (Aut)	9–11 Nov. 2023
Winter (Win)	9–11 Feb. 2023

32

33

Table S3. Meteorological conditions of the sampling days.

Date	Temperature (°C)	Mean relative humidity (%)	Mean wind speed (m s ⁻¹)
25 May. 2023	16.30 ~ 22.30	47.20	4.90
26 May. 2023	12.80 ~ 27.10	65.00	2.50
27 May. 2023	12.10 ~ 23.70	69.90	2.40
21 Aug. 2023	21.50 ~ 25.10	84.10	1.50
22 Aug. 2023	15.60 ~ 28.00	80.80	1.00
23 Aug. 2023	17.20 ~ 29.40	75.20	1.10
9 Nov. 2023	-5.60 ~ 0.20	52.30	3.10
10 Nov. 2023	-11.10 ~ -3.00	65.20	1.40
11 Nov. 2023	-12.20 ~ -2.50	66.40	1.40
9 Feb. 2023	-9.30 ~ 2.80	47.90	1.40
10 Feb. 2023	-8.10 ~ 2.90	81.70	1.40
11 Feb. 2023	-5.30 ~ 3.80	68.90	2.10

34

35

Table S4. The concentration of inorganic salts and metal ions in WSBrC.

Type	Ions	Concentration (mg L ⁻¹)
Inorganic salts ions	F ⁻	3.61
	Cl ⁻	71.60
	NO ₂ ⁻	0.99
	Br ⁻	2.75
	SO ₄ ²⁻	89.00
	NO ₃ ⁻	122.00
	C ₂ O ₄ ²⁻	1.07
	PO ₄ ²⁻	0.34
Metal ions	Fe ²⁺	0.47
	Fe ³⁺	0.25
	Mn ²⁺	1.17

36

37 **Text S1. GC-MS analysis of target compounds**

38 The concentrations of PAHs and their derivatives were quantified using the external
39 calibration method. Standards with the concentrations of 0.25, 0.50, 0.75 and 1.00 μg
40 mL^{-1} were prepared, and multi-point calibration curves were constructed (Area = slope
41 $\times C_{\text{TC}} + \text{intercept}$). C_{TC} represents the concentrations of target compounds. The linear
42 regressions all showed excellent correlation ($R^2 = 0.994\text{--}0.999$; Table S4), confirming
43 the reliability of quantification. The concentration of target compounds in the BrC
44 extract were calculated from the calibration equation and then converted to ambient
45 concentration using sampling volumes.

46 Spike recovery experiments were conducted using blank quartz fiber filters as the
47 matrix. A known amount of standard solution containing target compounds was added
48 dropwise onto pre-baked blank filters, and the solvent was evaporated under a gentle
49 stream of N_2 . The spiked filters were then extracted, filtered and analyzed using the
50 same procedure as real samples. Recoveries were calculated as the ratio of the measured
51 concentration to the spiked concentration, with average values ranging from 89% to
52 101% for the target compounds (Table S5).

53

$$\text{Recovery} = \frac{C_{\text{measured}}}{C_{\text{spiked}}} \times 100\% \quad (\text{S1})$$

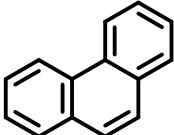
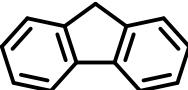
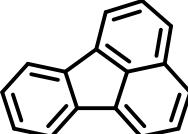
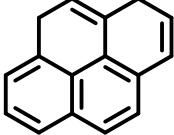
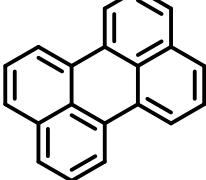
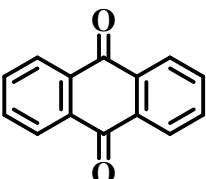
54 The measurement uncertainty was assessed following established analytical
55 guidance. Major sources of uncertainty included errors associated with calibration
56 regression parameters, instrumental repeatability, recovery variability, extraction and
57 sampling volumes, and dilution factors. These contributions were combined by error
58 propagation to derive a combined standard uncertainty, which expanded with a
59 coverage factor of $k = 2$, yielded an overall uncertainty of approximately $\pm 10\%$. This
60 level of uncertainty was within the acceptable range for the quantitative analysis of
61 trace organic pollutants in atmospheric samples.

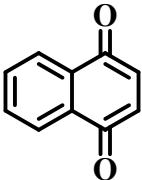
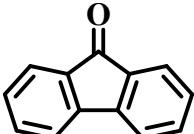
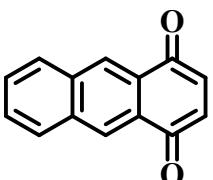
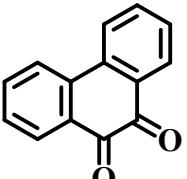
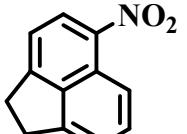
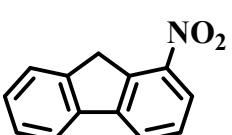
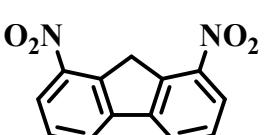
62

63 Table S5. Standard curves of peak area (A) as a function of concentration ($\mu\text{g mL}^{-1}$),
 64 characteristic ions and recoveries (R, %) for the target compounds.

