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1. POM-based catalysts in removal of refractory sulfur compounds from fossil fuels
Table S1 The summary of literature known POM-based catalysts and their efficiency in removal of refractory sulfur compounds from fossil fuels.

Formula POM 
archetype Conditions Efficiency Number 

of cycles Ref.

[H3PWVI
12O40·20H2O];

[Na3PWVI
12O40·14H2O];

[H3PMoVI
12O40·15H2O]; 

[Na3PMoVI
12O40·20H2O]; 

[H4SiWVI
12O40·25H2O];

[H4SiMoVI
12O40·xH2O],

x = not specified by authors 
(nsp)

Keggin

T = 50-70°C; t = 90 min; solvent – toluene; 
30 % H2O2 as oxidant; n(catalyst) = 0.063 
mmol; n(DBT) = 5.43 mmol; 
DBT = dibenzothiophene

DBT removal efficiency of 100 % 
within 90 min 
(k = 0.064 min-1)

nsp [1]

POM/PEG/SSA; 
POM = Na3H6CrIIIMoVI

6O24,
PEG = polyethylene glycol,
SSA = 5-sulfosalicylic acid

Anderson-
Evans

T = 60 °C; t = 2 h; p(O2) = 1 atm, 60 mL/min 
O2 flow rate; Voil/VDES = 5; O2 as oxidant; 
model diesel ([S] = 500 ppm in decalin); 
V(model diesel) = 20 mL; m(POM) = 0.02 g; 
V(DES)= 4 mL; 
DES = deep eutectic solvent; DBT = 
dibenzothiophene

DBT removal efficiency of 100 % 
within 120 min 
(k = 0.028 min-1)

5 [2]

H8PVV
5MoVI

7O40 (HPA-5) Keggin

T = 140 °C; t = 6 h; p = 20 bar; n(HPA-5) = 
2.50 mmol; VH2O/Voil = 10; O2 − oxidant; 
model oil (3.35 g of BT in 100 mL isooctane; 
[S] = 11483 ppm); 
BT = benzothiophene

BT removal efficiency of 99 % within 6 
h at least 3 [3]

CNTs@PDDA@Mo16V2;
Mo16V2 = 
H8P2MoVI

16VV
2O62·mH2O, m =  

not specified by authors 
(nsp), 
CNTs = carbon nanotubes,
PDDA = 
poly(diallyldimethylammoniu
m chloride)

Wells-
Dawson

T = 70 °C; t= 3 h; O2 flow 1.5 L/min; O2 as 
oxidant; [catalyst] = 1.0 g/L; model fuel 
(2.87 g DBT in 250 mL n-octane; [S] = 2000 
ppm); 
DBT = dibenzothiophene

DBT removal efficiency of 99.4 % 
within 3 h 8 [4]

[C4VIM]PMoV2;
PMoV2 = H5PMoVI

10VV
2O40,

[C4VIM] = 1-butyl-3-
vinylimidazolium cation

Keggin

T = 120 °C; t = 5 h; V(air) = 100 mL/min; 
m(catalyst) = 0.05 g; model oil ([S] = 200 
ppm; DBT, 4-MDBT or 4,6-DMDBT in 
dodecane); V(model oil) = 20 mL;
DBT = dibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

desulfurization efficiency of 98.9 % 
within 5 h 7 [5]

Co-Pc/PMoV;
PMoV = 
[(NH4)5H6PVV

8MoVI
4O40·27H2O

],
Co-Pc = cobalt 
phthalocyanine

Keggin

T = 100 °C; t = 5 h; p = 1 atm; m(catalyst) = 
12 mg; O2 − oxidant; model oil ([DBT] = 500 
ppm in 6 mL decalin); 
DBT = dibenzothiophene

DBT removal efficiency of 97.6 % 
within 5 h 
(k = 24.21 h-1) and for inorganic sulfur 
S2- (k = 29.12 h-1)

at least 9 [6]

Tb(PW11)2@MIL-101; 
Tb(PW11)2 = 
[Tb(PWVI

11O39)2]11−,
MIL-101 = metal-organic 
framework

lacunary 
Keggin

T = 50 °C; t = 2-5 h; solvent – MeCN; 
DBT = dibenzothiophene

DBT removal efficiency of 95 % after 2 
h, 100 % efficiency after 5 h 3 [7]

0,1-C16SiW–TiO2; 
SiW = [SiIVWVI

12O40]4− Keggin

T = 50 °C; t = 60 min; m(catalyst) = 10 mg; 
n(H2O2) = 2 mol; n(O/S) = 2; model oil (DBT, 
3-MBT, 4-MDBT in n-octane, [S] = 500 ppm); 
V(model oil) = 5 mL; 
DBT = dibenzothiophene; 3-MBT = 3-
methylbenzothiophene; 4-MDBT = 4-
methyldibenzothiophene

DBT removal efficiency of 95.3 % 
within 60 min 8 [8]

PIL/H2WVI
12O42

10−;
PIL = Polymeric Ionic Liquid

paratungstat
e

T = 30 °C; t = 90 min; m(catalyst) = 25 mg; 
m(model oil) = 10 g; model oil (BT and DBT 
in n-dodecane, [S]0 = 1000 ppm); real diesel 
([S] = 559.7 ppm); H2O2 as oxidant; 
n(H2O2/S) = 4; 
DBT = dibenzothiophene; BT = 
benzothiophene

