Supplementary Information (SI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2025

Supporting Information for

Efficient PH₃ Removal over Cu-doped Active Carbon with Stable Active Cu²⁺ Species Enabled by Nitrogen Modification

Yihui He, b Lin Ye, c Wanglai Cen, d Jianjun Li, ab Dengrong Sun*ab

- a College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
- b College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
- c College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
- d Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China

Corresponding Email: dengrongsun@hotmail.com (D. Sun), dengrongsun@scu.edu.cn (D. Sun)

Appendix S1: Characterization methods

The X-ray diffraction (XRD) patterns were acquired on a Malvern Panalytical X'Pert³ Powder from 5-90° at 0.17°·s⁻¹ and phases identified using MDI Jade 6.5 vs. JCPDS. The specific surface areas were measured using an N₂ adsorption analyzer (Micromeritics ASAP 2460) at 77 K and were calculated using a Brunauer-Emmett-Teller (BET) model. Before the analysis, all samples were degassed at 473 K for 3 h. The BET surface area, pore volume were calculated using desorption isotherms. The pore size distributions were obtained using the BJH method. The scanning electron microscope (SEM, Tescan MIRA LMS) equipped with the EDS system was used to observe the surface morphology and microstructure of the samples. The morphology and structure of the materials were characterized by a transmission electron microscope (TEM, JEOL-JEM 2100F) equipped with the EDS system (Oxford X-Max 80T). The hydrogen temperatureprogrammed reduction (H₂-TPR) experiments were performed to test the reduction performance of the samples (VDsorb-91i) under the conditions of 10 vol% H₂ atmospheres and 10°C•min⁻¹. The basicity and alkaline site number of the adsorbents were determined using CO2-TPD with an VDsorb-91i instrument under the conditions of 10 vol% He atmospheres, and 10°C•min⁻¹, and detected the desorbed gas with TCD. The Fourier transform infrared spectroscopy (FT-IR) analysis was carried out using an infrared spectrophotometer (Shimadzu IRTracer-100). The instrument was scanned 32 times over a test range of 400-4000 cm⁻¹, and the resolution of the instrument was 4 cm⁻¹. The X-ray Photoelectron Spectroscopy (XPS) was performed on a Thermo Scientific Nexsa, processed with Avantage, with C1s at 284.5 eV as the standard. The concentration of PO₄³⁻ in the Cu-N-AC-D was measured with a Thermo Scientific Dionex Aquion ion chromatograph (IC), and the content of Cu was determined using an Agilent-5110 inductively coupled plasma optical emission spectrometer (ICP-OES).

Supplementary Figures

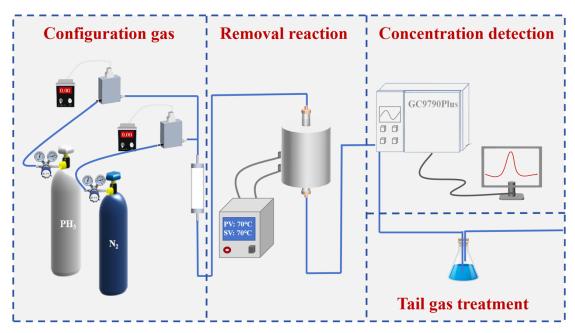


Figure S1. The reaction system for PH₃ purification.

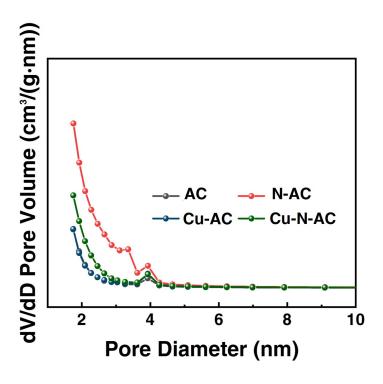
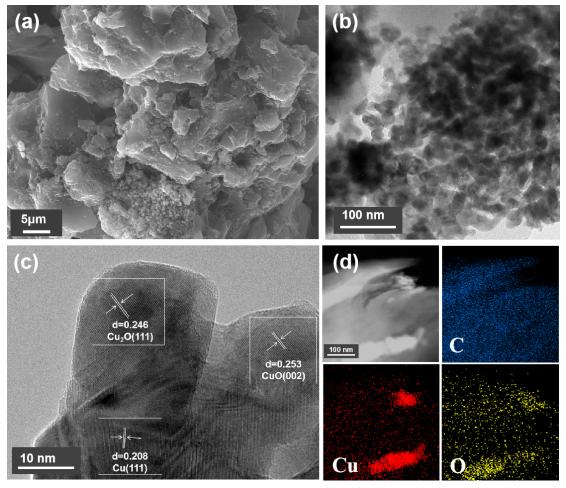



Figure S2. The pore size distributions of various samples.