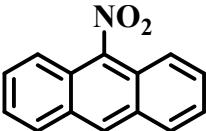
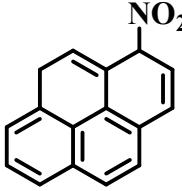
Compounds	Standard curves	m/z	R (%)
Phe	$A = 1615884.91 C_{TC} - 6155.36, R^2 = 0.997$	178	95
Flu	$A = 943744.25 C_{TC} - 1203.11, R^2 = 0.999$	166	96
Fla	$A = 1497641.60 C_{TC} - 3939.00, R^2 = 0.998$	202	100
Pyr	$A = 1518207.60 C_{TC} + 35776.00, R^2 = 0.996$	202	101
Per	$A = 1733254.00 C_{TC} - 41725.00, R^2 = 0.998$	252	99
1,4-NQ	$A = 474697.60 C_{TC} - 8498.50, R^2 = 0.996$	158	90
1,4-AQ	$A = 254565.60 C_{TC} - 1754.50, R^2 = 0.999$	216	92
AQ	$A = 854414.80 C_{TC} + 9878.00, R^2 = 0.994$	180	89
9,10-PQ	$A = 350875.20 C_{TC} - 759.00, R^2 = 0.998$	208	94
9-Flu	$A = 1080108.40 C_{TC} - 16847.50, R^2 = 0.998$	180	91
1-NP	$A = 271550.00 C_{TC} + 1787.00, R^2 = 0.998$	201	99
2-NF	$A = 327755.60 C_{TC} + 5415.50, R^2 = 0.999$	165	97
2,7-DNF	$A = 309962.40 C_{TC} + 1697.00, R^2 = 0.998$	164	99
5-NAce	$A = 284143.60 C_{TC} + 5567.00, R^2 = 0.998$	152	100
9-NAnt	$A = 375437.60 C_{TC} + 4257.00, R^2 = 0.999$	223	101

65

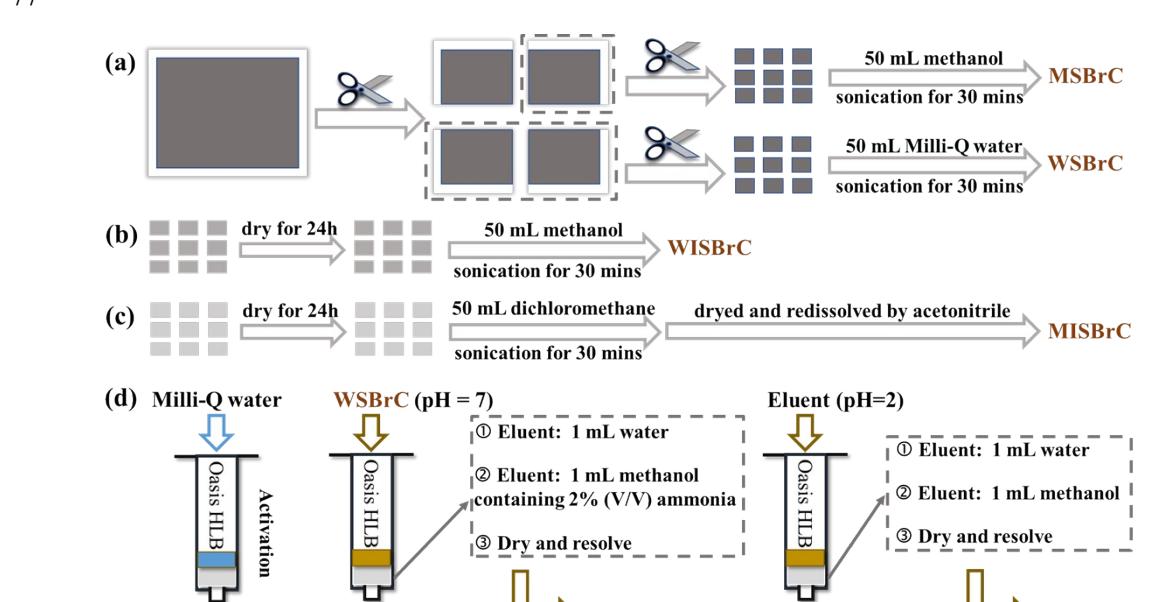
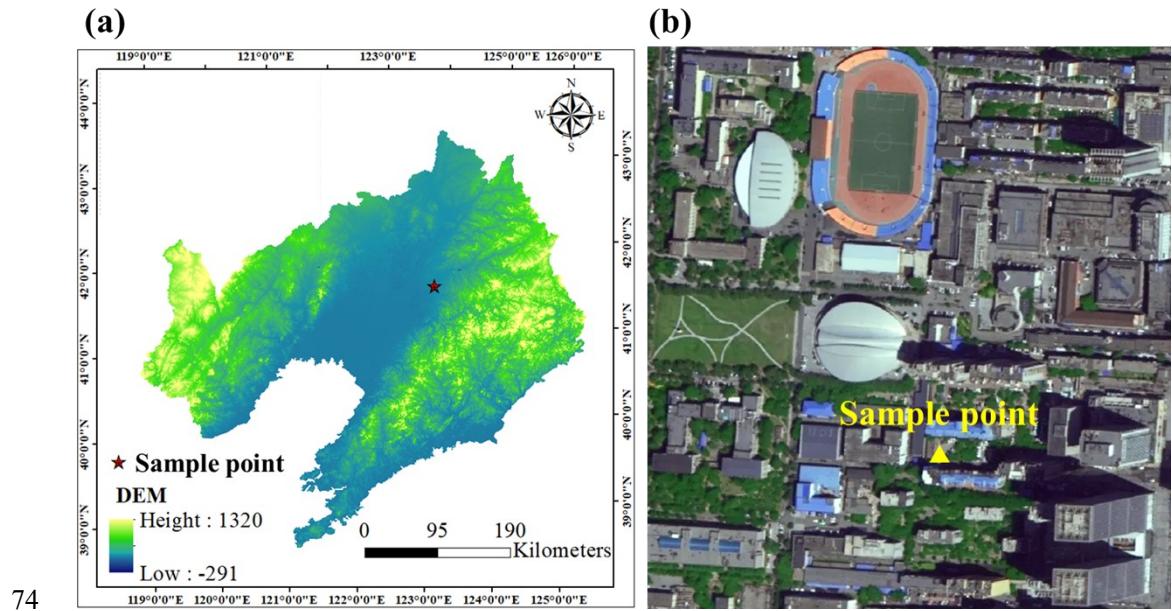






