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2S1. Instruments

UV-Vis absorbance spectra were recorded using U-3310 UV—Vis spectrophotometer. FTIR
spectra were recorded on a Perkin Elmer Spectrum 2 FTIR spectrometer over a frequency range
of 4000400 cm ™. To analyze the size and morphology of the CDs, Jeol 2100F Field Emission
Transmission Electron Microscope (FETEM). A droplet of dilute CDs solution was placed on
a copper grid and left to dry overnight in a desiccator. Horiba Scientific Fluoromax-4
Spectrofluorometer was utilized to record and analyze the fluorescent intensities using
0.8mg/ImL. The crystalline or amorphous nature of the materials was determined using
powder X-ray diffraction (XRD). The analysis was conducted with a Rigaku SmartLab 9 kW
X-ray diffractometer equipped with CuKa radiation (A = 1.54 A) over a 20 range of 2-60
degrees. The elemental analysis of the material was executed by Field Emission Scanning
Electron Microscope (FESEM) with Element EDS Detector, Make: Zeiss, Model: Sigma 300.
Zeta potential was analysed using Aton Paar particle analyzer Litesizer 500. The Surface
elemental composition was further confirmed through automated ultra-high vacuum (UHV) X-
ray photoelectron spectroscopy, Model: Verse probell.
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Figure S1. Phylogenetic tree of the isolated bacterium after 16S rRNA sequencing obtained
through the neighbour-joining method, showing the most similarity with Bacillus
pseudomycoides strain NBRC 101232.



Figure S2. (a) EDS layered image, (b) EDS elemental mapping of the elements present in the
CDs.
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Figure S3. Fluorescence stability test of CDs under various temperatures ranging from 4°C to
40°C.
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Figure S4. Fluorescence response of CDs upon addition of 100 uL. 2mM Pb** solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S5. Fluorescence response of CDs upon addition of 100 uL 2mM As>* solution and
100 pL 2 mM Cr®" solution (Aex= 350 nm).
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Figure S6. Fluorescence response of CDs upon addition of 100 uL 2mM Fe** solution and
100 uL 2 mM Cr®" solution (hex= 350 nm).
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Figure S7. Fluorescence response of CDs upon addition of 100 uL 2mM Cd** solution and
100 pL 2 mM Cr®" solution (Aex= 350 nm).
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Figure S8. Fluorescence response of CDs upon addition of 100 pL 2mM Mn?" solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S9. Fluorescence response of CDs upon addition of 100 uL 2mM Cr** solution and
100 pL 2 mM Cr®* solution (Aex= 350 nm).
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Figure S10. Fluorescence response of CDs upon addition of 100 uL 2mM Co** solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S11. Fluorescence response of CDs upon addition of 100 uL 2mM K" solution and
100 uL 2 mM Cr%* solution (hex= 350 nm).
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Figure S12. Fluorescence response of CDs upon addition of 100 uL. 2mM Ca** solution and
100 uL 2 mM Cr%* solution (hex= 350 nm).
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Figure S13. Fluorescence response of CDs upon addition of 100 pL 2mM AI** solution and
100 uL 2 mM Cr%" solution (Aex= 350 nm).
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Figure S14. Fluorescence response of CDs upon addition of 100 pL 2mM Zn?* solution and
100 uL 2 mM Cr®" solution (hex= 350 nm).
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Figure S15. Fluorescence response of CDs upon addition of 100 pL 2mM Mg?* solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S16. Fluorescence response of CDs upon addition of 100 uL. 2mM Ba?" solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S17. Fluorescence response of CDs upon addition of 100 pL. 2mM Ag" solution and
100 uL 2 mM Cr®" solution (hex= 350 nm).
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Figure S18. Fluorescence response of CDs upon addition of 100 pL. 2mM Ni*" solution and
100 uL 2 mM Cr%" solution (hex= 350 nm).
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Figure S19. Fluorescence response of CDs upon addition of 100 uL 2mM Hg*"* solution and
100 uL 2 mM Cr®" solution (hex= 350 nm).
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Figure S20. Fluorescence response of CDs upon addition of 100 uL 2mM Cu?" solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S21. Fluorescence response of CDs upon addition of 100 pL. 2mM Fe*" solution and
100 uL 2 mM Cr%* solution (hex= 350 nm).
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Figure S22. Fluorescence response of CDs upon addition of 100 pL 2mM PO4* solution and
100 uL 2 mM Cr%* solution (hex= 350 nm).
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Figure S23. Fluorescence response of CDs upon addition of 100 uL. 2mM H>POy4™ solution and
100 pL 2 mM Cr®* solution (Aex= 350 nm).
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Figure S24. Fluorescence response of CDs upon addition of 100 uL 2mM F~ solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S25. Fluorescence response of CDs upon addition of 100 pL. 2mM HCOs3" solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S26. Fluorescence response of CDs upon addition of 100 pL 2mM SO4* solution and
100 uL 2 mM Cr®" solution (hex= 350 nm).
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Figure S27. Fluorescence response of CDs upon addition of 100 pL 2mM Br” solution and
100 pL 2 mM Cr®" solution (Aex= 350 nm).
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Figure S28. Fluorescence response of CDs upon addition of 100 uL 2mM HPO4? solution and
100 uL 2 mM Cr%* solution (hex= 350 nm).
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Figure S29. Fluorescence response of CDs upon addition of 100 pL 2mM C>04> solution and
100 pL 2 mM Cr®" solution (Aex= 350 nm).
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Figure S30. Fluorescence response of CDs upon addition of 100 uL 2mM CI" solution and
100 pL 2 mM Cr®* solution (Aex= 350 nm).
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Figure S31. Fluorescence response of CDs upon addition of 100 pL 2mM I" solution and
100 uL 2 mM Cr®* solution (hex= 350 nm).
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Figure S32. Fluorescence response of CDs upon addition of 100 uLL. 2mM CO3* solution and
100 uL 2 mM Cr%* solution (hex= 350 nm).
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Figure S33. Percentage of fluorescence quenching in CDs upon addition of various metal ions.
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Figure S34. Fluorescence response of CDs upon addition of humic acid (25 mg/L) solution and
Cr% (25 mg/L) solution (Aex= 350 nm).
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Figure S35. Interference study of humic acid in the sensing of Cr®" by NB24@CDs.
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Figure S36. Stern-Volmer plot for fluorescence quenching of CDs against Cr®* concentration
in micromolar.

