Supplementary Information (SI) for Environmental Science: Nano.
This journal is © The Royal Society of Chemistry 2025

The SAbyNA Platform: A Guidance Tool to support industry in the implementation of
safe and sustainable by design concept for nanomaterials, processes and nano-
enabled products

Cazzagon V.1, Vanhauten R.2, Hanlon J.34, Sdnchez Jiménez A.3°,Harrison S.6, Auffan M.7,
Braakhuis H.8, Boyles M.3?, Candalija A.1, Katsumiti A.1°, Rodriguez-Llopis 1.19, Catalan
J.1412 ) Cross R. K.5, Lahive E.5, Morel E.%, Simeone F. 13, Delpivo C.1, Clavaguera S.14,
Seddon R.%°, Salmatonidis A.%, Barruetabefia L.19, Traas L.2, Lotti D.16, Mays C.'7, Vazquez-
Campos S.1*

Supporting Information

SI 1. Examples of Usability Cards included in the guidance module of the Platform.

JF/N 2
RNF/NEPSbD 12 Cytotoxicity of nanomaterials applicable in restoration and

conservation

Scope / abstraet: In this pilot study, we compared the toxic potential of representatives of three of the most
commen oxide materials applicable in restoration: TiO: (standard and purified P25, a mixture of prevailing
anatase with rutile crystalline modifications), Si0: (bare A200, and R805, R9200 as coated forms of A200),
and ZnO. Using two in vitro cytotoXicity assays, WST-1 and LDH, evaluating metabolic activity and cell
membrane integrity, respectively, we preliminary ranked the tested substances according to their cytotoxic
potential, which may be used for their prioritization for further testing and applications. After 24h exposure,
a dose-dependent decrease in cell viability was only detected in ZnO NPs and uncoated silica (A200).
Hydrophobic coated silicas (R805 and R9200) and TiO, NPs (purified and unpurified P25) did not exhibit
cytotoxic effects up to the highest tested concentration of 250 pg/mL. Toxicological data related to the
physico-chemical characteristics will be applicable in developing both more efficient and safer nano-based
products for restoration and conservation.

NFs chemistry: 8Si0az Mechanism aof concern: | Key physica-chemical Safe by design strategy
Surface reactivity property for risk: apply: Coating
Surface chemistry

Main content: In this document the authors work on silica NPs, trying to reduce cytotoxicity of silica NMs.
In fact, silanol groups on the surface of bare silica are involved in ROS generation and can cause cytoxicity.
The results showed that hydrophobic coating, as -CH3(CHz)s and -CHs, prevents cytoxicity of silica NPs,
which may be related to decreased abundance of surface silanol group and reactivity. The main limitation
can be associated to the final functional property and application.

Recommendations for use: (e.g. link to other resources) Conference Paper (free)

Source : ISBN 978-80-87294-89-5 Nanocon 2018 - Proceedings 10th

International Conference on

Nanomaterials - Research &
Application

Figure 1 Slla. Example of Usability Card for SbD interventions for safer nanoproducts



EN 1093-11:2001+A1:2008 Safety of machinery -
JA bL-I N A Evaluation of the emission of airborne hazardous

RPSHD003 substances - Part 11: Decontamination index

[This standard describes a method for the measurement of the decontamination index of pollution control systems|
le. g. capture devices including local exhaust ventilation, water spray systems and, when appropriate, separation
lequipment installed on a machine. This method uses the real pollutant (EN 1093-1: 1998) and can be operated in|
room or field environments

iDesign topic Eesign strategy Type of action ILevel

[Emissions of hazardous IsEmissions verification Risk management measures (i.e.|Advanced

and substances implementation of contro
imeasures)

IMain content (extracted from EN 1093-11):

[The decontamination index is defined as the average of the ratios, obtained at a number of specified locations
in the surroundings, of the ambient air quality improvement to the real pollutant mean concentration with the
pollution control system not in operation

[The principle of this measurement method consists in determining the decontamination index, the concentrations|
lbeing measured at predetermined points around the machinery under inspection and in interpreting the value o
this index, taking into account its range of variation and the influencing factors.