Table S6. The assignment of FT-IR peaks of BrC.

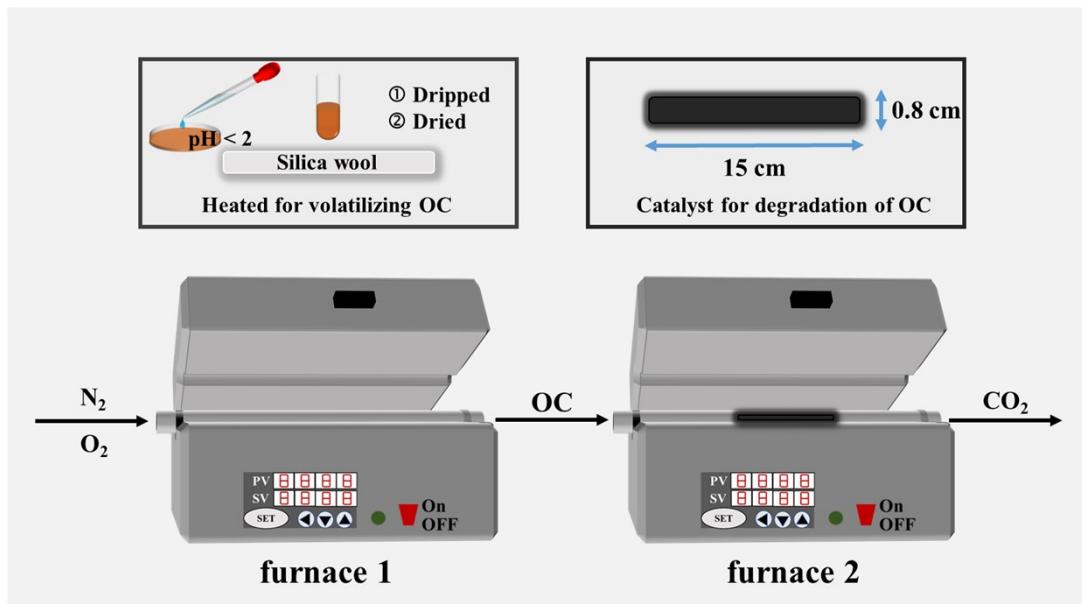







Wavenumber (cm ⁻¹)	Functional groups
> 3000	Stretching of O–H in carboxyl, phenol and alcohol
2934, 2930, 2925, 2924, 2920	Asymmetric stretching of C–H
2857, 2854, 2852, 2850	Symmetric stretching of C–H
1735, 1730, 1728, 1717, 1688	Stretching of C=O in carboxylic acid
1645, 1620, 1615, 1606, 1600	Stretching of C=O in quinone and ketone
1531, 1460, 1442, 1436, 1420, 1404, 1400	Stretching of methyl C–H
1384, 1335, 1332, 1280	Stretching of C–NO ₂
1240, 1200, 1171	Stretching of aromatic C–O in phenol
1150, 1131, 1120, 1067	Stretching of C–O in polysaccharides
867, 825, 824, 814, 808, 805	Out-of-plane bending of aromatic C–H