DBT removal efficiency of 92.1 % and 
BT removal efficiency of 58.3 % 
within 90 min

8 [9]

[[VV(VVWVI
11)O40]4− Keggin

T = 60 °C; t = 3-5 h; solvent – hexane; 
V(hexane) = 5 mL; extraction solvent – DMF 
or MeCN; V(DMF or MeCN) = 5 mL or 50 mL; 

DBT removal efficiency of 99 %, 4,6-
DMDBT removal efficiency of 80 % 
and BT of 55 % nsp [10]
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[AcOH]/[H2O2] = 1; [substrate] = 0.01 M; 
[catalyst] = 1.25 x 10-4 M; substrate/catalyst 
= 80-100; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

(k(BT) = 0.0103 min-1; k(DBT) = 0.0171 
min-1 and k(4,6-DMDBT) = 0.0152 
min-1)

Na3FeIII(OH)6MoVI
6O18/PEG20

00/BSA;
PEG2000 = Polyethylene 
Glycol 2000,
BSA = Bovine Serum Albumin

Anderson-
Evans

T = 60 °C; t = 60 min; p= 1 atm; 2000 
PEG/2.5 BSA (n(PEG2000)/n(BSA) = 2.5); O2 
as oxidant; m(catalyst) =10 mg; m(DESs) = 4 
g; model oil ([S]0 = 500 ppm); V(model oil) = 
20 mL; 
DESs= deep eutectic solvents; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT and 4,6-DMDBT removal 
efficiency of 99 % in 180 min, BT 95 % 
in 240 min

5 [11]

[Bmim]3[PWVI
12O40];

[Bmim]+ = 1-butyl-3-
methylimidazolium cation

Keggin

T = 80 °C; p =1 atm; H2O2 − oxidant; 
[Bmim]BF4 − solvent; m(catalyst) = 0.5 g; 
V(solvent) = 5 ml; m(petcoke) = 0,5 g; 5 mL 
of 30 % H2O2; t = 5 h + drying for 24 h at 100 
°C; petcoke pretreated by 
tetrabutylammonium chloride

sulfur removal efficiency of 36.10 % 
within 5 h nsp [12]

Kx[PMoVI
12O40]; 

x = 1, 2, 3, 4 Keggin

T = 60 °C; t = 60 min; V(model oil) = 15 mL; 
V(CH3OH) = 15 mL; m(catalyst) = 0.2 g; H2O2 
– oxidant; n(H2O2)/n(DBT) = 4; V(model 
oil)/V(CH3OH) =1.5:1; DBT = 
dibenzothiophene

DBT removal efficiency of 99 % within 
60 min for x = 4
(k = 0.076 min-1)

5 [13]

P[C2V]MoVIVV/AC;
MoV = H8P2MoVI

16VV
2O62;

AC = activated carbon

Wells-
Dawson

T = 70 °C; t = 180 min; O2 − oxidant; model 
oil (DBT, 4-MDBT or 4,6-DMDBT in n-octane; 
[S] = 2000 ppm); V(model oil) = 50 mL; O2 
flow rate 1.5 L/min; n(POM) = 15 µmol; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene

DBT removal efficiency of 99.2 % 
within 180 min 8 [14]

n-[Pmim]PMo/HAP; 
n = 10, 25;
PMo = H3PMoVI

12O40,
n-[Pmim]+ = 1-propyl-3-
methylimidazolium cation,
HAP = hydroxyapatite

Keggin

T = 40 °C; t = 60 min; n(O/S) = 6; m(catalyst) 
= 0.1 g; model oil (DBT in n-octane; [S] = 500 
ppm); V(model oil) = 5 mL; V(IL) = 1 mL; 
H2O2 − oxidant; 
DBT = dibenzothiophene; IL = ionic liquid

DBT removal efficiency of 97.2 % in 
60 min 6 [15]

POM–PAF-1; 
POM = [MoVI

8O26]4−,
PAF-1 = Porous Aromatic 
Framework-1

octamolybda
te

T = 30 °C; t = 30 min; H2O2 as oxidant; 
V(H2O2) = 50 µL; m(catalyst) = 40 mg; 75 µL 
of glacial acetic acid; V(MeCN) = 1.0 mL; 
n(H2O2)/n(DBT) = 6; model oil (TP, BT, DBT 
or 4,6-DMDBT in n-octane; [S] = 500 ppm); 
V(model oil) = 5 mL; 
TP = thiophene; BT = benzothiophene; DBT 
= dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT removal efficiency of 98.5 % 
within 30 min 
(k = 0.125 min-1)

5 (2 % 
activity 
loss)

[16]

PW/UiO-66(Zr);
PW = H3PWVI

12O40,
UiO-66(Zr) = zirconium-
based metal-organic 
framework 

Keggin

T = rt; t = 25 min; m(catalyst) = 50 mg, 
m(model fuel) = 10 g; m(MeCN) = 10 g; O/S 
= 6; model fuel (BT, DBT or 4,6-DMDBT in n-
octane; [S] =1000, 1000 or 500 ppmw); 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT removal efficiency of 98.2 % 
within 25 min 
(TOF = 293 h-1)

at least 4 [17]

