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1. Characteristics of the tested nanomaterials. 

 
Table 1. List of tested nanomaterials with the values of Hamaker constants in vacuum and density. 

ENP 

Hamaker's 

constant 

[10-20 J] 

Density 

[kg/m3] 
References 

Ag 29.0 10500 1 

Al 25.6 2700 1 

Al2O3 15.2 3950 2 

Au 34.9 19300 1 

BaTiO3 18.0 6000 2 

Be 34.8 1850 3 

BeO 14.5 3000 3 

CaF2 7.0 3180 2 

CdS 11.4 4800 2 

CeO2 8.5 7100 4 

Cr 36.5 7200 3 

Cu 32.2 8960 3 

CuO 6.2 6500 5 

Fe3O4 4.3 5200 6 

LiF 6.3 2540 2 

MgF2 5.9 3150 2 

MgO 12.1 3600 2 

Mo 46.8 10200 3 

MoS2 54.0 5000 7 

PbS 8.2 7200 2 

Pt 24.0 21450 8 

Si3N4 16.7 3200 2 

SiC 24.6 3210 2 

SiO2 7.6 2200 2 

SrTiO3 14.8 5000 2 

TiO2 15.3 4230 2 

V 36.6 6100 3 

W 49.8 19300 3 

WS2 58.0 7300 7 

Y2O3 13.3 5000 2 

ZnO 9.2 5600 2 

ZnS (cubic) 15.2 4000 2 

ZnS 

(hexagonal) 
17.2 4050 2 

ZrO2 20.3 5600 2 

α-Fe2O3 9.2 5200 6 

γ-Fe2O3 6.8 5000 6 

 
Table 2. Nanomaterials with assigned solubility rate constant. 

ENP Dissolution rate [s-1] References 

Ag 2.7×10-7 - 4.8×10-5 9–11 

Al2O3 3.7×10-7 - 1.7×10-6 12 

CdS 2.5×10-7 - 1.7×10-5 13 

Cu 3.0×10-8 - 8.0×10-6  14,15 

CuO 1.2×10-7 - 5.4×10-4 16–20 

ZnO 8.4×10-7 - 2.7×10-3 21–25 

For nanomaterials not listed explicitly, assumed dissolution rate = 0. 

Supplementary Information (SI) for Environmental Science: Nano.
This journal is © The Royal Society of Chemistry 2026



2. Environmental conditions and parameters of DLVO and EFM simulations. 

 

Parameter Distribution Range Unit 
Used in 

modeling 
Reference 

Diameter of 

natural 

colloids 

Pareto 50-2000 nm 
DLVO, 

EFM 
26 

Zeta potential 

of natural 

colloids 

Triangular 

-9.5;  

-8.8;  

-7.9 

mV DLVO 27 

Density of 

natural 

colloids 

Triangular 

1.1103; 

1.3103; 

2.5103 

kg/m3 EFM 28 

Number 

concentration 

of natural 

colloids 

Triangular 

4.81013; 

1.71014; 

4.01014 

#/m3 EFM 29 

Diameter of 

suspended 

particles 

Lognormal 5; 0.6 μm 
DLVO, 

EFM 
30 

Zeta potential 

of suspended 

particles 

Triangular 

-16;  

-14;  

-12 

mV DLVO 27 

Density of 

suspended 

particles 

Uniform 
1.1103 -

2.5103 
kg/m3 EFM 30 

Number 

concentration 

of suspended 

particles 

Uniform 
9.2109 -

6.31010 
#/m3 EFM 30 

Inverse of 

Deby's length 
Lognormal 19.14; 0.81 m-1 DLVO 31 

Ion valance Triangular 

1.0;  

1.2;  

2.0 

- DLVO 32 

Water depth Weibull 3; 15 m EFM 33 

Temperature Lognormal 2.49; 0.28 K 
DLVO, 

EFM 
34 

Shear rate Uniform 0 -10 s-1 EFM 30 

Water flow 

 
Lognormal 

2.3103; 

8.9102 
m3/s-1 EFM 33 

 



3. Attachment efficiency calculations based on DLVO theory. 

The symbols used in the equations below are defined as follows: 

 

ℎ - separation distance [m] 

𝐴𝐻 - Hamaker constant [J] 

𝑟𝐸𝑁𝑃, 𝑟𝑜𝑡ℎ𝑒𝑟  - radii of ENP and natural particle [m] 

𝜀0 - vacuum permittivity (8.85×10-12) [F/m] 

𝜀𝑤𝑎𝑡𝑒𝑟  - water dielectric constant 

𝑘𝑏 - Boltzmann constant (1.38×10-23) [J/K] 

𝑇 - temperature [K] 

𝑧 - ion valence 

𝑒 - elementary charge (1.60×10-19) [C] 

𝜁𝐸𝑁𝑃 , 𝜁𝑜𝑡ℎ𝑒𝑟  - zeta potentials [V] 

