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Supplementary tables

Table S1. List of features included in the original Deng et al.? “Length” dataset.

Feature
Carbide
Metal
MC
Oxide
Coml
Com2
DimO
Diml
Dim2
Hollow
sizeTEM
Purity
sizeDLS
Zeta
Species
EP

MT
Age

GS

Description

Number of carbon atoms

Number of metal atoms

Macromolecular compound

Number of oxygen atoms

Component 1 [A, of Com1] where A, is the relative atomic mass
Component 2 [A, of Com?2]

Granular

One-dimensional

Two-dimensional

Hollow

Particle size measured by transmission electron microscopy [nm]
NP purity [%]

Particle size measured by dynamic light scattering [nm]

Zeta potential [mV]

Plant species (cucumber, bean, wheat, rice, tomato, maize)

NP exposure pathway (seeds, root, leaf)

Measured tissue (root, shoot, plant)

Exposure age [day]

Growth stage of plant (germination, seedling, vegetative)



Cultured
Category

TC

Duration
Photoperiod
lllumination
Humidity
DT

NT

Cultivation method (medium, hydroponic, soil)

Plant carbon fixation metabolic pathway (C; or C, photosynthetic process)

Total content (dose) [mg]

The time elapsed from the exposure of the plant to NPs to the measurement [day]
Hours of plant exposure to light per day [hours/day]

[llumination intensity [umol-m2s]

Humidity [%]

Daytime temperature [°C]

Night temperature [°C]



Table S2. List of corrections to the original Deng et al.>? dataset.

Original dataset rows
2-7

13,17
18-29
30-37
38-51

45-51

52-58

67-68, 71-72, 76-77,
80-81
65-66
74-75

82-90

91-108

109-110
111-113
114-117
118-119
120-129
130-133
134-137
138-140

141-146

Corrections

Positive labels were normalised based on the
control sample.

Positive labels were normalised based on the
control sample.

Rows removed because the NP size was not clearly
mentioned.

Rows removed because the total NP concentration
in mg/L could not be calculated.

[llumination intensity values for medium
cultivations were corrected to 500 pmol/m?s.
“Cultured” column correction. The root length was
measured after medium cultivation instead of
hydroponic cultivation.

Positive labels were normalized based on the
control sample. Negative labels were re-calculated
for consistency.

Rows removed because the NP size was not clearly
mentioned in the referenced study.

Rows removed because atomistic descriptors
could not be calculated for large Fe,03 NPs.

Rows removed because atomistic descriptors
could not be calculated for large Fe,03 NPs.
Positive labels were normalized based on the
control sample. Negative labels were re-calculated
for consistency.

Rows removed because the total NP concentration
in mg/L could not be calculated.

Rows removed because the NP size was not clearly
mentioned in the referenced study.

Rows removed because the total NP concentration
in mg/L could not be calculated.

Rows removed because the NP size was not clearly
mentioned in the referenced study.

Rows removed because the NP shape was not
clearly mentioned in the referenced study.

Rows removed because the NP shape was not
clearly mentioned in the referenced study.

Rows removed because the NP shape was not
clearly mentioned in the referenced study.

Rows removed because the NP shape was not
clearly mentioned in the referenced study.

Rows removed because the total NP concentration
in mg/L could not be calculated.

Rows removed because the NP size was not clearly

Referenced study
Cui et al. (2014)3

Konate et al. (2018)*
Gopalakrishnan Nair et
al. (2015)3

Abdel Latef et al
(2018)8

Feng et al. (2019)’

Feng et al. (2019)’

Feng et al. (2019)’

Mahawar et al. (2018)8
Mahawar et al. (2018)8
Mahawar et al. (2018)8

Cui et al. (2014)3

Wang et al. (2019)°
Zuo et al. (2017)°

Du et al. (2015)*
Wang et al. (2020)*
Iftikhar et al. (2020)*3
Hussain et al. (2018)%**
Khan et al. (2019)*
Wang et al. (2020)

Li et al. (2020)Y

Adhikari et al. (2015)8



148-149

150-151, 155-156

157-160

161-163

165-167

175-181

189-210

211-215

216-231

233-234

239-248

249-260

261-268

269-272

273-277

278-282

283-294

295-299

mentioned in the referenced study.

Positive labels were normalized based on the
control sample.

Rows removed because the total NP concentration
in mg/L could not be calculated for foliar NP
treatments.

Rows removed because the total NP concentration
in mg/L could not be calculated.

Rows removed because the total NP concentration
in mg/L could not be calculated.

Positive labels were normalized based on the
control sample.

Positive labels were normalized based on the
control sample. Negative labels were re-calculated
for consistency.

Rows removed because atomistic descriptors
could not be calculated for large carbon sheets and
tubes.

Rows removed because the total NP concentration
in mg/L could not be calculated.

Rows removed because the data could not be
matched to any referenced study.

Positive labels were normalized based on the
control sample.

