Supplementary Information (SI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Material

Surface-Enhanced Raman Spectroscopy for Size-Resolved Microplastic Detection in Real-world Samples Using Thiophenol Labeling

Jayasree Kumar^a, Arunima Jinachandran^a, Mounika Renduchintala^a, Venugopal Rao Soma^{b,c}, Vijayakumar Shanmugam^d, Shaik Imamvali^e, Sreenivasulu Tupakula^e, and Rajapandiyan Panneerselvam*^a

- 1 Raman Research Laboratory (RARE Lab), Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522240, India
- 2 Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia Centre of Excellence (DIA-COE), University of Hyderabad, India
- 3 School of Physics, University of Hyderabad, Hyderabad, 500046, India
- 4 Institute of Nano Science and Technology, Mohali, India
- 5 Department of Electronics and Communication Engineering, SRM University-AP Andhra Pradesh, 522240, India

*Corresponding author

E-mail address: rajapandiyan.p@srmap.edu.in (Rajapandiyan Panneerselvam)

Table of contents

Figure S1.

Scanning electron microscopy image of AgNPs decorated on the filter paper (AgNPs@Filter paper). (b) Histogram size distribution for \sim 150 random AgNPs across various SEM images with an average size distribution of \sim 43 ± 5 nm.

Figure S2.

(a) UV-vis spectra of Ag colloids dispersed in various solvents: deionized (DI) water, methanol, and a methanol-toluene mixture, (b) SERS spectra of 1 mM thiophenol adsorbed on Ag colloids dispersed in the solvents: DI water, methanol, and methanol-toluene mixture.

Figure S3.

(a) SERS spectra of 1 mM thiophenol adsorbed on AgNPs@Filter paper substrates, demonstrating the evaporation time from 30 min to 300 min. (b) Corresponding SERS signal at 1066 cm⁻¹.

Figure S4.

(a) SERS spectra of 1 mM thiophenol adsorbed on AgNPs@Filter paper substrates, demonstrating long-term stability over 14 days. The substrates were sealed and stored at 3 °C. (b) Corresponding SERS signal at 1066 cm⁻¹.

Table S1.

Raman peak assignment table for thiophenol, rhodamine 6G, and malachite green.

Figure S5.

Scanning electron microscopy images of AgNPs@Filter paper incubated with different concentrations of PS microplastic.

Figure S6.

(a) UV-vis spectra of toluene and PS microplastics of varying sizes (250 μm and 2.1 mm) at a concentration of 1 mg/mL dispersed in toluene, (b) SERS spectra of PS (250 μm and 2.1 mm) at different concentrations (0 - 0.3 mg/mL) analyzed on AgNPs@Filter paper substrate using 1 mM thiophenol, (c) corresponding bar graph at 1066 cm⁻¹.

Figure S7.

(a) SERS spectra of various concentrations (0 - 0.9 mg/mL) of microplastic mixtures (PS, PP, and PVC) in

equal ratio incubated on an AgNPs@Filter paper substrate were analyzed using 1 mM thiophenol, (b) corresponding linear plot at 1066 cm⁻¹.

Table S2.

Water quality assessment (DI water, saltwater, and lake water).

Figure S8.

(a) SERS spectra of 0.09 mg/mL PS microplastics (250 μm and 2.1 mm) spiked in lake water and salt samples, incubated on an AgNPs@Filter paper substrate, and analyzed using 1 mM thiophenol, (b) corresponding bar graph at 1066 cm⁻¹.

Figure S9.

Bar diagram illustrating the selectivity of microplastic detection in the presence of ten different potential coexisting contaminants (organic pollutants (1 mg/mL): PFOSA, glyphosate, and thiram; inorganic ions (1mg/mL): chromium, phosphate, and nitrite; inorganic colloids and bio-organisms: clay (TDS 18.06), algae (OD 0.4), and bacteria (OD 0.6); aromatic compound (1mg/mL): bisphenol A) commonly found in real samples, with corresponding Raman intensities at 1066 cm⁻¹. Error bars represent the standard deviations of triplicate measurements.

Figure S10.

Electric field intensity distributions of AgNPs with 2 nm (a) and 10 nm (b) gaps in the vertical plane (x–z), showing the confinement of the localized electric field between the gaps of two adjacent nanoparticles.

Fig. S1. Scanning electron microscopy image of AgNPs decorated on the filter paper (AgNPs@Filter paper). (b) Histogram size distribution for \sim 150 random AgNPs across various SEM images with an average size distribution of \sim 57 \pm 5 nm.

Fig. S2. (a) UV-vis spectra of Ag colloids dispersed in various solvents: deionized (DI) water, methanol, and a methanol-toluene mixture, (b) SERS spectra of 1mM thiophenol adsorbed on Ag colloids dispersed in the solvents: DI water, methanol, and methanol-toluene mixture.

Fig. S3. (a) SERS spectra of 1 mM thiophenol adsorbed on AgNPs@Filter paper substrates, demonstrating the evaporation time from 30 min to 300 min. (b) Corresponding SERS signal at 1066 cm⁻¹.