Figure S3. (a) SEM micrograph, (b) TEM micrograph, (c) HR-TEM image and (d) TEM-EDS mapping images of Cu-AC.

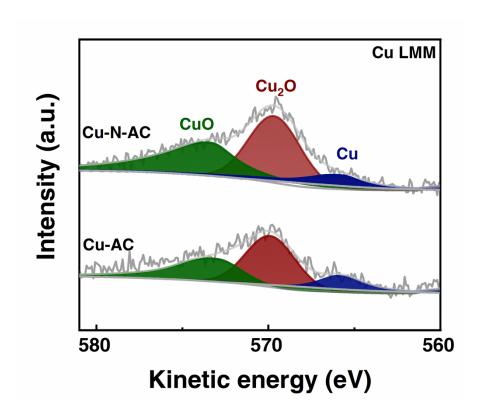
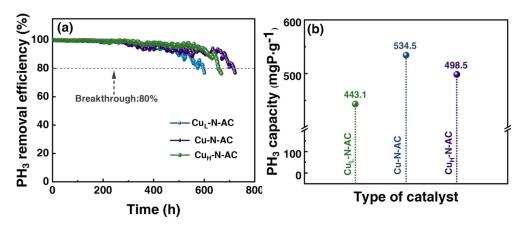



Figure S4. The Cu LMM spectra of Cu-AC and Cu-N-A

Figure S5. PH₃ removal performance over catalysts with different copper content. Cu_L -N-AC and Cu_H -N-AC are samples with lower and higher Cu loading amount as compared with Cu-N-AC. Cu_L -N-AC, Cu-N-AC and Cu_H -N-AC are prepared by dispersing N-AC in the solution of $Cu(NO_3)_2$ -3H₂O with different concentrations of 0.05g/mL, 0.10g/mL and 0.15g/mL respectively.

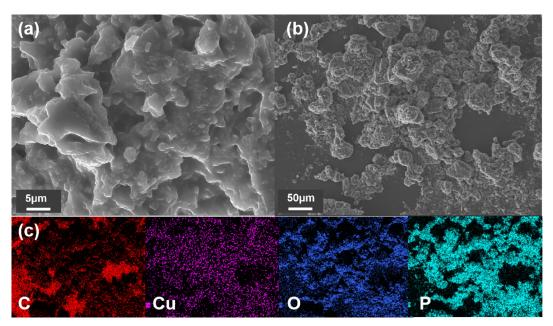


Figure S6. (a-b) SEM micrograph and (c) SEM-EDS mapping images of Cu-N-AC-D.

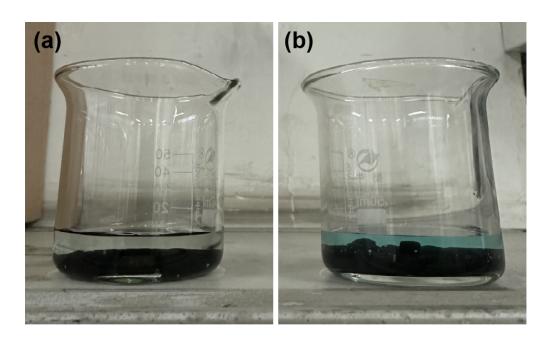


Figure S7. (a) Cu-N-AC-D immersed in water and (b) Cu-AC-D immersed in water.

Supplementary Tables

Table S1. The surface area and pore size distribution of different samples.

Sample	$S(m^2 \cdot g^{-1})$	V_{total} (cm ³ • g ⁻¹)
AC	953.8	0.43
N-AC	1081.8	0.54
Cu-AC	850.2	0.37
Cu-N-AC	824.7	0.38

Table S2. Proportion of copper species in samples determined from XPS spectra.

