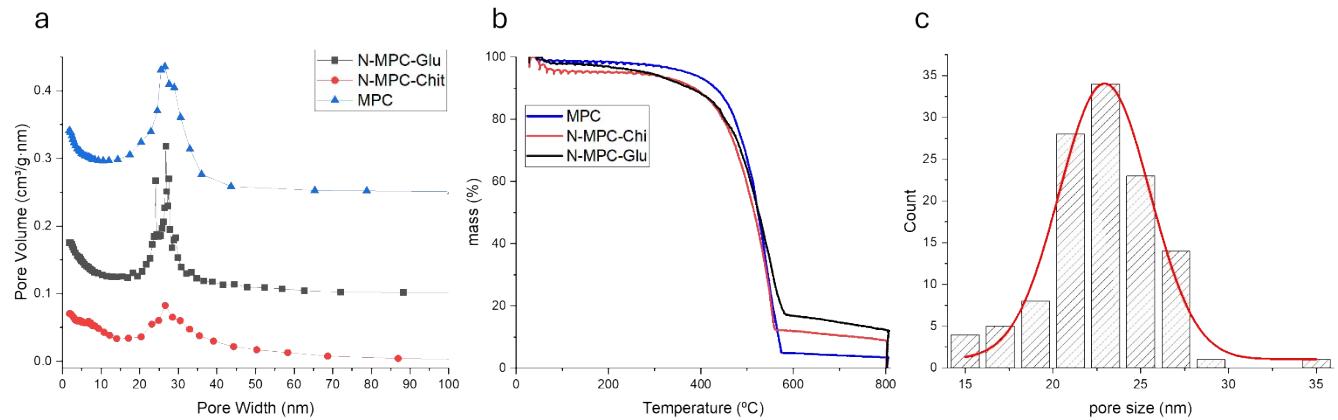


Supporting Information

Comparison Between Different Mesoporous Carbons in the Removal of Doxycycline Antibiotic: Experimental Assays and Description of Adsorbate Features by Density Functional Theory (DFT)

Tauany de Figueiredo Neves^{a,b}, Thayna Reis^a, Natália Gabriele Camparotto^a, Maria Vitória Rapôso^a, Valmor Roberto Mastelaro^c, Rafael L. Oliveira^{d,*} and Patrícia Prediger^{a,*}

^a School of Technology, University of Campinas, 13484-332, Limeira, São Paulo, Brazil.


^b Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, São Paulo, Brazil.

^c Institute of Physics, University of São Paulo, 13566-590, São Carlos, São Paulo, Brazil.

^d Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, 50-422, Wrocław, Poland.

*Corresponding author e-mail address: prediger@unicamp.br; r.oliveira@intibs.pl; Telephone number: +55 192113-3406; +48713954152

1. Characterization of prepared MPC

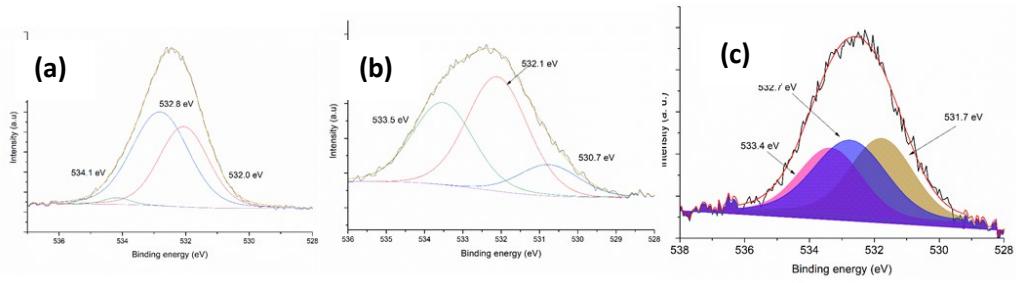
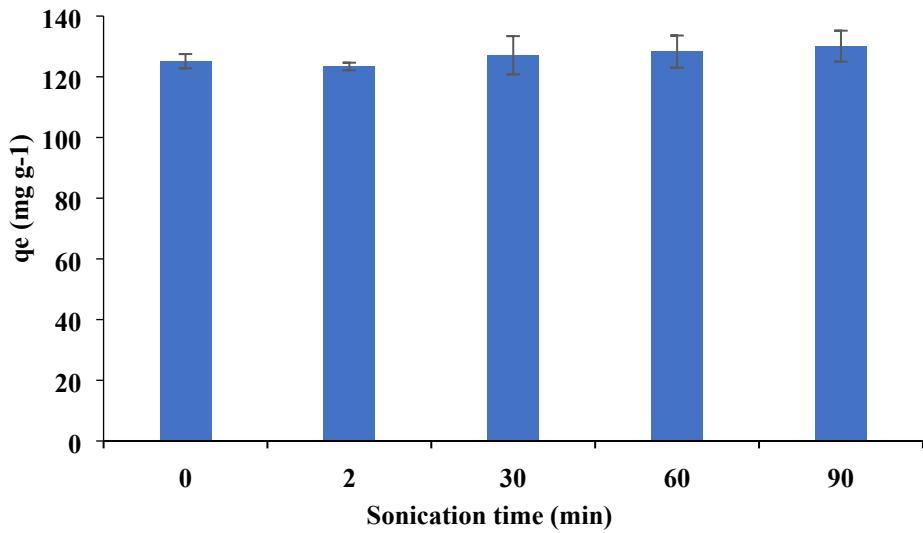