Fig. S4. (a) SERS spectra of 1 mM thiophenol adsorbed on AgNPs@Filter paper substrates, demonstrating long-term stability over 14 days. The substrates were sealed and stored at 3 °C. (b) Corresponding SERS signal at 1066 cm⁻¹.

Table. S1. Peak assignments of thiophenol, rhodamine 6G, and malachite green.

Thiophenol - Raman shift	Assignment	
(cm ⁻¹)		
415	υ(C-S) C-S stretching	
690	υ(C-C) Ring breathing	
1000	υ(C-C) Ring breathing	
1020	δ(C-H) C-H in-plane bending	
1066	δ(C-H) C-H in-plane bending	
1575	υ(C-C) C-C stretching (in phenyl ring)	

 $[\]upsilon$ - Stretching vibration

 $[\]delta$ - In-plane bending

Rhodamine 6G - Raman shift	Assignment	
(cm ⁻¹)		
610	υ(C-C-C) C-C-C Ring in-plane bending	
770	γ(C-H) C-H Out-of-plane bending	
1180	δ(C-H) C-H In-plane bending	
1307	υ(C-C) Aromatic C-C stretching	
1358	υ(C-C) C-C stretching	
1509	υ(C-C) Aromatic C-C stretching	
1651	υ(C=C) C=C stretching	

 $[\]upsilon$ - Stretching vibration

 $[\]delta$ - In-plane bending

 $[\]gamma$ - Out-plane bending

Malachite green - Raman shift	Assignment
(cm ⁻¹)	
435	δ(ring) Ring deformation
526	δ(C-C-N) C-C-N bending
793	γ(C-H) C-H Out-of-plane bending
920	υ(C-N) C-N stretching
1171	δ(C-H) C-H In-plane bending
1220	δ(C-H) C-H bending
1298	υ(C-N) C-N stretching
1390	υ(N-Ph) N-phenyl stretching
1587	υ(C-C) C-C Ring stretching
1615	υ(C-C) C-C Ring stretching

 $[\]upsilon$ - Stretching vibration

 $[\]delta$ - In-plane bending

 $[\]gamma$ - Out-plane bending

Fig. S5. (a) and (b) Scanning electron microscopic images of AgNPs@Filter paper incubated with concentrations of 0.1 mg/mL and 1 mg/mL of PS microplastic.

Fig. S6. (a) UV-vis spectra of toluene and PS microplastics of varying sizes (250 μm and 2.1 mm) at a concentration of 1 mg/mL dispersed in toluene, (b) SERS spectra of PS (250 μm and 2.1 mm) at different concentrations (0 - 0.3 mg/mL) analyzed on AgNPs@Filter paper substrate using 1 mM thiophenol, (c) corresponding bar graph at 1066 cm⁻¹.

Fig. S7. (a) SERS spectra of various concentrations (0 - 0.9 mg/mL) of microplastic mixtures (PS, PP, and PVC) in equal ratios incubated on an AgNPs@Filter paper substrate were analyzed using 1 mM thiophenol, (b) corresponding linear plot at 1066 cm⁻¹.

Table. S2. Water quality parameters for DI, saltwater (salt dissolved in water), and lake water.

Water quality parameters (unit)	DI water	Saltwater	Lake water
рН	8.86	6.94	7.04
Conductivity (µS/cm)	7.35	57,758	1,276.3
Resistivity (Ω cm)	1,36,176	17.31	783.51
Density (g/cm³)	1.00	1.03	1.00
Salinity (PSU)	0.00	38.51	0.62
ORP (Oxidation reduction potential) (mV)	137.1	125.9	105.5
RDO (Rugged dissolved oxygen) concentration (mg/L)	7.57	6.58	7.94
TDS (Total dissolved solids)	0.00	36.99	0.80

Fig. S8. (a) SERS spectra of 0.09 mg/mL PS microplastics (250 μm and 2.1 mm) spiked in lake water and salt samples, incubated on an AgNPs@Filter paper substrate, and analyzed using 1 mM thiophenol, (b) corresponding bar graph at 1066 cm⁻¹.

Fig. S9. Bar diagram illustrating the selectivity of microplastic detection in the presence of ten different potential coexisting contaminants (organic pollutants (1 mg/mL): PFOSA, glyphosate, and thiram; inorganic ions (1 mg/mL): chromium, phosphate, and nitrite; inorganic colloids and bio-organisms: clay (TDS 18.06), algae (OD 0.4), and bacteria (OD 0.6); aromatic compound (1 mg/mL): bisphenol A) commonly found in real samples, with corresponding Raman intensities at 1066 cm⁻¹. Error bars represent the standard deviations of triplicate measurements.

Plastic – Polypropylene (PP)

PFOSA - Perfluorooctane sulfonamide

Fig. S10. Electric field intensity distributions of AgNPs with 2 nm (a) and 10 nm (b) gaps in the vertical plane (x–z), showing the confinement of the localized electric field between the gaps of two adjacent nanoparticles.