Sample	Copper Species	Binding energy (eV)	Atomic ratio (%)*
	Cu	932.1	31.5
Cu-AC	Cu ₂ O	933.5	40.9
	CuO	935.1	27.6
	Cu		
Cu-N-AC	Cu_2O	933.7	30.9
	CuO	935.4	69.1
Cu-N-AC-D	Cu	933.7	36.9
	Cu_2O	934.4	27.8
	CuO	935.7	35.3
	Cu	933.2	9.7
Cu-N-AC-R	Cu ₂ O	933.8	38.4
	CuO	935.7	51.9

^{*}Atomic ratio of different copper species obtained from the XPS results.

Table S3. Proportion of nitrogen species in Cu-AC and Cu-N-AC determined from XPS spectra.

Sample	Nitrogen Species	Binding energy (eV)	Atomic ratio (%)*
	pyridinic-N	399.6	44.6
N-AC	pyrrolic-N	401.4	30.2
	N-Oxides	407.1	25.2
Cu-N-AC	pyridinic-N	397.8	24.0
	pyrrolic-N	401.3	38.4
	N-Oxides	406.5	37.6

^{*}Atomic ratio of different nitrogen species obtained from the XPS results.

Table S4. Proportion of oxygen species in different samples determined from XPS spectra.

Sample	Oxygen Species	Atomic ratio (%)*
	Оа	17.3
Cu-AC	Оβ	56.2
	\mathbf{O}_{γ}	26.5
	Οα	22.8
Cu-N-AC	\mathbf{O}_{eta}	44.6
	\mathbf{O}_{γ}	32.6
	Οα	9.9
Cu-N-AC-D	\mathbf{O}_{eta}	30.5
	\mathbf{O}_{γ}	59.6

^{*}Atomic ratio of different Oxygen Species obtained from the XPS results.

Table S5. Summary of PH₃ removal performance of previously reported materials.

Adsorbents	Gas Composition	Temperature (° C)	Breakthrough Standard	Breakthrough Capacity (mg • g-1)	Ref
30Cu@TiO ₂	$N_2 + 1000 \text{ ppm PH}_3;$ $30000h^{-1}$	120 ℃	100 ppm (10%)	135.73	1
CuO/AC	N ₂ + 231 ppm PH ₃ + 1.6% O ₂ ; 750 h ⁻¹	110 ℃	3.3 ppm (1.4%)	96.08	2
Cu/ACF-NH ₃	$N_2 + 400 \text{ ppm H}_2\text{S} +$ $600 \text{ ppm PH}_3 + 1\% \text{ O}_2.$ 2000 mL/(g • hr)	90 ℃	240ppm (40%)	121.6	3
Cu _{0.15} /ACF	$N_2 + 300 \ ppm \ H_2S +$ $600ppm \ PH_3 + 0.5\% \ O_2;$ $10000 \ h^{-1}$	90 ℃	600ppm (100%)	132.1	4
CuO-ZnO- La ₂ O ₃ /AC	$N_2 + 874 \text{ ppm PH}_3 + 1\%$ $O_2; 5000 \text{ h}^{-1}$	70 ℃	87.4ppm (10%)	147.11	5
Cu ₃₀ /TiO ₂	$N_2 + 1000 \text{ ppm PH}_3 + 1\%$ O_2 ; 60000mL • h ⁻¹ • g ⁻¹	90 ℃	30ppm (3%)	136.2	6
UG@Cu-2	$N_2 + 1000 \ ppm \ PH_3;$ $30000 \ h^{-1}$	60 ℃	30ppm (3%)	318.58	7
Ce ₁ Cu ₃₀ O _X / HZSM-5	$N_2 + 800 \text{ ppm PH}_3 + 1\% \text{ O}_2;$ 15000 mL • h ⁻¹ • g ⁻¹	90 ℃	320 ppm (40%)	114.36	8
Cu ₄₅ -Fe ₈ /SBA-15	$N_2 + 200 \; ppm \; H_2S + \\ 800ppm \; PH_3 + 0.5\% \; O_2; \\ 10000 \; h^{-1}$	80 °C	320 ppm (40%)	120.05	9
Cu/HZSM-5-[S1]	$N_2 + 450 \text{ ppm H}_2\text{S} +$ $600 \text{ppm PH}_3 + 1\% O_2;$ $20000 \text{ mL} \cdot \text{cm}^{-3} \cdot \text{h}^{-1}$	90 ℃	240 ppm (40%)	150.9	10
Cu-N-AC	N_2 +140 ppm PH ₃ ; 4000 mL·h ⁻¹ ·g ⁻¹	70 ℃	28ppm (20%)	534.5	This work