ICorrections can be necessary to take into account of air pollution caused by other operations ("the background|
level”)

IWhen particle size distribution is determined at the same time as pollutant concentration, a decontamination index|
ffor each size fraction can be determined (see for example EN 481 “Workplace atmospheres - Size fraction|
idefinitions for measurement of airborne particles”).

[The document provides guidance on the principle of the methed, the determination of the concentration|
Imeasurement points, the test method, the application to a specific group of machines, the influencing factors, the|
lexpression of results and the test report.

Harmonized standard. Compliance with the normative clauses of this standard - within the limits{
lof the scope - confers a presumption of conformity with the correspending essential requiremen
1.5.13.- Emissions of hazardous materials and substances of the EU Directive 2006/42/EC on| Standard
Machinery, and associated EFTA regulations. Presumption of conformity stays valid only as| Not nano-specific
long as a reference to this European standard is maintained in the list published in the Official
Iournal of the European Union

[Source:

https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG 1D:31115,6096&¢c5=1E6
AB40EABBCEO4627A18BBO0BE3AEBDC

CEN

Figure 1 Sl1b. Example of Usability Card for SbD interventions for safer processes.



SI12. GUIDEnano tool and Gracious blueprint

The SAbyNA Platform has been built up by making use of existing resources that could either be
reimplemented into the tool or adapted to the purpose of SSbD. The key resources reused are
the GUIDEnano risk assessment tool (https://tool.guidenano.eu/) developed in the H2020
GUIDEnano project (G.A. 604387) and the GRACIOUS blueprint from the GRACIOUS project (G.A.
760840).

The GUIDEnano tool is a nano specific risk assessment tool assessing human health and
environmental risks along the entire life cycle of a NEP. It is primarily intended to support
(regulatory) risk assessment of existing NFs and NEPs at the end of the design stage of the
product development or when the NEP is already on the market. For this reason, its hazard
assessment module is setting with the aim to use in-vivo hazard data and therefore not suited
for early design stage hazard screening required for SSbD purposes. Nevertheless, GUIDEnano
has been used to provide the core software architecture of the SAbyNA tool and a number of
knowledge modules which have been reimplemented and further improved in SAbyNA such as
the material and activity modules as well as the kinetic fate model to predict mass and particle
concentrations over time in different connected indoor and outdoor compartments as input for
both human and environmental exposure assessment of NFs. The GRACIOUS blueprint is a PDF
document automatically generated from an operational test environment of the GRACIOUS
grouping and read-across framework developed by the GRACIOUS project. Actually, the core-
architecture of the GRACIOUS blueprint was also derived and adapted from GUIDEnano and new
functionalities to support nanoform grouping, similarity assessment and alignment with ECHA
use description were introduced. Also, a descriptor framework was developed to improve
unique identification of data endpoints, assays, etc. to improve correct data mapping and
exchange. This descriptor framework was used to map existing project data provided by
eNanomapper ambit instances. Most functionalities of the GRACIOUS blueprint have been re-
implemented and improved in the SAbyNA platform such as the forementioned data analysis
section but also the IATA support framework which supported the integration of the SAbyNA
developed hazard testing strategy for SbD.


https://tool.guidenano.eu/

SI3. Basis for the Sustainability and costs analysis model

The Sustainability and cost model provides background information in order to fill data
gaps in the assessment of NEPs, even at early stage of development, covering multiple
aspects.

At the inventory phase, default values are provided to evaluate the environmental
implications of the processes that take place during the life cycle. For example, inventory
data to evaluate different additive manufacturing processes have been gathered through
an extensive literature review, including energy consumption and material loss.

Table 1 SI3 shows an extract of the information in the Sustainability and Cost model for
the Additive Manufacturing (AM) processes.