PW11Zn@aptesPMOE;
PW11Zn = 
[PWVI

11ZnII(H2O)O39]5−,
aptesPMOE = (3-
aminopropyl)triethoxysilane 
(APTES) grafted onto 
poly(methyl oxazoline) 
(PMOE)

lacunary 
Keggin

T = 70 °C; H2O2 − oxidant; n(catalyst) = 3 
µmol; MeCN – extraction solvent; in model 
oil: model oil/MeCN = 1:1; n(H2O2/S) = 4 
(solvent free) and (with MeCN) = 8; t = 1 h
in real diesel: in MeCN/diesel = 1:1, t = 120 
min; n(H2O2/S) = 8

complete desulfurization after 4 h for 
a biphasic system, 1.5 h for solvent-
free system

10 [18]

CNC@PIL@POM;
POM = [Co(OH)6MoVI

6O18]3−, 
CNC = cellulose nanocrystals, 
PIL = polymeric ionic liquid

Anderson-
Evans

T = 100 °C; t = 3 h; O2 from air as oxidant; 
m(catalyst) = 20 mg; model diesel (BT, DBT 
or 4,6-DMDBT in decahydronaphthalene; [S] 
= 500 ppm); V(diesel) = 20 mL; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

Complete desulfurization within 3 h 
(k = 1.277 h-1) at least 5 [19]

CsxH3-xPWVI
12O40;

x = 0 – 3 Keggin

T = 60 °C; t = 120 min; m(catalyst) = 50 mg; 
model diesel (DBT in n-hexane; [S] = 500 

DBT removal efficiency of 50 % in 120 
min 5 [20]
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ppmw); V(model diesel) = 12.5 mL; V(TBHP) 
= 0.9 mL; 
DBT = dibenzothiophene; TBHP = tert-butyl 
hydroperoxide; ppmw = parts per million by 
weight

TBA-PW11NiO39@PANI;
TBA-PW11NiO39 = ((n-
C4H9)4N)4H[PWVI

11NiIIO39],
PANI = polyaniline

lacunary 
Keggin

T = 35 °C; t = 60 min; V(H2O2/HOAc) = 6 mL 
as oxidant v/v 2:1; m(catalyst) = 0.1 g; 
model oil (TH, BT and DBT in n-heptane; [S] 
= 500 ppm); V(model oil) = 50 mL; MeCN – 
extraction solvent; V(MeCN) = 10 mL; 
TH = tetrahydrothiophene; BT = 
benzothiophene; DBT = dibenzothiophene; 
4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT removal efficiency of 97 %, BT 
and TH removal efficiency of 96 % 
within 60 min
(k(DBT) = 0.936 min-1, k(BT) = 0.9477 
min-1, k(TH) = 0.91 min-1)

5 [21]

PMo11Cd@MnFe2O4;
PMo11Cd = PMoVI

11CdIIO39

lacunary 
Keggin

T = 35 °C; t = 1 h; V(H2O2/HOAc) = 3 mL 
oxidant (v/v 2:1); m(catalyst) = 0.1 g; model 
fuel (Th, BT, DBT in n-heptane; [S] = 500 
ppm); V(model fuel) = 50 mL; 
Th = thiophene; BT = benzothiophene; DBT 
= dibenzothiophene

DBT removal efficiency of 98 % and 
BT removal efficiency of 97 % within 
1h
(k(BT) = 0.091 min-1, k(DBT) = 0.111 
min-1)

5 (3 % of 
activity 
loss)

[22]

(NR4)3[XIIIMoVI
6O24H6];

X = Cr, Fe, Co; R = H or alkyl
Anderson-
Evans

T = 120 °C; t = 1 h; O2 as oxidant; air flow 
rate 6 L/h; n(S)/n(catalyst) = 50:1; model 
fuel (DBT in decalin, [S] = 500 ppm); 
V(model fuel) = 30 mL;
DBT = dibenzothiophene

Complete removal of DBT within 1 h 
(CoMo-POM) 2 [23]

LaIIIWVI
10O36@MIL-101(Cr);

LaW10O36 = Na7[H2LaW10O36],
MIL-101(Cr) = chromium (III)-
based metal-organic 
framework

Weakley

T = 60 °C; t = 120 min; H2O2 − oxidant; n-
octane/MeCN biphasic solvent system; 
m(catalyst) = 40 mg; n(O/S) = 6; V(model 
gasoline) = 5 mL; V(MeCN) = 5 mL; 
DBT = dibenzothiophene

99.1 % DBT conversion in 180 min at least 7 [24]

PMo12@UiO-67;
PMo12 = H3PMoVI

12O40,
UiO-67 = zirconium-based 
metal-organic framework

Keggin

T = 50 °C; t = 30 min; H2O2 − oxidant; 
n(H2O2/S) = 3, m(POM@MOF) = 0.015 g; 
V(model fuel) = 0.5 mL; V(MeCN) = 0.5 mL; 
model fuel (Th, BT, DBT, 4-MDBT and 4,6-
DMDBT in n-octane; [S] = 500 ppm); 
MOF = metal-organic framework; Th = 
thiophene; BT = benzothiophene; DBT = 
dibenzothiophene; 4-MDBT = 4-
methlydibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

95.5 % DBT conversion in 30 min 6 [25]