𝑘𝐷𝑒𝑏𝑦𝑒 - inverse Debye length [m-1] 

 

𝛼 =

∫ [
exp (

𝑉𝑉𝐷𝑊

𝑘𝑏𝑇
)

(
𝑟𝐸𝑁𝑃 × 𝑟𝑜𝑡ℎ𝑒𝑟

𝑟𝐸𝑁𝑃 + 𝑟𝑜𝑡ℎ𝑒𝑟
+ ℎ)

2

 
] 𝑑ℎ

∞

0

∫ [
exp (

𝑉𝑇

𝑘𝑏𝑇
)

(
𝑟𝐸𝑁𝑃 × 𝑟𝑜𝑡ℎ𝑒𝑟

𝑟𝐸𝑁𝑃 + 𝑟𝑜𝑡ℎ𝑒𝑟
+ ℎ)

2

 
] 𝑑ℎ

∞

0

 

 
Equation. 1 Calculation of binding efficiency (α) by applying DLVO theory35,36. 

 

𝑉𝑉𝐷𝑊 = −
𝐴𝐻(𝐸𝑁𝑃/𝑤𝑎𝑡𝑒𝑟/𝑜𝑡ℎ𝑒𝑟) × 𝑟𝐸𝑁𝑃 × 𝑟𝑜𝑡ℎ𝑒𝑟

6ℎ(𝑟𝐸𝑁𝑃 + 𝑟𝑁𝐶𝑃)
 

Equation. 2 Expression for Van der Waals attraction between ENP and natural particle36. 

𝑉𝐸𝐷𝐿 = 64𝜋𝜀0𝜀𝑤𝑎𝑡𝑒𝑟 (
𝑟𝐸𝑁𝑃 × 𝑟𝑜𝑡ℎ𝑒𝑟

𝑟𝐸𝑁𝑃 + 𝑟𝑜𝑡ℎ𝑒𝑟
) (

𝑘𝑏𝑇

𝑧𝑒
)

2

tanh (
𝑧𝑒𝜁𝐸𝑁𝑃

4𝑘𝑏𝑇
) tanh (

𝑧𝑒𝜁𝑜𝑡ℎ𝑒𝑟

4𝑘𝑏𝑇
) 𝑒(−𝑘𝐷𝑒𝑏𝑦𝑒ℎ) 

Equation. 3. Expression for Electric Double Layer repulsion between ENP and natural particle36. 

𝑉𝑇 = 𝑉𝑉𝐷𝑊 + 𝑉𝐸𝐷𝐿 

Equation. 4. Expression for total interaction 

 

Conversion of the Hamaker constant of a nanoparticle in vacuum to the Hamaker constant in 

interaction with a natural particle in water37: 

 

𝐴𝐸𝑁𝑃/𝑤𝑎𝑡𝑒𝑟/𝑜𝑡ℎ𝑒𝑟 = (√𝐴𝐸𝑁𝑃 − √𝐴𝑤𝑎𝑡𝑒𝑟)(√𝐴𝑁𝐶𝑃 − √𝐴𝑤𝑎𝑡𝑒𝑟) 

 
Equation. 5. Hamaker constant for ENP in interaction with natural particle in water. 

 

The Hamaker constant of natural particles is represents by SiO2 and: 

ASiO2
  = 7.5910-20 J 2 Awater = 3.7010-20 J 38.



4. Calculation aggregation rate constant 

 

The heteroaggregation process is described as first-order kinetics with an effective rate 

constant: 

𝑘𝑎𝑔𝑔 = 𝛼 × 𝑓 

The frequency of all collisions between ENP nanoparticles (radius 𝑅𝑆) and other particles 

(radius 𝑟) consists of three mechanisms: 

𝑓 = 𝑓𝐼 + 𝑓𝐵 + 𝑓𝐺  

 

a. Collisions related to macromixing (fluid shear): 

𝑓𝐼 =
4

3
𝛾̇(𝑅𝑆 + 𝑟)3 

where 𝛾̇ is the shear rate (1/s). 

 

b. Brownian collisions (thermal diffusion): 

𝑓𝐵 =
2𝑘𝐵𝑇

3𝜇

(𝑅𝑆 + 𝑟)2

𝑅𝑆𝑟
 

where 𝑘𝐵 is the Boltzmann constant, 𝑇 temperature, 𝜇 dynamic viscosity. 

 

c. Gravitational collisions (sedimentation velocity difference): 

𝑓𝐺 = 𝜋(𝑅𝑆 + 𝑟)2|𝑉𝑠𝑒𝑡(𝑅𝑆) − 𝑉𝑠𝑒𝑡(𝑟)| 

where 

𝑉𝑠𝑒𝑡(𝑥)  =  
2(𝜌𝑥  −  𝜌𝑤)𝑔𝑥2

9𝜇
 

is the sedimentation velocity of a particle with radius 𝑥 and density 𝜌𝑥, in a medium 

with density𝜌𝑤 and gravitational acceleration 𝑔. 
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