68 Table S7. The C–H peak area (cm⁻¹) and C–H peak area per unit mass of organic
69 carbon (C–H_m, cm⁻¹ μg⁻¹) of BrC.

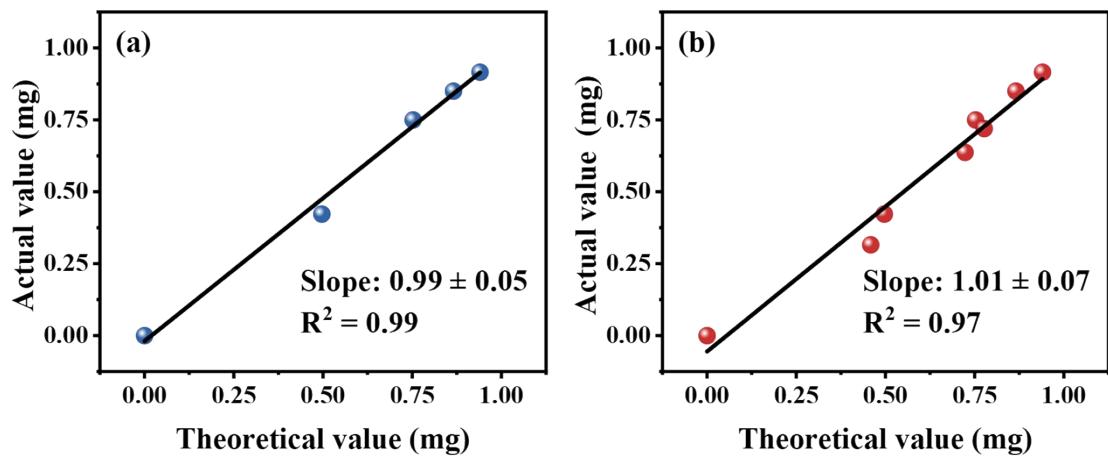


Type	C–H area (cm ⁻¹)	C–H _m (cm ⁻¹ μg ⁻¹)
MSBrC	16.1	0.07
MIBrC	2.07	0.05
WISBrC	40.7	0.89
WSBrC	5.25	0.03
HULIS-n	3.70	0.03
HULIS-a	2.97	0.06
HPWSBrC	2.96	0.18

71 Table S8. The molecular formula, concentration (ng m⁻³) and MAE_{365} (m² g⁻¹) of
 72 target compounds.



Target compounds	Molecular formula	Concentration (ng m ⁻³)	MAE_{365} (m ² g ⁻¹)
	C ₁₄ H ₁₀	6.47	/
Phe			
	C ₁₃ H ₁₀	3.46	0.02
Flu			
	C ₁₆ H ₁₀	18.9	5.54
Fla			
	C ₁₆ H ₁₀	18.10	/
Pyr			
	C ₂₀ H ₁₂	5.61	2.24
Per			
Σ PAHs	/	52.50	/
	C ₁₄ H ₈ O ₂	1.00	0.33
AQ			


	C ₁₀ H ₆ O ₂	0.69	0.92
1,4-NQ			
	C ₁₃ H ₈ O	12.20	0.28
9-Flu			
	C ₁₄ H ₈ O ₂	0.79	1.76
1,4-AQ			
	C ₁₄ H ₈ O ₂	3.00	1.81
9,10-PQ			
Σ OPAHs	/	17.70	/
	C ₁₂ H ₉ NO ₂	8.00	8.25
5-NAc			
	C ₁₃ H ₉ NO ₂	5.00	9.56
2-NF			
	C ₁₃ H ₈ N ₂ O ₄	1.16	13.20
2,7-DNF			

	$C_{14}H_9NO_2$	0.86	5.24
9-NAnt			
	$C_{16}H_9NO_2$	8.24	11.10
1-NP			
Σ NPAs	/	23.30	/
Σ Total	/	93.50	/



82

83

Fig. S3. Schematic diagram of OC concentration detection.

84

85

86

Fig. S4. OC standard curve between actual values measured by GC (mg) and theoretical values (mg) of pyrene (a) and target compounds including pyrene, 9,10-phenanthraquinone, 9-fluorenone, 5-nitroacenaphthene, 9-nitroanthracene, 2-hydroxy-3-nitrobenzoic acid and 2-hydroxy-3-nitrobenzoic acid (b).