Table S6. The content of copper in different samples determined from ICP-OES.

Sample	Copper Content (mg/g)	Copper Content (%)
Cu-AC	38.4	3.84
Cu-N-AC	31.8	3.18

Reference

- 1 J. Feng, K. Li, X. Wang, X. Yang, K. Hu, F. Wang, P. Ning, L. Jia and J. Cai, Two Birds with One Stone: Copper-Based Adsorbents Used for Photocatalytic Oxidation of Hg⁰ (Gas) after Removal of PH₃, *Environ. Sci. Technol.*, 2023, **57**, 4632–4642.
- 2 J. Feng, F. Wang, C. Wang, K. Li, P. Ning, X. Sun and L. Jia, Ce-doping CuO/HZSM-5 as a regenerable sorbent for Adsorption–Oxidation removal of PH₃ at low temperature, *Sep. Purif. Technol.*, 2021, 277, 119420.
- 3 J. Feng, F. Wang, C. Wang, K. Li, X. Sun and P. Ning, Cu/HZSM-5 Sorbent Treated by NH₃ Plasma for Low-Temperature Simultaneous Adsorption-Oxidation of H₂S and PH₃, ACS Appl. Mater. Interfaces, 2021, **13**, 24670–24681.
- 4 L. Jia, X. Yang, K. Hu, J. Feng, F. Wang, K. Li, X. Sun, F. Wang and P. Ning, Preparation of XCu@TiO₂ adsorbent for high-efficient PH₃ removal in anaerobic environment and evaluation of desulfurization activity of deactivated adsorbent, *Chem. Eng. J.*, 2023, **457**, 141277.
- 5 Z. Ren, S. Quan, Y. Zhu, L. Chen, W. Deng and B. Zhang, Purification of yellow phosphorus tail gas for the removal of PH₃ on the spot with flower-shaped CuO/AC, *RSC Adv.*, 2015, 5, 29734–29740.
- 6 X. Song, S. Li, K. Li, P. Ning, C. Wang, X. Sun and Y. Wang, Preparation of Cu-Fe composite metal oxide loaded SBA-15 and its capacity for simultaneous catalytic oxidation of hydrogen sulfide and phosphine, *Micropor. and Mesopor. Mater.*, 2018, **259**, 89–98.
- 7 Y. Tang, J. Feng, P. Ning, F. Wang, X. Sun and K. Li, Low-Temperature Efficient Removal of PH₃ over Novel Cu-Based Adsorbent in an Anaerobic Environment, *Chem. Eng. J.*, 2023, **461**, 142078.
- 8 Y. Wang, P. Ning, R. Zhao, K. Li, C. Wang, X. Sun, X. Song and Q. Lin, A Cu-modified active carbon fiber significantly promoted H₂S and PH₃ simultaneous removal at a low reaction temperature, *Front. Environ. Sci. Eng.*, 2021, **15**, 132.
- 9 X. Yang, K. Li, C. Wang, F. Wang, X. Sun, Y. Ma, Y. Li, L. Shi and P. Ning, Cu/ACF adsorbent modified by non-thermal plasma for simultaneous adsorption—oxidation of H₂S and PH₃, *J. Environ. Sci.*, 2023, **127**, 641–651.
- 10 H. Yi, Q. Yu, X. Tang, P. Ning, L. Yang, Z. Ye and J. Song, Phosphine Adsorption Removal from Yellow Phosphorus Tail Gas over CuO–ZnO–La₂O₃/Activated Carbon, *Ind. Eng. Chem. Res.*, 2011, **50**, 3960–3965.