Fe2W18Fe4@FeTiO3;
Fe2W18Fe4 = 
Na9K[(FeIIIWVI

9O34)2FeIII
4(H2O)2

]·32H2O

Sandwich-
type

T = 35 °C; t = 60 min; H2O2/HOAc − oxidant 
(v:v 2/1, 3 mL); MeCN – extraction solvent; 
V(solvent) = 10 mL; m(catalyst) = 0.1 g; 
model fuel (Th, BT and DBT in n-heptane; [S] 
= 500 ppmw); V(model fuel) = 50 mL; 
Th = thiophene; BT = benzothiophene; DBT 
= dibenzothiophene; ppmw = parts per 
million by weight

DBT removal efficiency of 99 %, BT 
removal of 98 % and TH removal of 
96 % within 60 min
(k(Th) = 0.046 min-1, k(BT) = 0.050min-

1, k(DBT) = 0.055 min-1)

5 [26]

ZIF-8@{Mo132};
ZIF-8 = zeolitic imidazolate 
framework

Keplerate 
(nanoball)

T = 80 °C; t = 12 h; V(THBP) = 4 µL as 
oxidant; n(O/S) = 1; m(catalyst) = 150 mg; 
model fuel (500 mg DBT in 1 L of toluene); 
V(model fuel) = 15 mL; 
DBT = dibenzothiophene; TBHP = tert-butyl 
hydroperoxide

DBT removal efficiency of 92 % within 
12 h
(k = 0.0016 h-1)

5 [27]

H11P2WVI
13VV

5O52/TMA-Si;
TMA-Si = 
tetramethylammonium-
functionalized silica

Wells-
Dawson

T = 70 °C; t = 30 min; p = 1 atm; H2O2 − 
oxidant; [catalyst] = 7.5 g/L; 
V(solvent)/V(model oil) = 1:6; MeCN − 
extraction solvent; model oil ([S] = 500 
ppmw in 2,2,4-trimethyl pentane and 20 v% 
toluene);
ppmw = parts per million by weight

95 % efficiency for model oil and 83 % 
for real diesel in 30 min at least 5 [28]

PW12@TiO2;
PW12 = H3PWVI

12O40 
Keggin

T = 60 °C; t = 60 min; H2O2/HOAc − oxidant; 
V(MeCN) = 6 mL; model oil ([S] = 500 ppm); 
V(model oil) = 5 mL; n(O/S) = 6; m(catalyst) 
= 0.09 mol; 
DBT = dibenzothiophene

DBT removal efficiency of 99.9 % 
within 60 min at least 7 [29]

(n-
C4H9)4N]7H5[SiIV2WVI

18CdII
4O68]

@β-CD;
β-CD = β-cyclodextrin

Sandwich 
type

T = 60 °C; t = 2 h; m(catalyst) = 0.1 g; 
V(MeCN) = 10 mL; V(H2O2/HOAc, v/v 1:1) = 6 
mL as oxidant; MeCN − extraction solvent; 
model fuel (thiophenic compounds in n-

DBT removal efficiency of 98 % within 
2 h for model fuel
(k(gas oil) = 0.050 min-1, k(DBT-model 
fuel) = 0.026 min-1)

at least 5 [30]
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heptane; [S] = 500 ppmw); V(model fuel) = 
50 mL; 
DBT = dibenzothiophene; ppmw = parts per 
million by weight

{Mo132}/GO;
GO = graphene oxide

Keplerate 
(nanoball)

T = 60 °C; t = 150 min; H2O2 − oxidant; MeCN 
– extraction solvent; model oil (DBT in n-
dodecane, [S] = 500 ppm); n(H2O2/DBT) = 6; 
[catalyst] = 10 g/L; 
DBT = dibenzothiophene

DBT removal efficiency of 99 % for 
{Mo132}/GO and 96 % for {Mo132} 
within 150 min
({Mo132}: k = 0.0196 h-1, {Mo132}/GO: k 
= 0.0311 h-1)

10 [31]

(NH4)5H6PVV
8MoVI

4O40 Keggin

T = 100 °C; t = 6 h; m(catalyst) = 20 mg; O2 − 
oxidant; p = 1 atm; model oil (DBT in 
decalin; [S] = 500 ppm); V(model oil) = 6 mL; 
DBT = dibenzothiophene; Th = thiophene

100 % conversion of DBT and 97 % of 
Th within 6 h 10 [32]

PhPyBs-PW;
PW = H3PWVI

12O40,
PhPyBs = ionic liquids 
containing 4-phenyl-pyridine 
(PhPy) and 1,4-butane 
sultone (Bs)

Keggin

T = rt or 70 °C; t = 10 min; m(catalyst) = 40 
mg; H2O2 30 % aq, n = 1 mmol; H2O2/S = 1:1; 
4 mL of H2O or H2O:EtOH (5 mL, v/v = 7:3); 
model fuel (DBT in 4 mL n-hexane; [S] = 100, 
700 and 1000 ppm); 
DBT = dibenzothiophene

sulfur removal efficiency of 90 % 
within 10 min in model oil 5 [33]

H3PWVI
6MoVI

6O40 Keggin

T = 60 °C; t = 90 min; solvent – MeCN; 
V(MeCN) = 60 mL; model fuel (sulfur 
compound in 60 mL octane; sulfur content 
of 0.050 mass %)