89

90

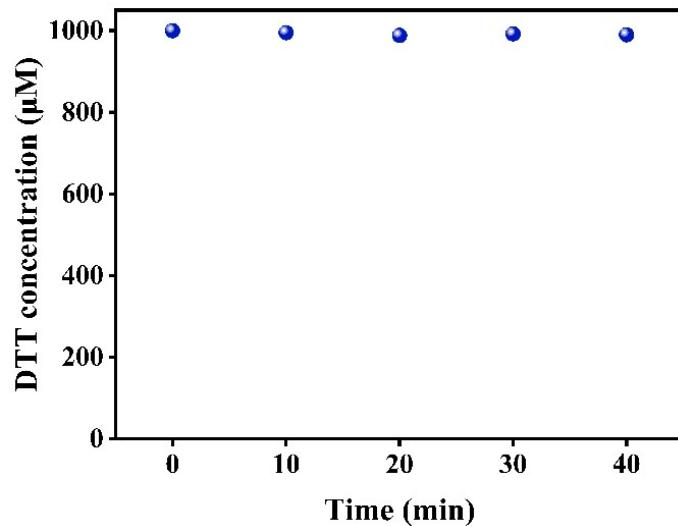
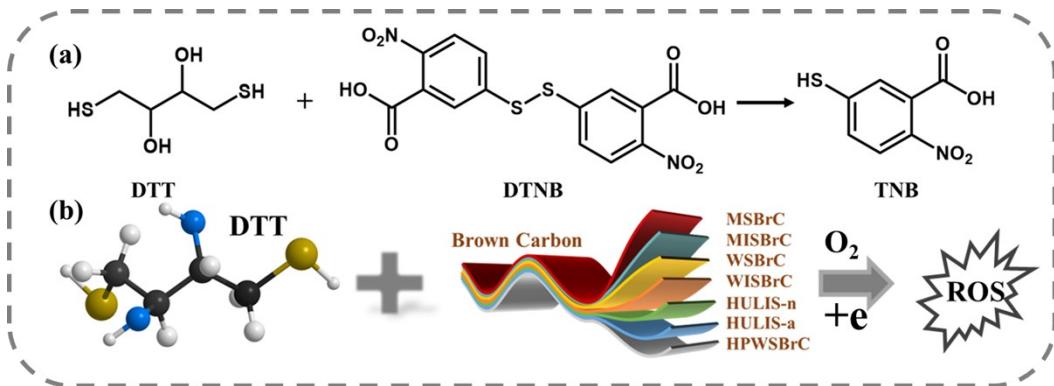