Figure S1 – (a) Pore size distribution of the carbonaceous materials, the distributions of N-MPC-Glu and MPC were offset by 0.1 and 0.25, respectively: (b)–TG analysis of carbonaceous materials, (c) pore size distribution of N-MPC-Chit derived from TEM analyses.

2. XPS analysis of prepared MPC

Table S1 – C-bond distributions from C1s XPS spectrum


Material	Csp ² (%)	Csp ³ (%)	C=O (%)	O-C=O (%)	O-C-O (%)	Carbonates (%)
MPC	53.2	30	9.5	4.6	2.7	-
N-MPC-Chi	58.5	22.1	8.7	5.0	3.7	2.0
N-MPC-Glu	68.7	19.7	6.3	5.3	-	-

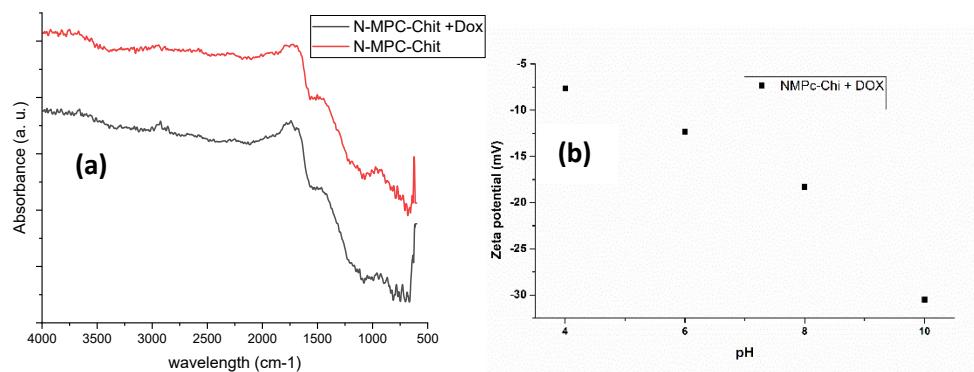

Figure S2 – O1s XPS spectrum of MPC (a); N-MPC-Chi (b); N-MPC-Glu (c).

Table S2 O-bond distributions from the O1s XPS spectrum

Material	Energy binding, percentage, functional group		
MPC	532.0 eV; 41.9%, COOH	532.8 eV, 56.2%, C-OH	534.1 eV, 1.9%, C–O in anhydrides
N-MPC-Chi	531.7 eV, 28.2%, COOH	532.7 eV, 37.2%, C-OH	533.4 eV 34.6%, C=O
N-MPC-Glu	530.7 eV, 13.4%, adsorbed H ₂ O	532.1 eV, 49.2%, COOH	533.5 eV, 37.4%, C=O

Figure S3– Influence of sonication assistance in the removal of DOX by N-MPC-Chi

Figure S4 – (a) ATR-FTIR spectra of N-MPC-Chi and N-MPC-Chi/DOX loaded. (b) Zeta potential measurements of N-MPC-Chi + DOX.