90.26 % thiophene removal efficiency 
within 90 min at least 2 [34]

[PyPS]3CoIII(OH)6MoVI
6O18/PE

G2000/BSA;
[PyPS] = 
pyridylphenylsulfonate, 
PEG2000 = polyethylene 
glycol 2000, 
BSA = bovine serum albumin

Anderson-
Evans

T = 60 °C; p = 1 atm; O2 as oxidant; m(DES) = 
4 g; n(HBA):n(HBD) = 1:2; V(model oil) = 20 
mL; m(POM) = 20 mg; O2 flow 60 mL/min; t 
= 4 h for model oil; t = 8 h for commercial 
diesel; T = 80 °C for commercial diesel; 
HBA = hydrogen bond acceptor; HBD = 
hydrogen bond donor; DBT = 
dibenzothiophene

98 % DBT removal efficiency within 3 
h 5 [35]

[(NH4)5(CTA)6PMoVI
4VV

8O40];
CTA = 
cetyltrimethylammonium

Keggin

T = 80-100 °C; t = 4-8 h; p = 1 atm; O2 − 
oxidant; model oil ([DBT] = 500 ppm, 
V(decalin) = 6 mL); n(catalyst) = 0.05 mmol; 
DBT = dibenzothiophene

DBT removal efficiency of 100 % 
within 8 h at 100 °C

10

[36]

[C2(MIM)2]PWVI
12O40;

[C2(MIM)2] = 1-ethyl-3-
methylimidazolium

Keggin

T = 50 °C; t = 60 min; n(catalyst)/n(S) = 
0.025; n(H2O2)/n(S) = 6; H2O2 − oxidant; 
V(model oil) = 5 mL (DBT in n-octane); 
V(MeCN) = 0.5 mL; 
DBT = dibenzothiophene

DBT removal efficiency of 98.4 % 
within 60 min at least 7 [37]

([n-
C4N9]4N)4H[PWVI

11FeO39]/NiO Keggin

T = 35 °C; t = 60 min; model oil ([S] = 500 
ppm in n-heptane); V(model oil) = 50 mL; 
V(H2O2/AcOH) = 3 mL (v/v = 1:2); extraction 
solvent – MeCN; m(catalyst) = 0.1 g;
DBT = dibenzothiophene

97 % of total sulfur (wt%) removed in 
real gasoline within 60 min 
(DBT rate constant k = 0.049 min-1)

at least 5 [38]

Al2O3-P2WVI
15-Cn;

P2W15 = Na12[α-
P2WVI

15O56]·24H2O, 
Cn, where n = 8, 12 or 18

Wells-
Dawson

T = 60 °C; t = 9 min; H2O2 − oxidant; model 
oil (DBT, BT and 4,6-DMDBT in n-octane, [S] 
= 1000 ppm); V(model oil) = 5 mL; 
m(catalyst) = 116.0 mg; V(H2O2) = 48.0 µL; 
real diesel sample ([S] = 425 ppm); 
n(H2O2)/n(S) = 3:1; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

100 % of sulfur removal within 9 min 
at 60 °C

at least 
10 [39]

PWVI
12O40@MnFe2O40 Keggin

T = 35 °C; t = 60 min; model fuel (500 ppm 
of Th, BT and DBT in n-heptane); V(model 
fuel) = 50 mL; V(oxidant) = 3 mL; oxidant 
system: H2O2/acetic acid v/v = 2:1; p = 1 
atm; m(catalyst) = 0.1 g; 
Th = thiophene; BT = benzothiophene; DBT 
= dibenzothiophene

DBT removal efficiency of 98 % in 
model oil and 96 % in real fuel within 
60 min 
(rate constant for DBT, k = 0.053 min-

1)

5 [40]

K10[α-P2WVI
17O61]·20H2O/3D 

GO;
3D GO = three-dimensional 
graphene oxide

Wells-
Dawson

for model oil: T = 60 °C; t = 30-120 min; 
model oil (sulfur-containing compounds: 
DBT, BT and 4,6-DMDBT in n-octane, [S] = 
500 ppm); V(model oil) = 20 mL; m(catalyst) 
= 0.08 g; V(H2O2, 30 % aq) = 100 µL; H2O2 – 
oxidant; V(MeCN) = 20 mL; 
for THT: m(catalyst) = 0.02 g; V(MeCN) = 5 
mL; V(H2O2, 30% aq) = 100 µL; H2O2 – 
oxidant; T = 25 °C; 

complete removal of DBT and THT 
within 120 min and 30 min, 
respectively

5 [41]
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BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; THT = 
tetrahydrothiophene

P[Vim]POM/GO;
P[Vim] = 1-ethyl-3-
methylimidazolium cation,
POM = 
H8P2MoVI

16VV
2O62·14H2O,

GO = graphene oxide

Wells-
Dawson

T = 60 °C; t = 60-120 min; m(catalyst) = 0.13 
g; n(H2O2)/n(S) = 9; model fuel ([S] = 2000 
ppm in octane); V(model fuel) = 10 mL; 
extraction solvent – DMF; V(DMF) = 10 mL; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene; BT = 
benzothiophene

DBT, 4,6-DMDBT and 4-MDBT 
removal efficiency of 100 % within 60 
min; Th and BT removal efficiency of 
91.8 % and 96 % within 120 min, 
respectively;
k(DBT) = 0.1071 min-1

