Electronic Supplementary Information (ESI)

Mechanistic understanding of Iron oxide nanobiotransformation in *Zea mays*: a combined synchrotron-based, physiological and molecular approach

Luca Pagano^{1,2,3*,#}, Silvia Carlo^{1,*}, Giovanni Orazio Lepore⁴, Valentina Bonanni⁵, Milan Zizic⁵, Simone Pollastri⁵, Simone Margheri⁴, Jacopo Orsilli^{6,7}, Alessandro Puri^{7,8}, Marco Villani⁹, Chunyang Li¹⁰, Giuliana Aquilanti⁵, Alessandra Gianoncelli⁵, Francesco d'Acapito⁷, Andrea Zappettini⁹, Chuanxin Ma¹⁰, Jason C. White¹¹, Nelson Marmiroli^{1,2,3}, Marta Marmiroli^{1,2,#}

¹ Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124 Parma, Italy;

² Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;

³ Consorzio Italbiotec, University of Parma, 43123 Parma, Italy;

⁴ Department of Earth Sciences, University of Florence, 50121 Firenze, Italy;

⁵ Elettra, Sincrotrone Trieste, 34149 Trieste, Italy;

⁶ Department of Materials Science, University of Milano-Bicocca, U5, Via Roberto Cozzi, 55, Milano 20126, Italy;

⁷ CNR-IOM-OGG c/o ESRF - The European Synchrotron, F-38043 Grenoble Cédex 9, France;

⁸ Department of Physics and Astronomy, Alma Mater Studiorum – University of Bologna, 40127 Bologna, Italy

⁹ IMEM-CNR, 43124 Parma, Italy;

¹⁰ Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China;

¹¹ The Connecticut Agricultural Experimental Station, New Haven, 06511 CT, USA.

* co-first authorship.

corresponding authors, marta.marmiroli@unipr.it; luca.pagano@unipr.it. Phone: +39 0521 905698.

Table of content

Figure S1. TEM image and polydispersity of nFe₃O₄.

Figure S2. XANES analysis at early developmental stage.

Table S1. List of primers utilized in qPCR analyses and genes' description.

Table S2. Iron and chloride content in soil, and plant tissues.

Table S3. Translocation factors for nFe₃O₄ and FeCl₃.

Figure S1. (a) TEM image of nFe_3O_4 . Average particle size has been estimated in 10 nm. Detailed description of the characterization methods and results are reported in the experimental section and in Pagano et al, 2022.²⁰ Polydispersity (b) used as a measure of broadness of molecular weight distribution was calculated as 0.248 ± 0.012 .

Figure S2. (A) Comparison of raw (not normalized) XANES spectra collected on roots of V_2 stage maize plants. (B) LCF performed using maghemite (violet line) and magnetite (greenish line) standard reference spectra on the spectrum of NPs (blue line) used to treat the samples. The residual curve is the green line, the fit is the red line.

Gene name	Gene ID	RefSeq	Primer	Primer Seq.	
gsr1	Zm00001eb004790	NM_001305818.1	F	CAACCTGACACCAGTTGCAC	
			R	GGGAGAACACAGCAGAAGGT	
sod1	Zm00001eb008850	NM_001155647.1	F	TCCATTCTGGGAAGGGCAGT	
			R	GCTCCTGCGTTTCCTGTTGA	
nas3	Zm00001eb052890	XM_008666956.4	F	TGTCTACACCACATGCGTGA	
			R	GCTCGGACTTCGACTTCTACC	
fer1	Zm00001eb195010	NM_001112093.2	F	CAACTCTGGGTCGGTGGATT	
			R	GACCGAACTGACACATCGCA	
mate1	Zm00001eb261140	NM_001170581.1	F	TCCTTGTTGCCGTTGTCAGT	
			R	AAACATCCGGAGGCTCATGT	
pro1	Zm00001eb347680	NM_001319696.1	F	CCTTCCCTTACAATGAGGCTG	
				Т	
			R	ACCATTCTATGCTCCTGCCTG	
aas13	Zm00001eb358430	NM_001174342.1	F	CGTTTAGCAGCCGTGTCATC	
			R	TCGAGTGAGTTCGCTGCTTC	
act2 (HK)	Zm00001d012277	NM_001154731.2	F	ACGCCGAGAACACTTTGAGG	
			R	AAACCCGCCTTGACCATTCC	

Table S1. List of primers utilized for qPCR analyses, and genes' description.

gsr1 (glutathione reductase 1), encodes for the enzyme involved in ROS scavenging by converting oxidized glutathione back to its active form; *sod1* (superoxide dismutase 1), encodes for the enzyme involved in cellular defense against oxidative stress, catalyzing the dismutation of superoxide radicals into oxygen and hydrogen peroxide. *nas3*, (nicotianamine synthase3) encodes the enzyme (NAS) that synthesizes nicotinamine (NA), that is the precursor of mugineic acid (phytosiderophore). *fer1* (ferritin1), product synthesis in response to increased iron concentration. Also involved in the formation of ferrihydrite. *mate1* (multidrug and toxic compound extrusion 1), ortholog of *A. thaliana* FDR3 gene. Located in root pericycle, mediates citrate efflux into xylem to chelate and transport iron. It is part of response pathways to abiotic stimuli and stress. *pro1* (proline responding1), encodes for enzyme that catalyzes the biosynthesis of 7-iso-JA-Ile (represses jasmonate signaling pathway, activates abiotic stress response pathway). Act2 (actine2), involved in cytoskeleton formation, has been utilized ad housekeeping (HK) gene for the qPCR analyses.

Fe content (mg kg ⁻¹)									
sample	soil	st. dev.	roots	st. dev.	leaves	st. dev.	seeds	st. dev.	
untreated	4.307	0.130	0.123	0.057	0.123	0.011	0.074	0.011	
nFe ₃ O ₄	5.667	0.245	0.155	0.057	0.083	0.114	0.091	0.011	
FeCl ₃	5.570	0.198	0.098	0.001	0.204	0.057	0.066	0.023	
Cl ⁻ content (mg kg ⁻¹)									
sample	soil	st. dev.	roots	st. dev.	leaves	st. dev.	seeds	st. dev.	
untreated	158.20	27.72	50.90	5.37	42.00	4.24	48.00	18.38	
nFe ₃ O ₄	139.00	15.56	84.50	45.96	68.50	14.85	75.35	23.69	
FeCl ₃	144.00	56.57	58.25	15.20	75.00	25.46	89.00	22.63	

Table S2. Iron and chloride content in soil and plant tissues.

One-way ANOVA has been applied; no significant differences have been observed.

Table S3. translocation factors indexes for untreated plants, nFe₃O₄ and FeCl₃, calculated as reported.

Translocation factor index	untreated	nFe ₃ O ₄	FeCl ₃
Soil-Root	0.028	0.026	0.018
Root-Shoot	1.000	0.553	2.082
Shoot-Seed	0.601	1.096	0.324
Soil-Seed	0.017	0.016	0.011

Translocation factors (TF) indexes calculation (from Table S2 mean values):

Formula 1. Soil-Root TF_{index}: [Fe]_{root}/[Fe]_{soil}

Formula 2. Root-Shoot TF_{index}: [Fe]_{shoot}/[Fe]_{root}

Formula 3. Shoot-Seed TF_{index} : $[Fe]_{seed}/[Fe]_{shoot}$

Formula 4. Soil-Seed TF_{index}: [Fe]_{seed}/[Fe]_{soil}