#### **Supporting Information**

for

# Critical Role of Coexistence Order and Interfacial Forces in the

## Aggregation of Polystyrene Nanoplastics Induced by Nano-SiO<sub>2</sub> and

## **Metal Cations**

Pengju Ren, Yihan Chi, Lijuan Wang, Yuanyuan Tang\*

Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China

\*Corresponding author: Yuanyuan Tang; E-mail address: tangyy@sustech.edu.cn

### **Table of Contents**

| Text S1. Method of data processing                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table S1.</b> Experimental program setting                                                                                                                                                                                                                                         |
| <b>Figure S1.</b> TEM images of standard PS NPs (a) and $SiO_2$ (b) samples, and hydrodynamic particle size (c) and zeta potential (d) measured by DLSS5                                                                                                                              |
| <b>Figure S2.</b> Aggregation dynamics particle size of SiO <sub>2</sub> (10,100mg/L) affected by ions (Na <sup>+</sup> (200mmol/L), Mg <sup>2+</sup> (50mmol/L), Cr <sup>3+</sup> (2mmol/L))S6                                                                                       |
| <b>Figure S3.</b> Aggregation dynamics particle size of PSNPs in simultaneously added solutions of different concentrations of ions                                                                                                                                                   |
| <b>Figure S4.</b> Aggregation of PS NPs at different times of reaction in 8 mmol/L Cr <sup>3+</sup> solution                                                                                                                                                                          |
| <b>Figure S5.</b> Zeta potential of PS NPs in PS-Cations system at 0, 0.5, 2, and 24 hours under low, medium, and high concentrations of Na <sup>+</sup> (50, 200, 600 mmol/L), Mg <sup>2+</sup> (1, 30, 100 mmol/L), and Cr <sup>3+</sup> (0.1, 2, 8 mmol/L) solutions, respectively |

#### Text S1. Method of data processing

Before starting the aggregation experiments, we conducted preliminary experiments on pure  $SiO_2$  in a metal cation system. As shown in Fig. S2, we observed rapid aggregation of  $SiO_2$ , which usually occurs before the initial DLS sampling. This aggregation exceeded the particle size of PS NPs within the same timeframe under the same experiment conditions (Fig. S2). To differentiate between  $SiO_2$  and PS NPs aggregates in the DLS-measured data, we identified anomalously large data points as potential  $SiO_2$  aggregates. These points were replaced with interpolated values based on the average of neighboring points.

