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1. Characteristics of the tested nanomaterials.

Table 1. List of tested nanomaterials with the values of Hamaker constants in vacuum and density.

Hamaker's _ Mo 46.8 10200 3
ENP constant Dens1t3y References MoS» 54.0 5000 ’
ooy | em] PbS 82 | 7200 2
Pt | 240 [21450 ]
Ag 290 | 10500 : SisNs | 167 | 3200 2
= 256 | 2700 : SiC | 246 | 3210 :
AlO3 15.2 3950 2 Si0, 76 2200 2
S| 349 |19300) SITiOs | 148 | 5000 ’
BaTiOs3 18.0 6000 2 TiO, 15.3 4230 2
Be 348 1850 3 Vv 36.6 6100 3
BeO | 145 | 3000 3 W 298 19300
CaF. | 70 [ 3180 | ? wss | 350 17300 |7
CdS | 114 | 4800 | ° Y05 | 133 [ 5000 [
Ce0: | 85 | 7100 ! 70 | 92 | 5600 ;
Cr | 365 | 7200 | ZnS @wo| 152 | 4000 | 2
Cu 32.2 8960
CuO 6.2 6500 3 (hefal;glial) 17.2 4050 |
Fe;04 43 5200 6 ZrO; 20.3 5600 2
LiF 6.3 2540 2 a-Fe,03 9.2 5200 6
MgF> 59 3150 2 v-Fe; 03 6.8 5000 6
MgO 12.1 3600 2
Tuble 2. Nanomaterials with assigned solubility rate constant.
ENP | Dissolution rate [s"'] | References
Ag | 2.7x107-4.8x10° o-11
ALOs | 3.7x107-1.7x10° 12
CdS 2.5x107-1.7x107° 13
Cu 3.0x10%- 8.0x10°¢ 1415
CuO 1.2x107 - 5.4x10* 1620
ZnO 8.4x107-2.7x1073 21725

For nanomaterials not listed explicitly, assumed dissolution rate = 0.



2. Environmental conditions and parameters of DLVO and EFM simulations.

Parameter Distribution Range Unit Ui n Reference
modeling
Diameter of
natural Pareto 50-2000 nm DLVO, 26
. EFM
colloids
Zeta potential -9.5;
of natural Triangular -8.8; mV DLVO 27
colloids -7.9
Density of 1.1x103;
natural Triangular 1.3x10%; kg/m’ EFM 28
colloids 2.5x10°
Humber 4.8x10'3;
CONCCNITAton | riangular 1.7x10'%; #/m> EFM 29
of natural 4.0x10M
colloids el
Diameter of
suspended Lognormal 5;0.6 pm DLVO, 30
. EFM
particles
Zeta potential -16;
of suspended | Triangular -14; mV DLVO 27
particles -12
Density of 1 1x103 -
suspended Uniform ' ; kg/m’ EFM 30
. 2.5x10
particles
Number
concentration . 9.2x10° - 3 30
ofisuspended Uniform 6.3%101° #/m EFM
particles
Inverse of ] 1 31
Deby's length Lognormal 19.14; 0.81 m DLVO
1.0;
Ion valance Triangular 1.2; - DLVO 32
2.0
Water depth Weibull 3; 15 m EFM 33
) DLVO, 34
Temperature | Lognormal 2.49; 0.28 K EFM
Shear rate Uniform 0-10 st EFM 30
3.
Water flow Lognormal 2.3x10 ) m3/s_1 EFM 33

8.9x10°




3. Attachment efficiency calculations based on DLVO theory.

The symbols used in the equations below are defined as follows:

h - separation distance [m] T - temperature [K]

Ay - Hamaker constant [J] z - ion valence

Tgnps Tother - radii of ENP and natural particle [m] e - elementary charge (1.60x107%) [C]
£ - vacuum permittivity (8.85x107'?) [F/m] Cenp> Cotner - Z€ta potentials [V]
Ewater - Water dielectric constant kpepye - inverse Debye length [m™]

k,, - Boltzmann constant (1.38x102) [J/K]

o ()

2
(TENP X Tother + h)
o= [ \Tenp + Tother

exp (ka—TT)

2
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dh

dh

Equation. 1 Calculation of binding efficiency (a) by applying DLVO theory3>3.

AH(ENP/water/other) X TEnp X Tother
6h(renp + Tnep)

Vypw = —

Equation. 2 Expression for Van der Waals attraction between ENP and natural particle’®.

rgnp X T, k, T\? ze ze
Vips = GATEEmaser ( ENP other) ( b ) tanh( (ENP) tanh( Cother) o (kpeyeh)
Tenp + Tother/ \ Z€ 4k, T 4k, T

Equation. 3. Expression for Electric Double Layer repulsion between ENP and natural particle®.

Ve = Vypw + Vepy

Equation. 4. Expression for total interaction

Conversion of the Hamaker constant of a nanoparticle in vacuum to the Hamaker constant in

interaction with a natural particle in water®’:

AENP/water/other = (\/AENP - \/Awater)(\/ANCP - \/Awater)

Equation. 5. Hamaker constant for ENP in interaction with natural particle in water:

The Hamaker constant of natural particles is represents by SiO and:

Asio, = 7.59x10720 J 2 Awater= 3.70x10720 J 38,



4. Calculation aggregation rate constant

The heteroaggregation process is described as first-order kinetics with an effective rate

constant:
kagg =aXxf

The frequency of all collisions between ENP nanoparticles (radius Rg) and other particles

(radius 7) consists of three mechanisms:

f=htfetfe

a. Collisions related to macromixing (fluid shear):

4 3
fi =§V(Rs+7”)

where ¥ is the shear rate (1/s).

b. Brownian collisions (thermal diffusion):

_ 2kpT (Rs + )2
- 3u Rgr

B

where kg is the Boltzmann constant, T temperature, u dynamic viscosity.

c. Gravitational collisions (sedimentation velocity difference):

fG = n(RS + T)Zlvset(RS) - Vset(r)l

where

(px — Pw)gx?®
I

is the sedimentation velocity of a particle with radius x and density p,, in a medium

2
Viet (x) =

with densityp,, and gravitational acceleration g.
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