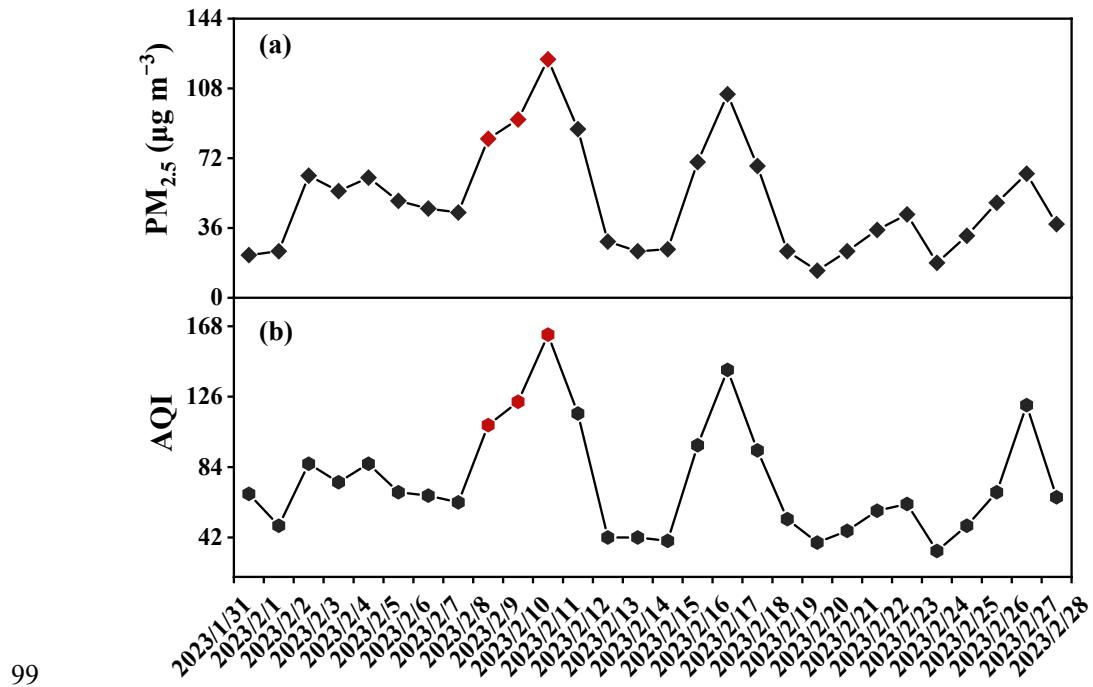
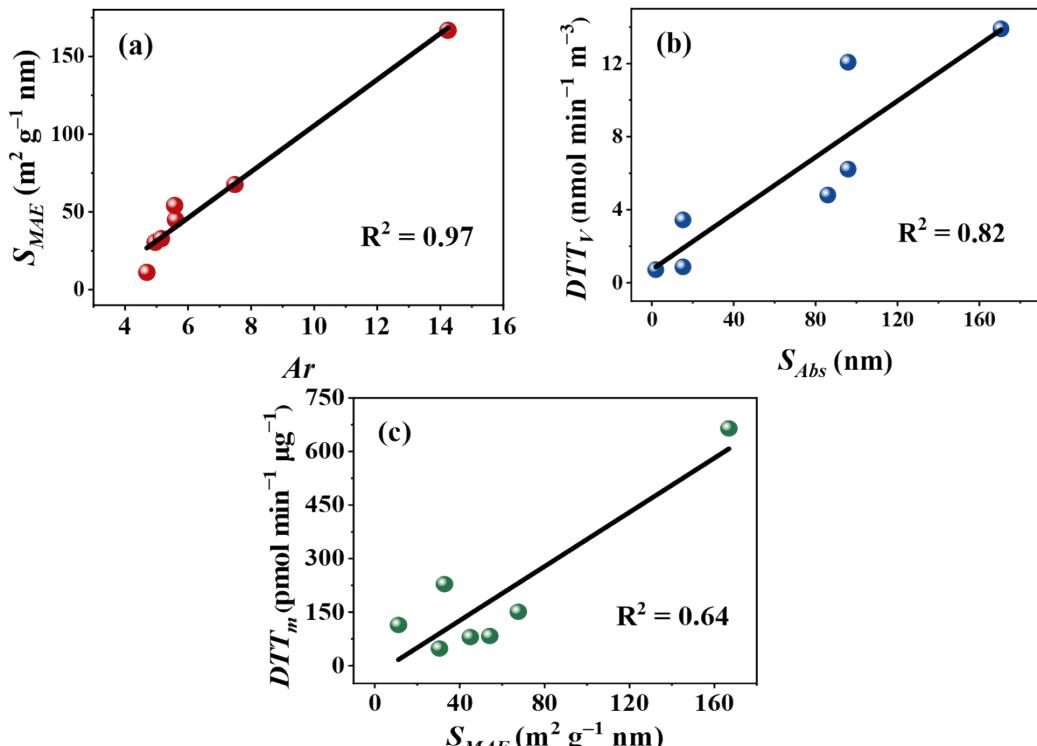
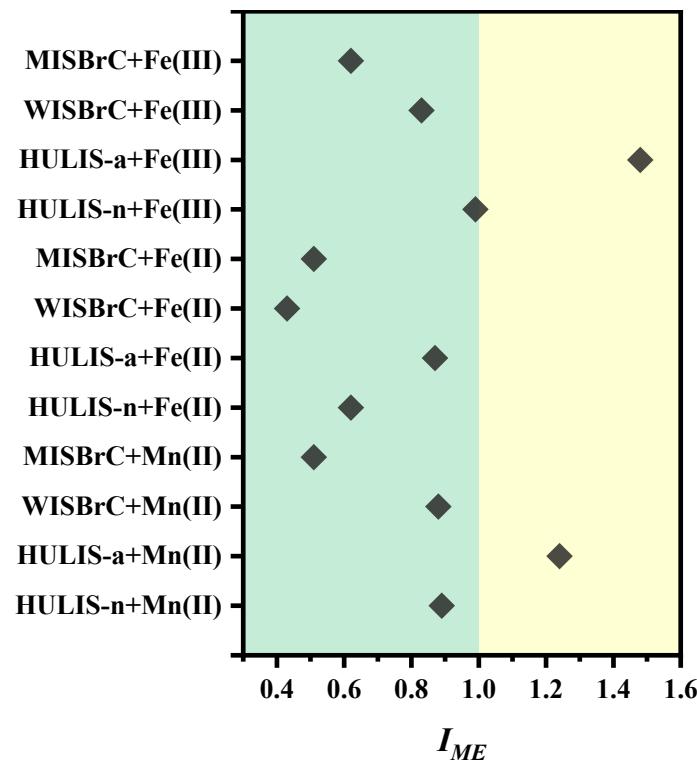





