

Supporting Information

Iron-Oxide Nanoparticle Release from Jellyfish-Based Hydrogels for Agricultural Fertilization

Environmental Science: Nano

*Guy Avrahami¹, Yinon Yecheskel¹, Hadi Balous^{2,3}, Shachar Richter^{2,3},
Ines Zucker^{*1}*

¹ *School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel*

² *Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel*

³ *University Center for Nano Science and Nanotechnology*

** Corresponding author; Address: Tel Aviv University, Tel Aviv 69978, Israel; Tel: (+972) 73-3804581; email: ineszucker@tauex.tau.ac.il*

Table S1. Soil properties as measured by Ben Mordechay *et al.*, 2023 ¹. Soils were sampled from lysimeters irrigated for 20 years with tap water.

Location	Ein Hashlosha	Saad	Nir Oz
Sand (%)	47	25	82
Silt (%)	40	48	14
Clay (%)	13	27	4
Soil organic matter (%)	2.64 ± 0.01	2.27 ± 0.07	1.04 ± 0.05
CaCO ₃ (%)	8	16	4
Bulk density (g/cm ³)	1.27 ± 0.01	1.24 ± 0.01	1.38 ± 0.01
Cation exchange capacity (meq/100g)	16	21	11
pH	7.5	7.6	7.5

Table S2 Zeta potential of Fe₃O₄ and Fe(OH)₃ NPs before and after release from JF-based hydrogel beads.

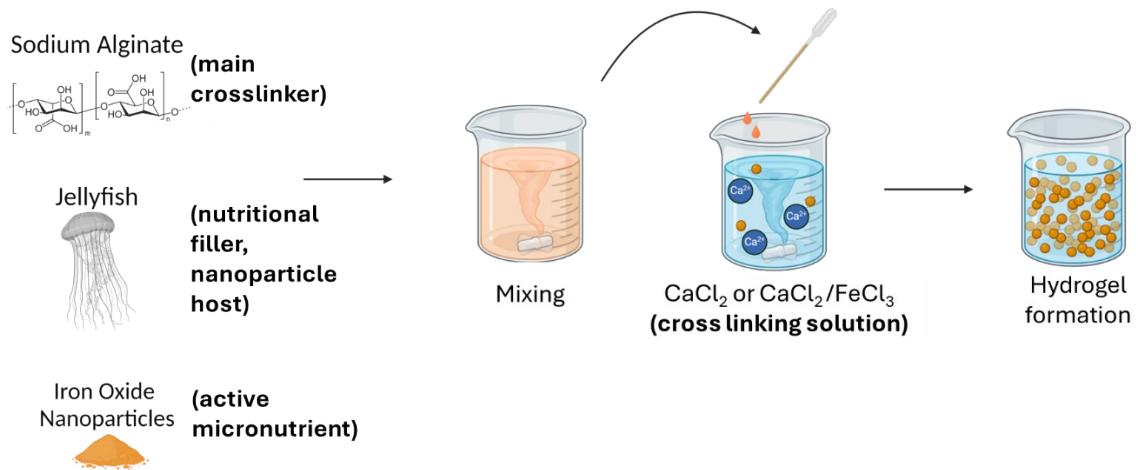

NP type	Zeta Potential (mV)
Fe ₃ O ₄	-9.2 ± 2.4
Fe(OH) ₃	-11.1 ± 0.3
Fe(OH) ₃ after release	-19.3 ± 1.1

Table S3. Diameter of iron-containing jellyfish-based hydrogel beads (Fe(OH)₃@JF).