| Experiment system | System name                            | Ion concentration (mmol/L) $PS (mg/L)$ $SiO_2 (mg/L)$ |     |     |     |     |     |     |     |     |     |    |      |
|-------------------|----------------------------------------|-------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|------|
| Single system     | PS-Na                                  | 50                                                    | 80  | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 800 | 10 | N.A. |
|                   | PS-Mg                                  | 1                                                     | 5   | 10  | 20  | 30  | 40  | 50  | 60  | 80  | 100 | 10 | N.A. |
|                   | PS-Cr                                  | 0.1                                                   | 0.5 | 1   | 1.5 | 2   | 3   | 4   | 5   | 6   | 8   | 10 | N.A. |
|                   | $PS-SiO_2(10mg/L)$                     | N.A.                                                  |     |     |     |     |     |     |     |     |     | 10 | 10   |
|                   | $PS-SiO_2(100mg/L)$                    | N.A.                                                  |     |     |     |     |     |     |     |     |     | 10 | 100  |
| Simultaneous      | PS-Na-SiO <sub>2</sub> (10mg/L)        | 50                                                    | 80  | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 800 | 10 | 10   |
| addition system   | PS-Na-SiO <sub>2</sub> (100mg/L)       | 50                                                    | 80  | 100 | 150 | 200 | 300 | 400 | 500 | 600 | 800 | 10 | 100  |
|                   | PS-Mg-SiO <sub>2</sub> (10mg/L)        | 1                                                     | 5   | 10  | 20  | 30  | 40  | 50  | 60  | 80  | 100 | 10 | 10   |
|                   | PS-Mg-SiO <sub>2</sub> (100mg/L)       | 1                                                     | 5   | 10  | 20  | 30  | 40  | 50  | 60  | 80  | 100 | 10 | 100  |
|                   | PS-Cr-SiO <sub>2</sub> (10mg/L)        | 0.1                                                   | 0.5 | 1   | 1.5 | 2   | 3   | 4   | 5   | 6   | 8   | 10 | 10   |
|                   | PS-Cr-SiO <sub>2</sub> (100mg/L)       | 0.1                                                   | 0.5 | 1   | 1.5 | 2   | 3   | 4   | 5   | 6   | 8   | 10 | 100  |
| Sequential        | PS-Na(2h)+SiO <sub>2</sub> (10 mg/L)   | 50                                                    |     | 200 |     |     |     | 600 |     |     |     | 10 | 10   |
| addition system   | PS-Na(24h)+SiO <sub>2</sub> (10 mg/L)  | 50                                                    |     | 200 |     |     |     | (   | 600 |     |     | 10 | 10   |
|                   | PS-Na(2h)+SiO <sub>2</sub> (100 mg/L)  | 50                                                    |     | 200 |     |     |     | (   | 600 |     |     | 10 | 100  |
|                   | PS-Na(24h)+SiO <sub>2</sub> (100 mg/L) | 50                                                    |     | 200 |     |     |     | (   | 600 |     |     | 10 | 100  |
|                   | PS-Mg(2h)+SiO <sub>2</sub> (10 mg/L)   | 1                                                     | 30  |     |     |     |     |     | 100 |     |     | 10 | 10   |
|                   | PS-Mg(24h)+SiO <sub>2</sub> (10 mg/L)  | 1                                                     | 30  |     |     |     |     |     | 100 |     |     | 10 | 10   |
|                   | PS-Mg(2h)+SiO <sub>2</sub> (100 mg/L)  | 1                                                     |     |     | 30  |     |     |     | 100 |     |     | 10 | 100  |
|                   | PS-Mg(24h)+SiO <sub>2</sub> (100 mg/L) | 1                                                     |     |     | 30  |     |     |     | 100 |     |     | 10 | 100  |
|                   | $PS-Cr(2h)+SiO_2 (10 mg/L)$            | 0.1                                                   |     |     | 2   |     |     | :   | 8   |     |     | 10 | 10   |
|                   | PS-Cr(24h)+SiO <sub>2</sub> (10 mg/L)  | 0.1                                                   |     |     | 2   |     |     | :   | 8   |     |     | 10 | 10   |
|                   | PS-Cr(2h)+SiO <sub>2</sub> (100 mg/L)  | 0.1                                                   |     |     | 2   |     |     | :   | 8   |     |     | 10 | 100  |
|                   | PS-Cr(24h)+SiO <sub>2</sub> (100 mg/L) | 0.1                                                   |     |     | 2   |     |     | :   | 8   |     |     | 10 | 100  |

Table S1. Experimental program setting



Figure S1. TEM images of standard PS NPs (a) and SiO2 (b) samples, and hydrodynamic particle size (c) and zeta potential (d) measured by DLS.



Figure S2. Aggregation dynamics particle size of SiO<sub>2</sub> (10,100mg/L) affected by ions (Na<sup>+</sup> (200mmol/L), Mg<sup>2+</sup> (50mmol/L), Cr<sup>3+</sup> (2mmol/L))



Figure S3. Aggregation dynamics particle size of PSNPs in simultaneously added solutions of different concentrations of ions (Na<sup>+</sup> (a, b), Mg<sup>2+</sup> (c, d), Cr<sup>3+</sup> (e, f) and silica (10mg/L (a, c, e), 100mg/L (b, d, f)).



Figure S4. Aggregation of PS NPs at different times of reaction in 8 mmol/L Cr<sup>3+</sup> solution.



Figure S5. Zeta potential of PS NPs in PS-Cations system at 0, 0.5, 2, and 24 hours under low, medium, and high concentrations of Na<sup>+</sup> (50, 200, 600 mmol/L), Mg<sup>2+</sup> (1, 30, 100 mmol/L), and Cr<sup>3+</sup> (0.1, 2, 8 mmol/L) solutions, respectively.