Supplementary Information (SI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2025

Supporting information

Multi-competitor directed defect engineering in UiO-66: achieving hierarchical porosity and unsaturated sites for high-efficiency fluoroquinolone remediation

Jiawei Kang ^a, Fan Qiu ^a, Junjie Chen ^a, Yaming Wang ^a, Yang Fan ^a, *, Ying Shen ^a, Luqi Guo ^a, and Shupeng Zhang ^a, *

^a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China

* Corresponding authors.

Tel/Fax: +86 25 84315036

E-mail address: fanyangtc9@sina.com; fanyangtc9@njust.edu.cn (Y. Fan)

shupeng_2006@126.com; shupengnjust@njust.edu.cn (S. P. Zhang)

Materials

All of the solvents and reagents were purchased from commercial vendors and used without further purification. Nickel(II) nitrate hexahydrate (Ni(NO₃)₂·6H₂O, 98%) and N,N-dimethylformamide (C₃H₇NO, 99%) were purchased from Sinopharm Chemical Reagent Co., Ltd.; Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O, 99%) was obtained from Xi'an Chemical Reagent Co., Ltd.; Cadmium nitrate tetrahydrate (Cd(NO₃)₂·4H₂O, 99%) was purchased from Ron Reagent; Chromium(III) nitrate nonahydrate (Cr(NO₃)₃·9H₂O, 99%), sodium sulphate anhydrous (Na₂SO₄, 99%), magnesium chloride hexahydrate (MgCl₂·6H₂O, 99%), metronidazole (C₆H₉N₃O₃, 99%) and glacial acetic acid (C₂H₅O₂, >99.7%) were supplied by Aladdin; Cobalt(II) nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99%), sodium chloride (NaCl, 99.5%), rhodamine B (C₂₈H₃₁ClN₂O₃, 99%), crystal violet (C₂₅H₃₀N₃Cl,90%) and terephthalic acid (C₈H₆O₄, 99%) were acquired from Macklin; Iron(III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O, >98%) was provided by Nanjing Chemical Reagent Co., Ltd.; Zirconium(IV) chloride (ZrCl₄, 98%) was obtained from VOKA. Methylene Blue($C_{16}H_{18}N_3ClS$, \geq 98.5%) was obtained from Nanjing Zhongdong Chemical Glass Instrument Co., Ltd. Humic acid was obtained from Shanghai yuanye Bio-Technology Co., Ltd. Levofloxacin (C18H20FN3O4, 98%) was obtained from Meryer Chemical Technology Co., Ltd. Tetracycline hydrochloride (C22H24N2O8 HCl, 98%) was obtained from J&K Scientific.

Characterization

The morphology and elemental distribution of the samples were systematically characterized through scanning electron microscopy (SEM) (JSM-7900F, Japan) and transmission electron microscopy (TEM) (JEM-2100F, Japan), both equipped with energy-dispersive X-ray spectroscopy (EDS) for elemental mapping. X-ray diffraction (XRD) (Bruker D8 Advanced, Germany) was employed to analyze the crystalline structure. The chemical bonding and functional groups were identified using

Fourier transform infrared spectroscopy (FT-IR) (Nicolet IS-10, America) in the wavenumber range of 525-4000 cm⁻¹. Surface charge properties were evaluated by measuring the zeta potential using a dynamic light scattering (DLS) (Malvern Zetasizer Nano ZS90, England) analyzer. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution (based on the Barrett-Joyner-Halenda (BJH) model) were determined via N₂ adsorption-desorption isotherms at 77 K (ASAP 3020, America). Thermogravimetric analysis (TGA) (TGA/DSC 3, Switzerland) was conducted from 50 to 800 °C at a heating rate of 10 °C min⁻¹ under N₂ atmosphere. The composition and state of elements on the surface of the sample were analyzed by X-ray photoelectron spectroscopy (XPS) (PHI Quantera II, Ulvac-Phi, Japan), test conditions: Al-kα X-ray.

Serial Number	1	2	3
Molecular Formula	Mn(NO ₃) ₂ ·4H ₂ O	Fe(NO ₃) ₃ ·9H ₂ O	Co(NO ₃) ₂ ·6H ₂ O
Mass/g	0.1004	0.1616	0.1164
Molar Mass/(g/mol)	251.01	404.02	291.03
Serial Number	4	5	6
Molecular Formula	Ni(NO ₃) ₂ ·6H ₂ O	Cr(NO ₃) ₃ ·9H ₂ O	$Cd(NO_3)_2 \cdot 4H_2O$
Mass/g	0.1163	0.1601	0.1234
Molar Mass/(g/mol)	290.79	400.15	380.46

 Table S1 Basic information about heterometallic salts.

Table S2 Basic information of levofloxacin.

Name	Molecular formula	Relative molecular mass	Chemical structural formula	3D chemical structure formula
Levofloxacin	C ₁₈ H ₂₀ FN ₃ O ₄	361.368		

Table S3 Pore structure data on Zr-UiO-66, Zr-UiO-66-D, and Zn/ Zr-UiO-66-D.