Table 1 SI3. Example of energy consumption data gathered for a additive manufacturing processes

Min Max Average
AM processes (MJ/kg) (MJ/kg) (MJ/kg) Reference
Stereolithography (Kellens et al., 2017; Malshe
(SL), Polymer 13.9 41.4 27.1 et al.,, 2015)
(Baumers et al., 2011;
Kellens et al., 2017, 2011;
Kokare et al., 2023; Peng et
Selective Laser al., 2020; Priarone and
Melting (SLM), Steel 15.5 163.3 54.4 Ingarao, 2017)
(Faludi et al., 2017; Jiang et
al., 2022; Kellens et al.,
2017, 2011; Kokare et al.,
2023; Ma et al., 2021; Peng
Selective Laser et al., 2021; Priarone et al.,
Melting (SLM), Al 85.9 169.2 128.2 2018)
(Baumers et al., 2011;
Selective Laser Kellens et al., 2017, 2011;
Sintering (SLS), Kokare et al., 2023; Kwon et
Polymer 94,68 144.3 122.6 al., 2020)
(Baumers et al., 2011;
Ingarao and Priarone, 2020;
Electron Beam Kellens et al., 2017; Kokare
Melting (EBM), Ti et al., 2023; Le and Paris,
alloys 59.9 399.5 164.9 2018; Lyons et al., 2021)
(Enemuoh et al., 2021;
Hopkins et al., 2021; Kokare
et al.,, 2023; Ma et al., 2021;
Fused deposition Napolitano et al., 2022;
modelling (FDM/FFF), Ulkir, 2023; Zakaria et al.,
PLA 9.5 83.2 39.7 2022)
(Bezzina and Refalo, 2023;
Fused deposition Garcia et al., 2021;
modelling (FDM/FFF), Hernandez Korner et al.,
ABS, PC 11.2 174.2 55.3 2024; Kellens et al., 2011;




Kokare et al., 2023; Ulkir,
2023; Yosofi et al., 2018)

The material loss ratio (waste and emissions to air) in different process steps is used within the
model to calculate the mass flow over the production steps. By incorporating calculations based
on these parameters, it is possible to perform a preliminary evaluation based on limited
information (materials entering the manufacturing phase and definition of the process steps
involved).

A similar strategy has been implemented in the use and end of life phases, adding Transfer
Coefficients to calculate the flow of materials along these phases, leading to the estimation of
materials released during the use phase (e.g., weathering), arriving to the end-of-life treatment
installations, or emitted during the waste treatment (e.g., nanomaterials released to air).

Figure SI2 SI3 represents the concept applied for the calculation of the material flow over the
production steps in the module developed for the Additive Manufacturing sector. The material
inputs and outputs in pre-processing and post-processing operations are calculated from the
material input in the manufacturing phase, considering the default values in the module.
However, it is also possible to customize these values when specific data is available.
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m, = Material output of the corresponding step, as intermediate product for the next step
m;= Material Input to a process step

m, = Material loss, emission to air and waste

m; = Material in final product

e = Energy consumption in each process step

Figure 2 SI3. Material and energy inputs and outputs in the production phase within SAbyNA
Additive Manufacturing Cost and Sustainability Model (pre= pre-processing step, AM= Additive
Manufacturing process, post= post-processing step). Elements in yellow show the minimum data
to be provided in the model, and elements in blue show the data that can be derived from the
background data in the module or can be customized. Discontinuous red arrows represent the
direction of the calculations of material inputs and outputs based on the data provided by the
user and the default values of the tool.