Temperature Ky (x10° M) RSD (%)
25°C 6.20+0.18 2.6
35°C 5.40=+0.16 3.1
55°C 420+0.17 3.9

Table S1. Ksy obtained from Stern-Volmer plots at different temperatures, indicating decreasing

values with increasing temperatures (n = 3).

Water type Spiked (nM) Recovered (nM) | Recovery % RSD %

Tap 39 37.908 97.2 1.98
77 74.767 97.1 2.17

113 111.305 98.5 1.56

148 146.372 98.9 1.92

181 183.353 101.3 3.12

River 39 38.6217 99.03 2.55
77 75.922 98.6 2.69

113 111.644 98.8 1.37

148 147.112 99.4 3.02




181 180.276 99.6 2.12

Lake 39 38.103 97.7 1.06
77 75.383 97.9 1.82

113 110.514 97.8 2.07

148 146.076 98.7 1.84

181 179.19 99 2.94

Table S2. Determination of Cr®" in real samples using CDs as fluorescent probe (n = 3).

Precursors Method LOD Reference

Lignocellulosic biomass (banana stem) and | Hydrothermal 2.4 uM !

phosphoric acid

Syzygium cumini juice and betaine Hydrothermal 0.033 uM | 2

Cellulose acetate and p-phenylenediamine | Hydrothermal 0.0303 uM | *

Zinc acetate and cinnamon Hydrothermal 3.97 4
pug/mL

Mature green leaves Hydrothermal 0.004 3
mg/L

Lycium barbarum Hydrothermal 0.16 uyM 6

Lignin, o-phenylenediamine, Nickel (II) | Hydrothermal 0.17 uM 7

chloride hexahydrate, EDTA-2Na

(NH4)2HPO4 and m-phenylenediamine, and | Solvothermal 0.59 uM 8

terephthalic acid

Tartaric acid and tryptophan Hydrothermal 0.51 uM ?

M-phenylenediamine and copper | Solvothermal 0.34 uM 10

acetylacetonate

O-phenylenediamine and copper | Solvothermal 0.4 uM 10

acetylacetonate

This work Hydrothermal 30 nM

Table S3. Comparison of some recently published platforms for the detection of Cr¢”.
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