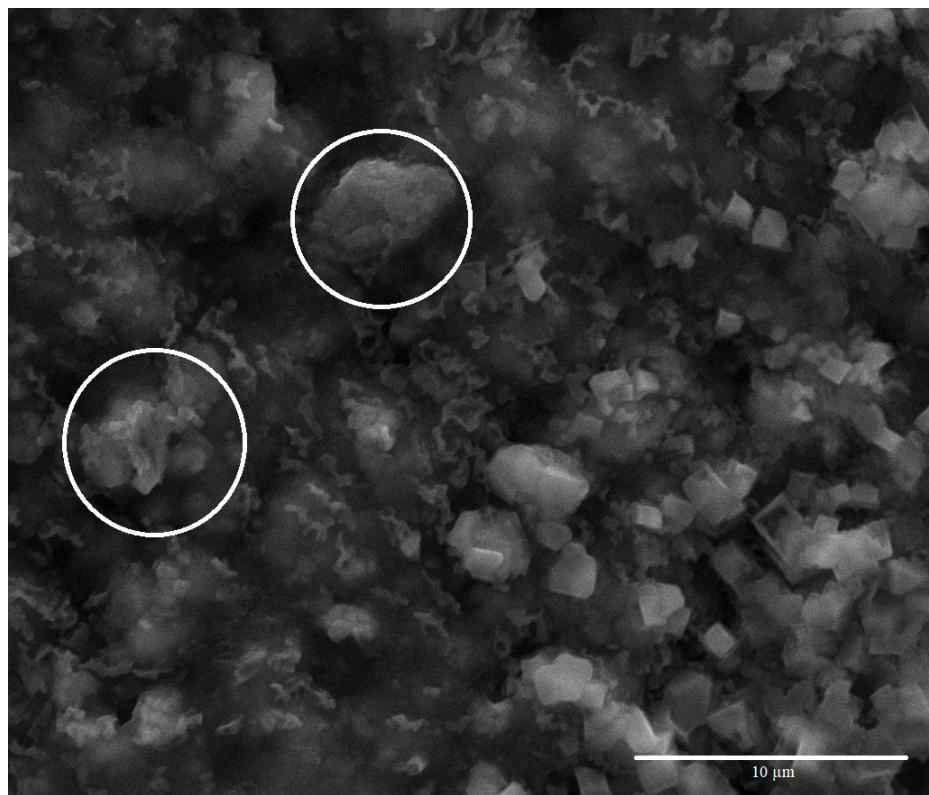
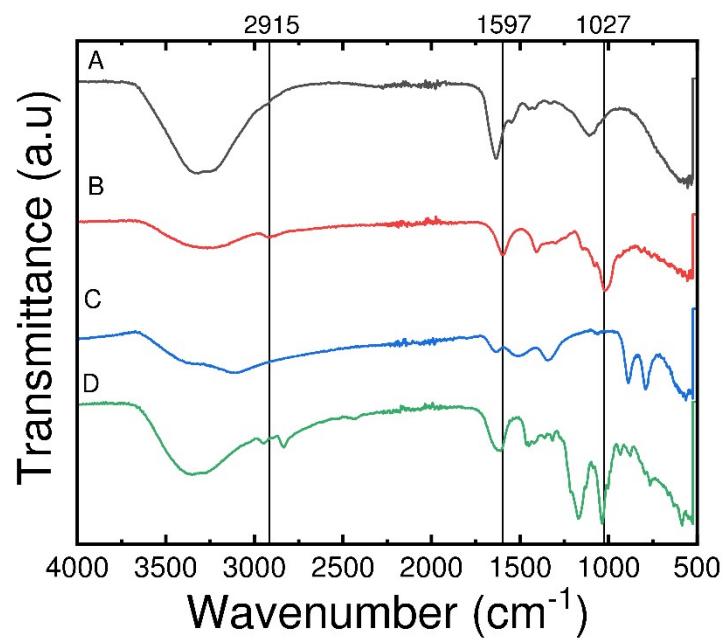
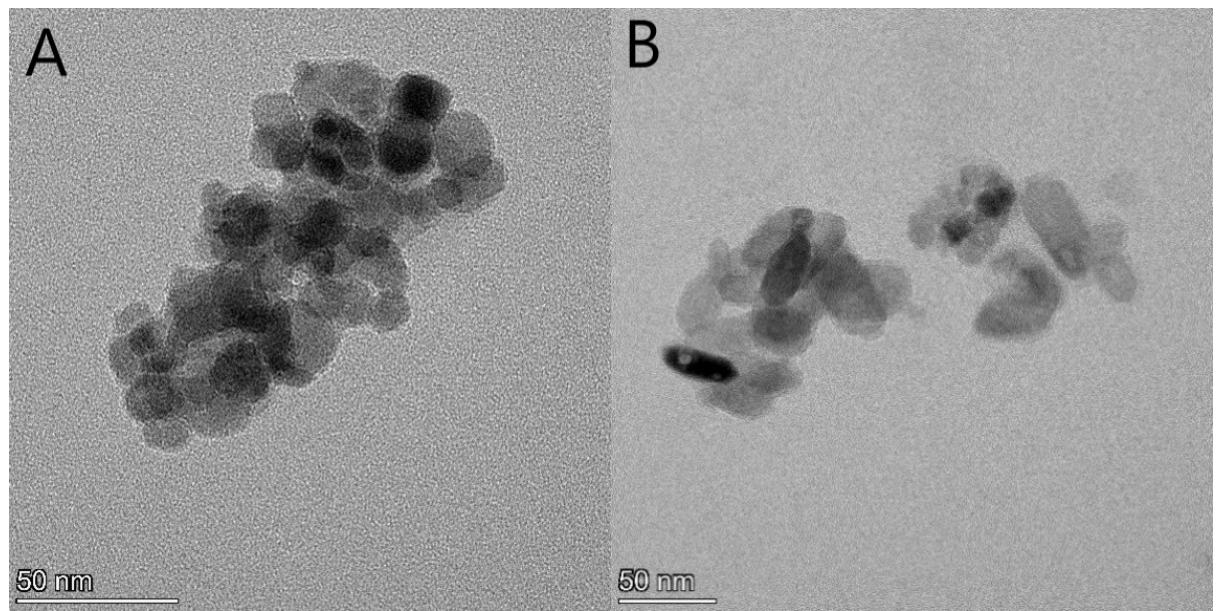