Sl4. Hazard categories used in the screening assessment of the Platform

The hazard information related to the CLP classification is contained in an internal database and
comprises intrinsic hazard properties relevant to human and environmental health, as well as
physical hazards. The Platform prioritises information retrieved from the Harmonised
classification in Annex VI of CLP from the Classification and Labelling inventory, followed by
information from Non-harmonised CLP Self-classification from REACH Registration Dossiers. It
also contains information from the WHO report Lee et al., 2017 containing nano specific hazard
labels. Additional hazards from the Candidate List of Substances of Very High Concern (SVHC)
are also considered (https://echa.europa.eu/candidate-list-table). Classification for endocrine
disruption (ED), PBT (Persistent Bio accumulative and Toxic), and PMT (Persistent Mobile and
Toxic) are also considered although very limited information is available as they were only
recently added as EU hazard labels (https://echa.europa.eu/new-hazard-classes-2023).
Whenever available, the hazard data contained in the database refers to the NF, although this
is not possible in many cases as the REACH registration of NMs or sets of similar NFs has only
been mandatory for a few years. When NF-specific information for all the CLP categories is
available and indicates no hazard classification, the NF raises a green flag indicating low concern.
If data is missing for any of the hazard categories or it refers to the bulk form instead of to the
NF, a precautionary orange flag is raised suggesting assessing the NF and its application more
thoroughly. Whenever the NF classifies for any of the hazard categories, the platform retrieves
that information allowing its classification into the criterion H1 (substances of very high
concern), criterion H2 (substances of concern), and H3 (substances of low concern) categories
defined in the JRC SSbD framework and reported in the SI3. According to the JRC SSbD
framework (Caldeira et al., 2022), materials fulfilling the H1 criterion should be prioritised for
substitution and/or re-design, the ones falling into the H2 criterion would be advised to
substitute or re-design and to control the emissions/exposure, and the NF into the H3 criterion
should reduce the toxic effects and ensure the safety along life cycle.

Table 2 Sl4. Output given by the SAbyNA tool based on CLP classifications.

_ Classified, add category

MISS Missing information
Green Data conclusive, no classification required

According to the JRC SSbD framework, hazard information for all endpoints should be complete
and classify as green. In practice, this is never the case for NMs (yet). Many NMs are not
produced in large amounts, and therefore REACH registration does not require hazard
information on all endpoints. According to the JRC SSbD framework, data unavailability due to a
low tonnage band is not a valid point for data waiving. Furthermore, there may only be
information available for the bulk form of the core composition of the NM under investigation.
This may falsely raise green flags for hazard of the NM. REACH registration of NMs or sets of
similar NFs has only been mandatory for a few years. Therefore, it is to be expected that nano
specific hazard classification will become more readily available in the future. In the meantime,
the following assumptions are made by the SAbyNA tool to interpret CLP classifications of the
bulk form:

e Green flag for bulk -> NM might still be harmful -> consider as orange, missing
information


https://echa.europa.eu/candidate-list-table

o _ ->red flag can be transferred to NM -> -

e Unknown whether data is from nano or bulk -> assume data represents bulk.

In some cases, missing information can be justified and therefore the data need can be waived.
According to the JRC SSbD framework, data gaps can be justified with the right explanation.
They list some chemical-specific examples. Here are some NM-specific examples:

-It is very unlikely that a NM is hazardous to the ozone layer. If they are not listed on the list of
ozone-depleting substances (Annex | to Regulation 1005/2009), this justifies the data gap and
gives a green flag for this endpoint.

-Any hazard endpoints related to gases can be waived.

Based on the three CLP hazard tables (human, environmental, physical hazards), the tool
produces the following decisions:

- All GREEN for nanoform -> sufficient evidence, no concerns for hazard

- One or more ORANGE (nano-specific data missing) -> Potential concern, go to detailed
hazard assessment to gather/generate data for exposure routes of concern.

- -.-- -> SbD intervention required (reduce hazard or exposure or both),
define hazard category to classify into criterion H1, H2 or H3 (Table 3 Si4).