Fig. S6. DTT measurement for 100 μ L of methanol mixed with 2.9 mL of Milli-Q water.

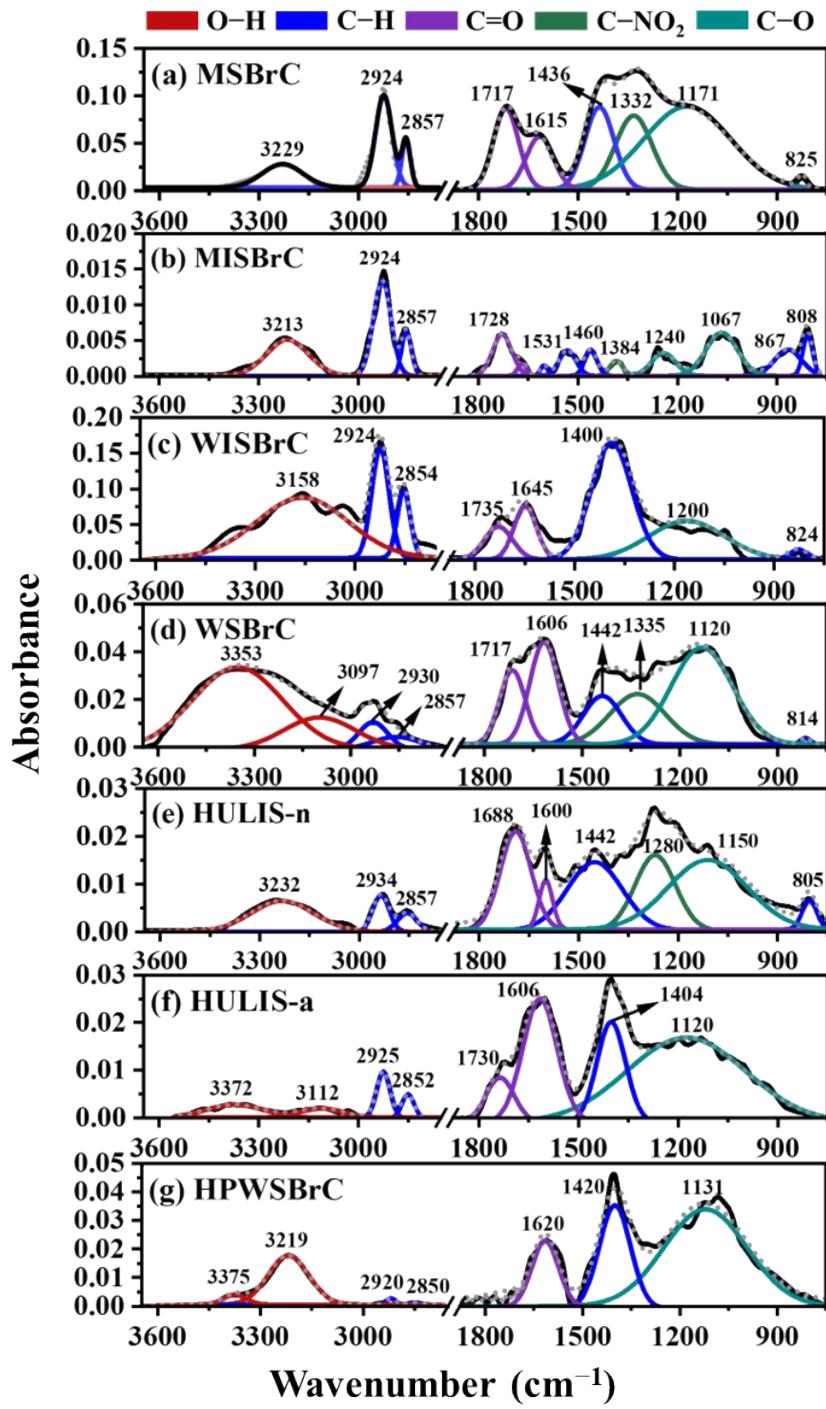
100 Fig. S7. $\text{PM}_{2.5}$ concentrations and air quality index (AQI) during Feb. 2023.

101

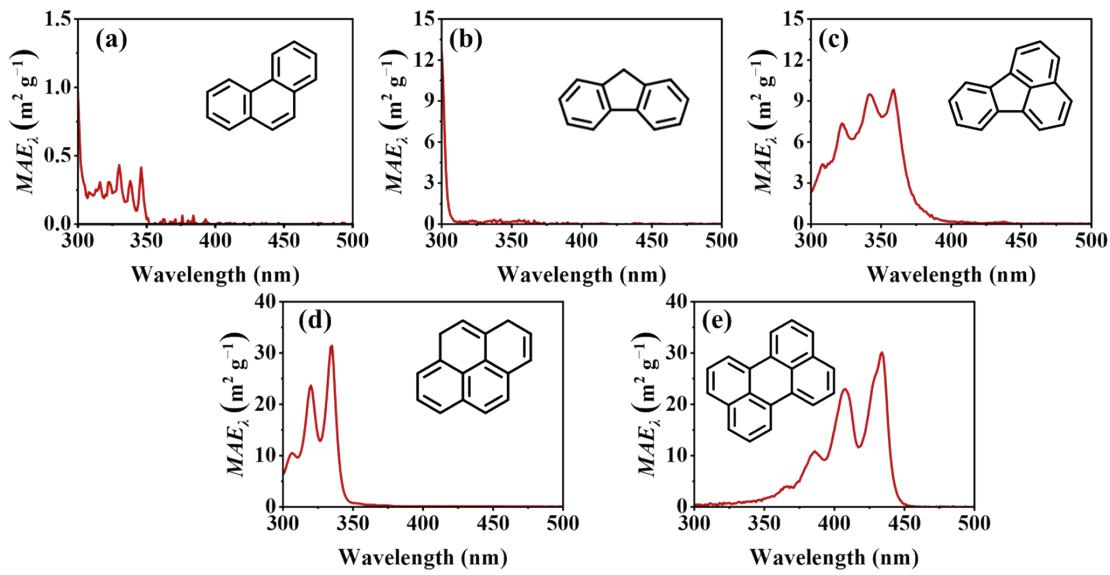


102

103 Fig. S8. Correlation analysis of the integral area of MAE (S_{MAE} , $\text{m}^2 \text{g}^{-1} \text{nm}$) with Ar (a).