Fe(OH) ₃ @JF bead type	Diameter (mm)
After formulation	4.9 ± 0.5
20 days in Nir Oz soil suspension	4.1 ± 0.2
20 days in Nir Oz soil suspension that was sterilized in 160 °C	4.2 ± 0.3
20 days in Nir Oz soil suspension that was submerged in 1 M CaCl ₂	5.1 ± 0.7

Table S4. Cation content in different soil suspensions.


Cation Type	Ein Hashlosha	Saad	Nir Oz
Na ⁺ (mM)	0.67 ± 0.75	1.14 ± 0.03	1.25 ± 0.26
K ⁺ (mM)	0.17 ± 0.02	0.33 ± 0.04	1.79 ± 0.23
Mg ²⁺ (mM)	0.57 ± 0.01	0.41 ± 0.01	0.36 ± 0.01
Ca ²⁺ (mM)	1.95 ± 0.01	2.06 ± 0.02	2.88 ± 0.01


Figure S1. Schematic illustration of the synthesis procedure and the function of each component (in bold).

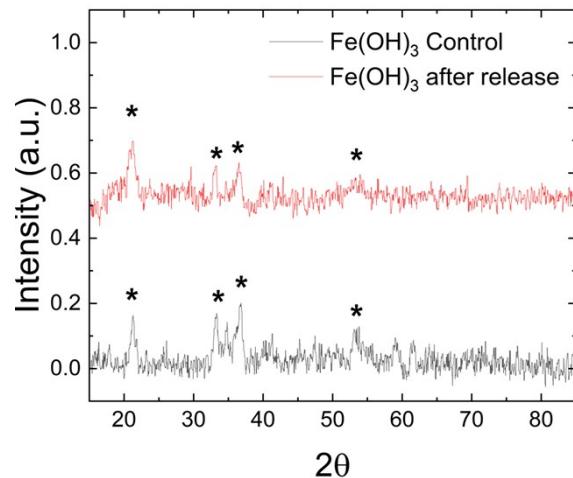

Figure S2. Environmental scanning electron micrograph (ESEM) of a dried $\text{Fe(OH)}_3@\text{JF}$ bead cross section. The circled area highlights aggregates of iron nanoparticles (NPs).

Figure S3. FTIR spectra of (A) Jellyfish, (B) Sodium alginate, (C) $Fe(OH)_3$ nanoparticles, and (D) $Fe(OH)_3$ nanoparticles after release from hydrogels.

Figure S4. Transmission electron microscope (TEM) images of (A) Fe_3O_4 NPs and (B) $Fe(OH)_3$ NPs.

Figure S5. X-ray diffraction (XRD) spectra of Fe(OH)_3 nanoparticles prior to (control) and following release from the hydrogel into soil solution. The asterisks represent expected iron hydroxide peaks present on both samples.

Figure S6. Images of iron-containing jellyfish-based hydrogel beads ($\text{Fe(OH)}_3@\text{JF}$) after formulation, after 20 days in soil suspension prepared from Nir Oz soil, after 20 days in soil suspension prepared from Nir Oz soil that was sterilized in 160 °C, and after 20 days in soil suspension prepared from Nir Oz soil that was submerged in 1 M CaCl_2 .

References

- 1 E. Ben Mordechay, M. Shenker, J. Tarchitzky, V. Mordehay, Y. Elisar, Y. Maor, J. J. Ortega-Calvo, D. Hennecke, T. Polubesova and B. Chefetz, *Soil and Environmental Health*, DOI:10.1016/j.seh.2023.100036.