Table 3 SI4. Hazard criterion definition according to JRC SSbD framework, hazard categories included in each
criterion for human, environmental and physical hazard, and advise to user in the SAbyNA platform

H1 Substance | Carcinogenicity Cat. 1A and | Persistent, - Prioritise
s of very 1B bioaccumulative substitution/
high Germ cell mutagenicity Cat. | and toxic / very Re-design
concern 1A and 1B persistent and very

Reproductive / bioaccumulative
developmental toxicity Cat. | (PBT/vPvB)

1A and 1B Persistent, mobile
Endocrine disruption Cat. 1 | and toxic / very
(human health) persistent and
Respiratory sensitisation mobile (PMT/vPvM)
Catl Endocrine

Specific target organ disruption Cat. 1
toxicity - repeated (environment)

exposure (STOT-RE) Cat. 1,
including immunotoxicity
and neurotoxicity

H2 Substance | Skin sensitisation Cat 1 Hazardous for the - Substitution/
s of Carcinogenicity Cat. 2 ozone layer Re-design/
concern Germ cell mutagenicity Cat. | Chronic Control

2 environmental emission-
Reproductive / toxicity (chronic exposure
developmental toxicity Cat. | aquatic toxicity)

2 Endocrine

Specific target organ disruption Cat. 2

toxicity - repeated (environment)

exposure (STOT-RE) Cat. 2
Specific target organ
toxicity - single exposure
(STOT-SE) Cat. 1 and 2
Endocrine disruption Cat. 2
(human health)




H3

Substance
s of low
concern

Acute toxicity

Skin corrosion

Skin irritation

Serious eye damage/eye
irritation

Aspiration hazard (Cat. 1)
Specific target organ
toxicity - single exposure
(STOT-SE) Cat. 3

Acute
environmental
toxicity (acute
aquatic toxicity)

Explosives
Flammable
gases, liquids and
solids

Aerosols
Oxidising gases,
liquids, solids
Gases under
pressure
Self-reactive
Pyrophoric
liquids, solid
Self-heating

In contact with
water emits
flammable gas
Organic
peroxides
Corrosivity
Desensitised
explosives

Reduce toxic
effects/
Ensure
safety along
life cycle




SI5. Physico-chemical and technical function data used in the screening assessment
of the PC-SWCNT

Screening data used in the Platform:

e Nanoform introduction: SWCNT (TUBALL™ MATRIX 822, OCSiAl)
e Technical functionality: antistatic agent

Intrinsic physicochemical properties of the considered nanoform

e Type of nanoform: NM_SWCNT (applied mask)

e Nanoform composition: core: C, impurity: metalic

e Crystallinity: monocrystalline

e Morphology: elongated 100%

e Size: median diameter: 1.6nm, median length: 6000nm
e Specific surface area 300 m2/g

Extrinsic properties and characteristics of the considered nanoform

e Life cycle use and route of exposure/ emission routes: inhalation, dermal, soil, water,
air, wastewater
e Dustiness: 1660 mg/kg



SI6. Functionality evaluations of the produced NEPs

The technical function of the PC-SWCNTs nanocomposites was to provide improved conductivity
for ATEX environments. This has been tested at LATI facilities on printed parts using samples
printed at different temperatures. The conductivity measurements were performed using an
insulation resistance tester (applied voltage=100 V). The summary of the results indicates that
the application of a SbD strategy that involves the reduction of the nozzle temperature resulted
only in minor deterioration of the conductivity of the 3D-printed objects. Nevertheless, the final
product still maintained antistatic properties (Table 4 SI6), which may lead to the conclusion that
a product with sufficient technical functionalities may be produced in a safer (lower emissions
in terms of particle number concentration) and sustainable (lower energy consumption) way by
tuning specific process parameters.

Table 4 SI6. Resistivity measurement results on the 3D-printed products

Before SbD After SbD strategy
PC- o PC-
PC-SWCNT.290 SWCNT 270 PC-CNT.270-50% SWCNT 250
Resistivity | 108 10° 10° 10°

(Ohm)

However, these results represent preliminary resistivity evaluation of a 3D printing object for its
specific application. Indeed, the producer of equipment or systems intended for use in
potentially explosive atmosphere should follow DIRECTIVE 2014/34/EU
(http://data.europa.eu/eli/dir/2014/34/0j,
https://ec.europa.eu/docsroom/documents/52840/attachments/1/translations/en/renditions
/native). An equipment should meet several requirements, and it is not clearly defined a simple
threshold of surface resistivity for the material that would make the equipment acceptable or
not. Plastic materials are considered as potential source of electrical discharge over 10°-10%?
Ohm, and different plastic suppliers -referring also to different norms and type of tests- may
consider different surface resistivity thresholds. For LATI partners, values up to 10° Ohm are
acceptable, so all the results obtained in the case studies are considered acceptable. However,
some of the results are “borderline” and only the manufacturer of the final equipment should
in “real life” prove that the equipment is safe for use in ATEX applications.