7 [42]

[Cu12(BTC)8(H2O)12][H5PMoVI
1

0VV
2O40]@(H2O)49 (1);

[Cu12(BTC)8(H2O)12][H4PMoVI
1

1VVO4]@(H2O)30 (2);
BTC = benzene-1,3,5-
tricarboxylic acid or trimesic 
acid

Keggin

T = 65 °C; t = 5 h; m(catalyst) = 0.03 g; 
n(substrate) = 0.5 mmol; n(O)/n(S) = 6; 
V(CH2Cl2) = 5 mL; 
DBT = dibenzothiophene

DBT removal efficiency of 89.6 % (1) 
and 85.8 % (2) within 5 h 4 [43]

[PMoVI
12O40]3−/Ti-TUD-1;

Ti-TUD-1 = titanium-
containing mesoporous silica 
material

Keggin

T = 70 °C; t = 2 h; m(gas oil) = 40 g; m(H2O2 
30 % aq) = 14 g; H2O2 – oxidant; m(catalyst) 
= 2 g; solvent – toluene; extraction solvent – 
methanol; V(MeOH) = 40 mL; n(H2O2)/n(S) = 
10

68 wt % of sulfur content removed at 
70 °C within 2 h 3 [44]

Fe3O4@CS@POM; 
POM = PMoVI

12 > PWVI
12 > 

P2WVI
17 > P2WVI

18 > SiWVI
12,

CS = chitosan

Keggin

T = 60 °C; t = 60-90 min; m(catalyst) = 100 
mg; model oil ([DBT] = 500 ppm in octane); 
V(model oil) = 20 mL; V(H2O2 30%) = 100 µL; 
H2O2 – oxidant; V(MeCN) = 20 mL; 
DBT = dibenzothiophene 

DBT removal efficiency of 100 % 
within 90 min 
(k = 0.0761 min-1) for POM = 
[PMo12O40]3−

5 [45]

[(n-
C4H9)4N)7H5Si2WVI

18Cd4O68]@
PVA;
PVA = polyvinyl alcohol

sandwich 
type

T = 40 °C; model oil (500 ppm of Th or BT in 
n-heptane); V(model oil) = 50 mL; oxidant – 
2:1 H2O2/acetic acid; V(oxidant) = 6 mL; 
m(catalyst) = 0.1 g; t = 2 h; 
BT = benzothiophene; Th = thiophene

BT and Th removal efficiency of 98 % 
and 97 % within 2 h, respectively 5 [46]

[C3SO3Hnhm]3PWVI
12O40;

[C3SO3Hnhm]+ = organic 
sulfonic acid-functionalized 
heterocyclic ammonium 
cation

Keggin

T = 50 °C; t = 105 min; model oil (DBT in n-
octane); n(O)/n(S) = 15; H2O2 – oxidant; 
solvent – DMF; 
DBT = dibenzothiophene

DBT removal efficiency of 99.4 wt % 
within 105 min at least 6 [47]

50-DTA-MoVIO-TiO2;
MoVIO = [MoVI

6O19]2−,
50-DTA = 50 % loading of 
dodecyltrimethylammonium

Lindqvist

T = 60 °C; t = 40 min; model oil ([DBT] = 500 
ppm in n-octane); V(model oil) = 5 mL; 
m(catalyst) = 0.010 g; n(O/S) = 2; H2O2 – 
oxidant; V(H2O2, 30 %) = 11 µL; 
DBT = dibenzothiophene

DBT removal efficiency of 100 % 
within 40 min 7 [48]

[mim(CH2)3COO]3PWVI@UiO-
66;
[mim(CH2)3COO]+ = 
methylimidazolium 
propionate derivative cation,
UiO-66 = zirconium-based 
metal-organic framework

Keggin

T = 70 °C; t = 60 min; model oil (DBT in n-
octane; [S] = 1000 ppm); V(model oil) = 5 
mL; m(catalyst) = 40 mg; V(MeCN) = 4.5 mL; 
n(O/S) = 5; m(H2O2, 30 %) = 0.09 g; H2O2 – 
oxidant; 
DBT = dibenzothiophene

DBT removal efficiency of 100 % 
within 60 min 

at least 
10 [49]

TBA[PWVI
11]; 

TBA = tetrabutylammonium
lacunary 
Keggin

T = 70 °C; t = 40-190 min; model diesel (BT, 
DBT, 4-MDBT and 4,6-DMDBT in n-octane, 
[S] = 2000 ppm); V(model diesel) = 1 mL; 
n(H2O2/S) = 3; p = 1 atm; n(catalyst) = 3 
µmol; n(H2O2) = 0.24 mmol; H2O2 – oxidant; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene; BT = 
benzothiophene

complete desulfurization of 
multicomponent model diesel within 
190 min

10 [50]

5%[(C6H13)3PC14H29]3PMoVI
12O

40/g-C3N4;
g-C3N4 = graphitic carbon 
nitride

Keggin

T = 60 °C; t = 180 min; n(O/S) = 4; V(model 
oil) = 5 mL; m(catalyst) = 0.05 g; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT and 4,6-DMDBT removal 
efficiency of 100 % and 94.8 % within 
180 min, respectively

6 [51]