Positive labels were normalized based on the
control sample. Negative labels were re-calculated
for consistency.

sizeTEM and purity of NPs were corrected to 30 nm
and 97.5% respectively.

Mean illumination intensity, mean humidity and
daytime and nighttime temperatures were
corrected to 305 pumol/m?s, 65% and 20°C and
28°C respectively.

Rows removed because atomistic descriptors
could not be calculated for polymeric NPs.

Rows removed because atomistic descriptors
could not be calculated for large polymeric NPs.
Rows removed because atomistic descriptors
could not be calculated for large polymeric NPs.
Rows removed because atomistic descriptors
could not be calculated for large polymeric NPs.
Rows removed because atomistic descriptors
could not be calculated for large polymeric NPs.

7 rows were added to include shoot
measurements.

5 rows were added to include shoot
measurements.

Lian et al. (2020)*°

Lian et al. (2020)*°

Togeer et al. (2020)%°
Yan et al. (2020)2*
Rizwan et al. (2019)%?
Feng et al. (2019)7
Lopez-Vargas et al.
(2020)%

Zadeh et al. (2019)*
No referenced study
found

Wang et al. (2020)?°

Abbas et al. (2019)%°

Liu et al. (2018)%7

Jietal (2017)%8

Zhou et al. (2021)%°
Li et al. (2020)%°

Li et al. (2020)3!
Gong et al. (2021)3?
Lian et al. (2020)33
Wang et al. (2020)%°

Gopalakrishnan Nair et
al. (2015)3



Plot digitisation error analysis

In order to normalise the (root, shoot, overall plant) length labels relative to the control value, it was
required to extract the actual experimental measurement values from the bar plots presented in the
referenced papers, whenever these were not clearly referred in the text. Each plot was copied with its
original aspect ratio and image resolution preserved: Screenshots of plots were taken directly from PDF
files, avoiding any external resizing or compression artifacts and then imported into the WebPlotDigitizer3>
tool. As an initial step, two known, distinct points on the y-axis range were manually selected, and their
values were entered into the tool to calibrate the bar plot. Subsequently, a point on the top of each bar
was manually identified, from which the tool computed the corresponding numerical value.

During this process, both human systematic error and low image quality were recognised as potential
sources of inaccuracy in the extracted numerical length values. To minimise this error, all plots were
digitised by the same analyst, and a quality control analysis was conducted. To do so, plots for which the
original numerical values were explicitly reported in the referenced articles were selected for digitisation,
allowing a direct comparison between the extracted and published values. Although numerical values were
not provided for the length parameter, similarly styled plots from the same studies depicting experimental
parameters not included in the final dataset were used for this comparison. As these plots originate from
the same studies (featuring similar aspect ratios, bar dimensions, and image resolutions) and were
subjected to an identical digitisation procedure, including the same axis calibration method, they were
considered appropriate proxies for assessing the digitisation process error.

Three examples of differently designed bar plots (different axis scaling, bar width and colour, see Figures
S1-S3) were analysed, and their extracted, digitised values were compared to the referenced ones within
the text. The relative absolute errors (RAE, Eq. 1) were then calculated as reported in Tables S3-S5. In all
cases, the RAE was less than 1% which confirms that the plot digitisation method is suitable for extracting
numerical values to be used in model development.

%RAE = |xreported - xdigitizedl . 100 [1]

xreported

Example 1. Digitisation of plots from Cui et al. (2014)3
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Figure S1. Free ion concentrations in exposure solutions of Ag NPs after 5-d treatment of Ag NPs at the germination
stage of cucumber. Figure 4(a) in the study of Cui et al.3

Table S3. Reported and Digitiser values comparison for Figure S1 and calculated %RAE.

Concentration of Ag NPs Reported Digitiser
%RAE
(mg/L) value value
1 2 2.016 0.806
1000 167 167.742 0.444

Example 2. Digitisation of plots from Abbas et al. (2019)%°
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Figure S2. Ag transfer rate (ug day™). Figure 4(B) in the study of Abbas et al.?
Table S4. Reported and Digitiser values comparison for Figure S2 and calculated %RAE.

AgNPs+Biocha Reported Digitiser
r value value
1000 1.62 1.616 0.225

%RAE



Example 3. Digitisation of plots from Feng et al. (2019)’
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Figure S3. Effect of GQDs total phenolic contents in mung bean and tomato seedlings after 2 weeks of culture in
hydroponic medium containing different concentrations of GQDs. Figure 5d in the study of Feng et al.’

Table S5. Reported and Digitiser values comparison for Figure S3 and calculated %RAE.

Reported Digitiser
GQDs (mg L) %RAE
value value
1250 Mung Bean 6.69 6.686 0.061

1500 Tomato 2.94 2.948 0.271



Supplementary figures
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Figure S4: Histogram of BA values obtained from 1000 bootstrap resamplings of the test set predictions using the
XGBoost model.
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Figure S5: SHAP analysis summary plot for the XGBoost model applied on the test sample. Only the features with
numerical values are included in the analysis.
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