http://data.europa.eu/eli/dir/2014/34/oj
https://ec.europa.eu/docsroom/documents/52840/attachments/1/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/52840/attachments/1/translations/en/renditions/native

SI7. Results obtained from the Platform after the addition of functionality data of PC-SWCNT
case study

Here below in figure 3 SI7 the results obtained from the Platform once performance data are
added for each SbD alternative: 100% functionality for the PC-SWCNT and 90% for all the other
NEPs (i.e., PC-SWCNT.270, PC-SWCNT.250, PC-SWCNT.270-50%).

Case overview  Screening assessment  Product chain  Life cycle Data analysis ) (™

Configure scenarios to be compared

Exposure |Human hazard | Environmental hazard Costs | LCA indicators

Printing PC-CNT 290 |Printing PC-CNT 250 |Printing PC-CNT 270 |Printing PC-CNT 270 50%)|

Qverall performance % 1aa| | Ba| | sa| | 59|

Performance comparison
Printing PC-CMT 290

Printing PC-CNT 250

Scenario

Printing PC-CNT 270

Printing PC-CNT 270 509

a 20

40 &0 80 100 120
Percentage

W input material(s)

Figure 3 SI7. Comparison of the functionality evaluation results between SbD alternatives of PC-
SWCNT.

SI 8 Sustainability and costs analysis inputs for the PC+SWCNT case study



It is assumed that the piece manufactured is used indoor, without exposure to weathering. The
end-of-life scenario has been built considering a share of landfill, incineration and mechanical
recycling processes. In thermal treatment processes (e.g., incineration with energy recovery)
nanostructure destruction point is expected to be achieved (Ounoughene et al., 2017), leading
to low SWCNT release, as established in previous literature (Bouillard et al., 2013; Holder et al.,
2013; Organisation for Economic Co-operation and Development (OECD)-Working Party of
Resource Productivity and Waste, 2015, p. 201).

Establishing a direct correlation between process temperature and energy consumption in FFF
processes is a complex issue, given that the energy demand is determined by multiple
parameters such as nozzle temperature, bed temperature, infill, characteristics of the machine,
etc. (Bezzina and Refalo, 2023; Hopkins et al., 2021; Vidakis et al., 2023). However, the influence
of nozzle temperature and bed temperature in the energy consumption is clear (Hopkins et al.,
2021; Le Gentil et al., 2024; Napolitano et al., 2022). When printing a high-temperature material,
the energy fractions for the nozzle and heated bed will increase, although the effect of other
parameters must also be considered (Hopkins et al., 2021). In this analysis, in order to test the
usability of the SAbyNA cost and sustainability case study, the potential reduction in energy
consumption has been considered, linked to the lower nozzle temperature achievable when
extruding a polymeric matrix with SWCNT through FDM. Although at this stage this data has not
been empirically validated, different scenarios have been built, in order to check the potential
influence of this reduction in the overall environmental profile. In this context, 3 scenarios have
been modelled: the base scenario, a second scenario with a 5% reduction in energy
consumption, and a third scenario with a 10% reduction in energy consumption.
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Figure 4 SI8. Results obtained of each of the four impact categories considered in the simplified
LCA tool for the different SbD alternatives and the baseline case.



Costs (%) Relative costs
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Figure 5 SI8. Costs (in %) for each category and relative costs (adimensional) considering PC-
SWCNT.290 as baseline material.

Here below the results obtained from the Platform once performance data are added for each
impact category and each SbD alternative.