[H3PWVI
12O40]/ZrO2 Keggin

T = 60 °C; t = 2 h; model oil (DBT ([S] = 500 
ppm, in 200 mL petroleum ether); V(model 
oil) = 20 mL; m(catalyst) = 0.05 g; solvent – 
MeCN; V(MeCN) = 10 mL; n(O/S) = 4; 
V(H2O2, 30 wt % aq) = 64 µL; H2O2 – oxidant;
DBT = dibenzothiophene

complete removal of DBT within 2 h 
(k = 0.0421 min-1) 20 [52]
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[H3PMoVI
12O40]/SiO2@C; 

SiO2@C = silica (SiO2) coated 
or supported on carbon (C) 
materials

Keggin

T = 40 °C; t = 3 h; model oil (800 ppm of DBT 
in n-octane); V(model oil) = 2 mL; V(MeCN) 
= 2 mL; n(H2O2, 30 wt %) = 0.15 mmol; H2O2 
– oxidant; n(catalyst) = 0.002 mmol; 
DBT = dibenzothiophene

DBT removal efficiency of > 99 % 
within 3 h 5 [53]

POM/PIL/Gr;
POM = 
[(NH4)3Co(OH)6MoVI

6O18],
PIL = poly(ionic) liquid,
Gr = graphene

Anderson-
Evans

T = 100 °C; t = 3 h; model oil (DBT, BT and 
4,6-DMDBT in decahydronaphtalene, [S] = 
500 ppm); V(model oil) = 20 mL; m(catalyst) 
= 10 mg; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; BT = 
benzothiophene

DBT, BT and 4,6-DMDBT removal 
efficiency of 100 %, 72.5 % and 100 % 
within 3 h, respectively

6 [54]

C3H4N2-[H3PWVI
12O40]@CTS;

CTS = chitosan Keggin

T = 35 °C; t = 1 h; CH3COOH:H2O2 (v/v = 2:1) 
as oxidant; V(oxidant) = 6 mL;
model oil (DBT, BT and Th in n-heptane, [S] 
= 500 ppm); V(model oil) = 50 mL; V(MeCN) 
= 10 mL; 
DBT = dibenzothiophene; BT = 
benzothiophene; Th = thiophene

Th, BT and DBT removal efficiency of 
96 %, 97 % and 97 % within 1 h, 
respectively

5 [55]

IMoVI
6@iPAF-1;

IMoVI
6 = 

[Na5[IMoVI
6O24]·3H2O],

iPAF-1 = ionic porous 
aromatic framework

Anderson-
Evans

T = 90-100 °C; t = 5-6 h; O2 − oxidant; 
m(catalyst) = 10-20 mg; model oil (500 mg/L 
DBT in 6 mL decalin); V(diesel or gasoline) = 
10 mL; 
DBT = dibenzothiophene

-model oil: DBT removal efficiency of 
100 % at 90 °C within 5 h;
-real gasoline and diesel: sulfur 
removal of 99.3 % and 99.4 % at 100 
°C within 6 h, respectively

9 [56]

1.5HPA@MOF-199@CA;
HPA = 
[H3PMoVI

6WVI
6O40·nH2O],

MOF-199 = porous copper-
based MOF platform, 
CA = carbon aerogel

Keggin
T = 40 °C; t = 3 h; O2 − oxidant; [catalyst] = 
1.8 g/L; model oil (thiophene in n-octane, 
[S] = 1000 ppm); V(model oil) = 50 mL

sulfur removal efficiency of 99.23 % 
within 3 h 
(k = 1.655 h-1)

10 [57]

Fe3O4@NH2-MIL-101-POM;
POM = [H3PMoVI

6WVI
6O40],

NH2-MIL-101 = metal-organic 
framework with amino 
groups (NH2)

Keggin

T = 50 °C; t = 60 min; air flow rate = 1000 
L/min; model oil (DBT in n-dodecane, [S] = 
2000 ppm); [catalyst] = 0.7-0.8 g/L; 
DBT = dibenzothiophene

DBT removal efficiency of 100 % in 60 
min 15 [58]

Cu-SPOM@PbO@PVA;
Cu-SPOM = 
Na13[(CuWVI

9O34)2H3Cu4(H2O)2

]·39H2O,
PVA = polyvinyl alcohol

lacunary 
Keggin

T = 35 °C; t = 1 h; model oil (Th (500 ppm), 
BT (500 ppm) and DBT (500 ppm) in n-
heptane); V(model oil) = 50 mL; 
V(H2O2/CH3COOH, v/v 2:1) = 3 mL; 
H2O2/CH3COOH – oxidant; real gasoline ([S] 
= 4996 ppmw); m(catalyst) = 0.1 g; 
DBT = dibenzothiophene; BT = 
benzothiophene; Th = thiophene; ppmw = 
parts per million by weight

Model oil: Th, BT and DBT removal 
efficiencies of 97 %, 98 % and 98 % 
within 1 h, respectively;
Real gasoline: sulfur removal 
efficiency of 97 % within 1 h

5 [59]

[β-SiMoVI
3WVI

9O40]@1-CCNF;
1-CCNF = 1-dimensional 
carbon chain nanofibers

Keggin

T = 60 °C; t = 2 h; model oils (500, 1000 and 
2000 ppm of DBT, BT and 4,6-DMDBT in 
heptane); m(catalyst) = 10 mg; V(model oil) 
= 5 mL; V(H2O2, 30 wt %) = 50 µL; H2O2 – 
oxidant; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; BT = 
benzothiophene