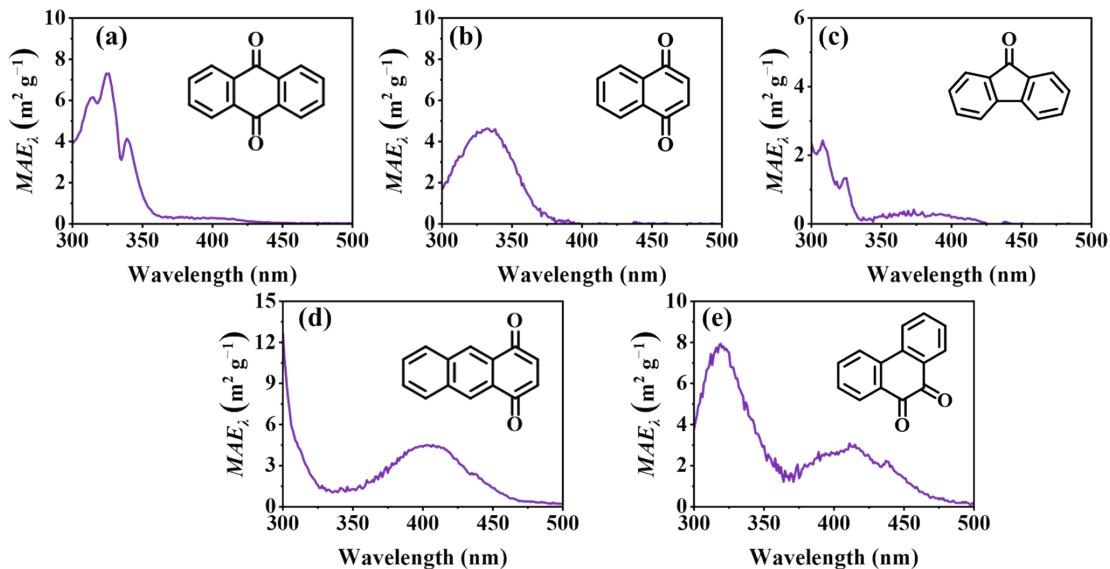

104 DTT_V ($\text{nmol min}^{-1} \text{m}^{-3}$) with the integral area of Abs (S_{Abs} , nm) (b). DTT_m with S_{MAE}

105 (c).


106

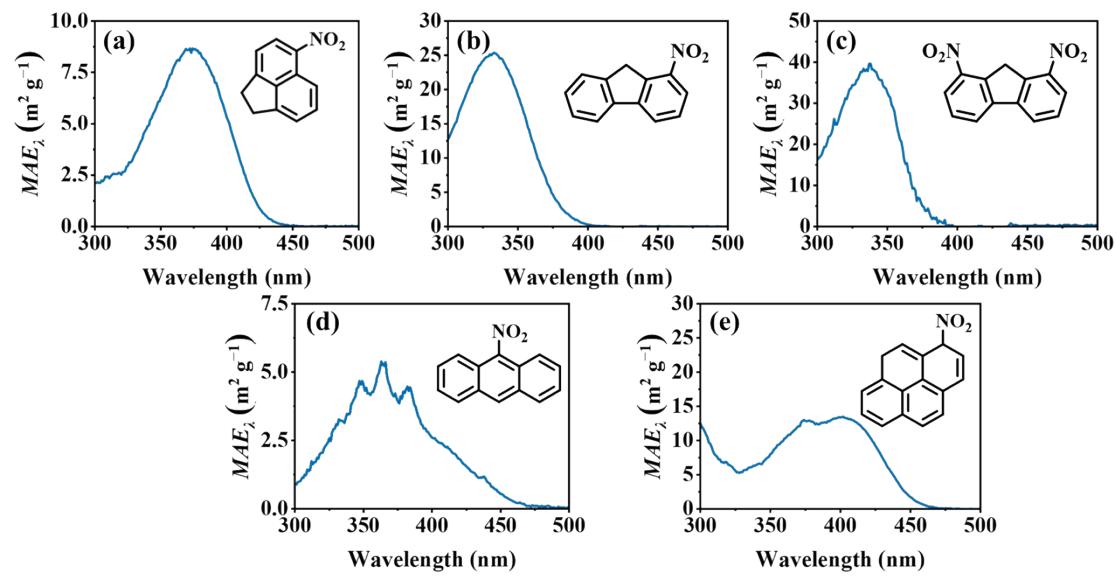
107 Fig. S9. The mix effect index (I_{ME}) of metal ions (Fe^{2+} , Fe^{3+} and Mn^{2+}) with the metal
108 free BrC extracts (MISBrC, WISBrC, HULIS-a and HULIS-n).

109


110 Fig. S10. The curve-fitting of FT-IR spectra of MSBrC (a), MISBrC (b), WISBrC (c),
111 WSBaC (d), HULIS-n (e), HULIS-a (f) and HPWSBrC (g). The black, grey and
112 color lines represent the original, fitted and separated spectra, respectively.

113

114 Fig. S11. The *MAE* spectra of phenanthrene (a), fluorene (b), fluoranthene (c),
115 pyrene (d) and perylene (e).


116

117

118 Fig. S12. The *MAE* spectra of anthraquinone (a), naphthalene-1,4-dione (b), 9-
119 fluorenone (c), 1,4-anthraquinone (d) and 9,10-phenanthraquinone (e).

120

121

Fig. S13. The MAE spectra of 5-nitroacenaphthene (a), 2-nitrofluorene (b), 2,7-dinitrofluorene (c), 9-nitroanthracene (d) and 1-nitropyrene (e).

122