Case overview  Screening assessment  Product chain  Life cycle Data analysis

Configure scenarios to be compared | BalelifelelyyET[:e)]

Exposure |Human hazard Environmental hazard | Performance Costs | [ESN{[le=i{el¢

LCA indicator FFF, PC + SWCNT 290°C|FFF, PC + SWCNT 270°C|FFF, PC + SWCNT 250°C

Global Warming Potential (GWP) in kg CO2 equivalents l 21.48] [ 21 .06] l 20.68]
Cummulative Energy Demand (CED) in MJ I 361.65] [ 297.57] I 291.56]

Human Toxicity (expressed as Disability Adjusted Years) [ 5.66&6]@ I 5.65&6]@ [ 5.6E—6|E]

Freshwater Ecotoxicity (expressed as Potentially Disappeared Fraction) 413.54 412.07 400.32

Figure 6 SI8. LCA results obtained in the “Cost and sustainability assessment” section and
manually added in the “Compare” section for the PC-SWCNT before and after the
implementation of the SSbD strategies.




SI9. Particles emission monitoring at the manufacturing site

A monitoring campaign has been performed at the manufacturing site (LEITAT-3D HUB) by
monitoring particles concentration emitted during the 3D printing process using the enclosed
machine INTAMSYS to produce the NEPs.

The main focus was to study the effect of the adoption of the SbD interventions (i.e., variation
of the process parameters: nozzle temperature and infill density) on the emissions during the
3D-printing of the NEP.

Table 5 SI9 shows the instruments used in the different monitoring locations. Two DiSCminis
were placed in the two different monitoring locations to collect comparable results. NanoScan
was used in the emissions source to provide timely resolved size distributions, while with
SIOUTAS impactor size-segregated aerosols were collected on Teflon filters for their offline
chemical analysis (ICP-MS). Also, samples were collected with SKC cassettes that were housing
TEM grids for their offline electron microscopy analysis.

Table 5 SI9. Instruments used to measure particles emitted at the different locations.

Emission source Worker area Size/sampling range
DiSCmini DiSCmini 10-700 nm

NanoScan-SMPS 10-420 nm NanoScan-SMPS

SIOUTAS impactor Cut-off: 0.25, 0.5, 1.0, 2.5 um | SIOUTAS impactor

Sampling cassettes (TEM | Total suspended particles Sampling cassettes (TEM
grid) grid)

The average particle number concentrations of emissions are presented in Figure 7 SI9, where a
clear and straight forward effect was observed: with increased nozzle temperature the
emissions in terms of particle number concentration were also increased. The highest emissions
were monitored with the nozzle temperatures of 290°C, reaching a concentration above 106
particles/cm3 (PC-CNTs: 3.84E+06 cm-3; PC: 1.90E+06 cm-3). A twenty degrees reduction of the
nozzle temperature at 270°C led to a reduction of almost one order of magnitude of the emitted
particle number concentrations (PC-CNTs: 3.80E+05 cm-3, PC: 1.74E+05 cm-3). Further decrease
of nozzle temperature to 250°C additionally reduced the emitted concentration by a factor of
two during the 3D-printing of PC-CNTs filament (1.76E+05 c¢cm-3) and above one order of
magnitude for the PC filament (6.22E+03 cm-3).

Considering the changing on the second process parameter, the 50% reduction of the infill
density led to a reduction by a factor of two in particles emitted (LI_PC-CNTs_270: 1.86E+05 cm-
3) when compared to the 100% infill density (PC-CNTs_270: 3.80E+05 cm-3).

In addition, a clear difference between non-activity (background) and 3D-printing processes can
be observed, indicating the 3D-printing process as the source of emissions.

The size distributions of the emissions are shown in the part below of Figure 7 SI9 for the
different nozzle temperatures. It can be observed that the distribution patterns are similar for
the same temperatures of the different filaments (conventional with dashed lines; NEPs with
continuous lines), while the concentration intensity is always higher for the NEP filaments in
comparison to their conventional counterparts for the same nozzle temperature. The former in



combination with the average emissions in terms of particle number might be an indication that
the main driver of release is the nozzle temperature.
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Figure 7 SI9. Average particle number concentrations (above) and particle size distribution
(below) of the emissions in function of nozzle temperature variations and type of PC-based
filaments.