Sample	S_{I}	S_2	S_3	SBET	V_1	V_2	V _{Total}	V_2/V_1	D
Zr-UiO-66	197	36	55	252	0.10	0.03	0.13	0.30	3.87
Zr-UiO-66-D	668	120	185	853	0.35	0.19	0.54	0.54	6.27
Zn/Zr-UiO-66-D	977	135	155	1132	0.50	0.25	0.75	0.50	7.33

Note: S_I (m² g⁻¹) represents the micropore surface area, S_2 (m² g⁻¹) denotes the mesopore surface area, S_3 (m² g⁻¹) indicates the external surface area (mesopores, macropores, and particle external surface) excluding micropore contributions, and S_{BET} (m² g⁻¹) is the BET surface area; V_I (cm³ g⁻¹) and V_2 (cm³ g⁻¹) are the micropore and mesopore volumes, respectively, and V_{Total} (cm³ g⁻¹) represents the total pore volume; D (nm) is the average pore size.

Table S4 Parameters of different metal competitive species

	Cr ³⁺	Mn ²⁺	Fe ³⁺	Co ²⁺	Ni ²⁺	Zn^{2+}	Zr^{4+}	Cd^{2+}	
Atomic Number	24	25	26	27	28	30	40	48	
Ionic Radius (Å)	0.62	0.83	0.83 0.64 0.74 0.69 (0.74	0.72	0.95		
Charge Number	3+	2+	3+	2+	2+	2+	4+	2+	
Charge Density	7.05	2.00	7 10	2.60	4 20	2.65	7 72	2 22	
$(e/Å^2)$	1.95	2.90	/.19	3.00	4.20	5.05	1.12	2.22	
Outer Electron	2 434~0	2,154,-0	2.454~0	2 174~0	2 184-0	2 1104 -0	4 -105 ~0	4 1105 -0	
Configuration	30°48°	3u ² 48°	30-48-	30°48°	3U°48°	30-348	40°38°	40-35	
Hydrolysis	4.0	10.0	2.2	0.6	0.0	0.0	<0	10.1	
Constant	4.0	10.0	2.2	9.0	9.9	9.0	<0	10.1	

Note: The charge density $(e/Å^2)$ was calculated as the charge number divided by the square of the ionic radius ¹. The hydrolysis constant (pK_h) represents the first-stage hydrolysis constant ², where a lower value indicates greater ease of metal ion hydrolysis, leading to increased competition with ligands for coordination and consequently reduced coordination capability.

Sample	Zn/Zr-UiO-66-DT	Zn/Zr-UiO-66-D
$S_I^{\rm a}({\rm m}^2/{\rm g})$	814	977
$S_2^{b}(\mathrm{m}^2/\mathrm{g})$	178	135
$S_3^{\rm c}({\rm m}^2/{\rm g})$	240	155
$S_{BET}^{\rm d}({\rm m}^2/{\rm g})$	1,054	1132
$V_l^{\rm e}({\rm cm}^{3}/{\rm g})$	0.42	0.50
$V_2^{\rm f}({\rm cm^{3/g}})$	0.39	0.25
$V_{Total}^{\rm g}({\rm cm}^{3}/{\rm g})$	0.81	0.75
V_2/V_1	0.93	0.50
$D^{\rm h}({\rm nm})$	8.73	7.33

Table S5 Pore structure data on Zn/Zr-UiO-66-DT and Zn/Zr-UiO-66-D.

^a Micropore surface area. ^b Mesopore surface area. ^c External surface area (mesopores, macropores, and particle external surface) excluding micropore contributions. ^d BET surface area; ^e Micropore volumes. ^f Mesopore volumes. ^g Total pore volume. ^h Average pore size.

Fig. S1 SEM image (a), elemental mapping (Zr L α 1) (b) and EDX spectrum of Zr-UiO-66 (c).

Fig. S2 SEM image (a), elemental mapping (Zr La1) (b) and EDX spectrum of Zr-UiO-66-D (c).

Fig. S3 SEM image (a), elemental mapping (Zr Lα1 (b), Zn Lα1, 2 (c)) and EDX spectrum of Zn/Zr-UiO-66-D (d).

Fig. S4 XPS survey spectra of Zn/Zr-UiO-66-D before (a) and after (b) LVX adsorption

Fig. S5 High-resolution XPS spectra of Zn/Zr-UiO-66-D before and after levofloxacin (LVX) adsorption:

(a) C 1s, (b) O 1s, (c) Zr 3d, (d) Zn 2p

Fig. S6 Adsorption of LVX by Zn/Zr-UiO-66-DT (as indicated by the time-dependent absorbance changes of LVX in aqueous solution).

Fig. S7 SEM image at different magnifications (a-e), elemental mapping (Zr L α 1 (f), Zn L α 1, 2 (g)) and EDX spectrum of Zn/Zr-UiO-66-D (h).

Fig. S8 Cycle-dependent removal efficiency (blue bars) and relative removal efficiency (green bars, defined as the ratio of LVX removal efficiency in each cycle to that in the first cycle) of Zn/Zr-UiO-66-DT through six consecutive adsorption-desorption cycles (a). Time-dependent LVX removal profiles for each regeneration cycle (b).

Fig. S9 Time-dependent adsorption quantities of Zn/Zr-UiO-66-DT toward LVX under varying concentrations (0, 5, 10 mM) of NaCl (a), MgCl₂ (b), Na₂SO₄ (c), and humic acid (HA) (d).

Fig. S10 Time-dependent adsorption capacities of Zn/Zr-UiO-66-DT toward TC, MNZ, CV, RhB, MB and LVX (a). Structural formulas of TC, MNZ, CV, RhB, MB and LVX (b).

References:

- 1. Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A* 1976, **32**, (5), 751-767.
- 2. Barnum, D. W., Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxy complexes. *Inorg. Chem.* 1983, **22**, (16), 2297-2305.