Emitted aerosols have been sampled at the emission sources of the INTAMSYS 3D printer both
directly on TEM grids for their offline morphological analysis (TEM/EDX) and on filters by cascade
impactors for their offline size-segregated chemical analysis by ICP-MS of Fe impurities as
indicator of the presence of SWCNTSs. In addition, since SWCNTSs are rather challenging to get
identified via chemical analysis due to the high carbon background, in order to find an
appropriate trace element for their identification, the pristine SWCNTs were characterized as a
reference. It has been found that the pristine SWCNTs have a relatively high iron content
(124054 ppm of Fe), while TEM analysis shown the presence of Fe impurities on clumps of
agglomerated nanotubes with a primary diameter of approximately 2 nm (Figure 8 SI9). Hence,
Fe was selected as the trace element of SWCNTs for the release studies and emissions
characterization.



Figure 8 SI9. TEM images of airborne particles sampled during 3D-printing (left) and pristine
SWCNTSs (right).

Results of TEM analysis of the aerosols released during the application of PC-CNTs filaments with
the INTAMSYS machine, fiber-like structures have been identified that were protruding from
larger particles (probably of polymeric-matrix composition). However, Fe were below the LoD of
the ICP-MS of the filters used in air monitoring. Based on these results it may be concluded that
the emissions of nanometric particles are not driven by the content of SWCNT, but the emitted
aerosols are mainly process-generated.

To perform air monitoring measurements, the user can find indications on how to characterise
contaminant releases from unextruded plastics during fused filament fabrication 3-D printing
using for example the following Usability Cards that can be found in the “SbD interventions
towards Safer Processes” section of the Platform:

- “Three-dimensional printing with nano-enabled filaments releases polymer particles
containing carbon nanotubes into air (2018 NIOSH)”

- “Three-dimensional printer emissions and employee exposures to ultrafine particles
during the printing of thermoplastic filaments containing carbon nanotubes or carbon
nanofibers (2020 NIOSH)”

- “Towards sustainable additive manufacturing: The need for awareness of particle and
vapor releases during polymer recycling, making filament, and fused filament
fabrication 3-D printing (2022 NIOSH)".
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SI110. Detailed hazard assessment of PC-SWCNT

Results obtained from experimental tests performed in PC filaments and PC-SWCNT and
literature review from SWCNT are reported through an IATA hazard strategy, using the following
endpoints: dissolution, cytotoxicity, genotoxicity, ROS production, inflammation potential. The
SWCNT was used as baseline material to compare then the different toxicological results (Figure
9 S110) with the ones obtained for the PC (Figure 10 SI10) and the PC-SWCNT (Figure 11 SI10).
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Figure 9 SI10. Results of the IATA for inhalation exposure for the SWCNT TUBALL.
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Figure 10 SI10. Results of the IATA for inhalation exposure for the PC material.
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Figure 11 SI10. Results of the IATA for inhalation exposure for the PC-SWCNT material.

The decision tree was made to help interpret in vitro data; how this can be used in a SbD context
to inform on potential risks. In the case of particles that have a low dissolution rate, low
cytotoxicity, low reactivity, and low cytokine release, poorly soluble low toxicity particles (PSLT)
can be considered. For these particles, there is no concern for acute toxicity (direct effects after
a single exposure). There is, however, a concern that these particles might accumulate over
time. In rats, PSLT can cause impaired clearance after long-term exposure to (very) high
concentrations. The assumption is that the clearance capacity of the lungs can deal with lower
concentrations. The effects observed in rats are related to impaired clearance which only occurs
at high exposures that exceed the clearance capacity of the lungs (Bos et al. 2019). It is still under
debate whether this could also occur in humans. Nevertheless, an orange flag is placed to be
aware that in case of long-term (chronic) high dose exposure (in real life) this accumulation
might occur which might lead to effects on the lungs.
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