DBT, BT and 4,6-DMDBT removal 
efficiencies of 99, 89 and 100 % 
within 2 h, respectively

at least 3 [60]

[H3PWVI
12O40]/SiO2 Keggin

T = 30 °C; t = 100 min; H2O2 − oxidant; model 
oils ([S] = 500 mg/L, DBT, BT or 4,6-DMDBT 
in petroleum ether); V(model oil) = 10 mL; 
m(catalyst) = 0.1 g; V(MeCN) = 10 mL; 
V(H2O2, 30 wt %) = 63 µL;
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; BT = 
benzothiophene

complete removal of DBT within 100 
min at 30 °C 6 [61]

SmPOM@TMA-LPMS;
SmPOM = 
[Sm(PMoVI

11O39)2]11−,
TMA-LMPS = 
trimethylammonium-
functionalized (TMA) large-
pore mesoporous silica 
spheres (LMPS)

Keggin 
sandwich-
type

T = 70 °C; t = 1-2 h; n(H2O2/S) = 13-16; real 
diesel ([S] = 23100 ppm); H2O2 − oxidant; 
model diesel (BT, DBT, 4-DMDBT and 4,6-
DMDBT in n-octane, [S] =2100 ppm); 
extractant system − model 
diesel/[BMIM]PF6 (v/v = 1:1); 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; BT = 
benzothiophene; 4-DMDBT = 4-
methyldibenzothiophene; [BMIM]PF6 = 1-

a) Model diesel: complete 
desulfurization within 1 h; 
b) Real diesel: sulfur removal of 74 % 
in 2 h

3 [62]
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butyl-3-methylimidazolium 
hexafluorophosphate

[PMoV]@CuO@PAN;
PMoV = K4[PMoVI

11VVO40],
PAN = polyaniline

Keggin

T = 35 °C; t = 1 h; model oil (500 ppmw of 
Th, BT and DBT in n-heptane); V(model oil) = 
50 mL; 700 rpm; V(oxidant) = 3 mL; oxidant 
– H2O2/acetic acid (v/v = 2:1); solvent – 
MeCN; m(catalyst) = 0.1 g; V(MeCN) = 10 
mL; 
DBT = dibenzothiophene; BT = 
benzothiophene; Th = thiophene; ppmw = 
parts per million by weight

a) Th, BT and DBT removal efficiency 
of 96 %, 97 % and 97 % respectively
b) Real gasoline- sulfur removal 
efficiency of 96 % within 1 h

5 [63]

[PWVI
11]@TMA-SBA-15 and 

[PW11]@TMA-PMOE;
[PW11] = [PWVI

11O39]7−,
TMA-SBA-15 = SBA-15 
aminosilylated mesoporous 
silica (SBA-15) functionalized 
with trimethylammonium 
groups, 
TMA-PMOE = 
trimethylammonium-
functionalized (TMA) 
periodic mesoporous 
organosilica (PMOE)

Keggin

T = 70 °C; t = 60 min; model oil (500 ppm of 
1-BT, DBT, 4-MDBT and 4,6-DMDBT in n-
octane, [S] = 2000 ppm); n(POM) = 3 µmol; 
biphasic system: 1:1 of model diesel/MeCN 
(V = 1.5 mL); oxidant – H2O2; V(H2O2, 30 %) = 
40 µL; n(H2O2/S) = 4; 
solvent-free experiments: V(model diesel) = 
750 µL; n(H2O2) = 3 µmol; n(H2O2/S) = 4; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 1-BT = 1-
benzothiophene; 4-DMDBT = 4-
methyldibenzothiophene

a) Complete conversion of DBT, 4-
MDBT and 4,6-DMDBT within 30 min 
under solvent-free system (both 
catalyst); for 1-BT: removal efficiency 
of 99.6 % within 60 min only with 
PW11@TMA-SBA-15
b) Biphasic system: sulfur removal 
efficiency of 93.1 % with PW11@TMA-
SBA-15 

max. 6 [64]

[PMoVI
11Cu]@MgCu2O4@CS;

CS = chitosan,
[PMoVI

11Cu] = 
[PMoVI

11CuO40]5−

Keggin

T = 35 °C; t = 1 h; m(catalyst) = 0.1 g; oxidant 
– CH3COOH/H2O2; V(oxidant) = 3 mL; 
extraction solvent – MeCN; V(solvent) = 10 
mL; V(fuel) = 50 mL; 
DBT = dibenzothiophene; BT = 
benzothiophene; Th = thiophene

a) DBT, BT and Th removal 
efficiencies of 99 %, 98 % and 97 % 
within 1 h, respectively
b) Real gasoline – sulfur removal 
efficiency of 98 %

5 [65]

[PWVI
11Zn]@aptesSBA-15;

aptesSBA-15 = amino-
functionalized ((3-
aminopropyl)triethoxysilane 
(aptes)) mesoporous silica 
(SBA-15),
[PWVI

11Zn] = [PWVI
11ZnO39]5−

Keggin

T = 70 °C; t = 60 min; oxidant – H2O2; 
solvent-free: n(H2O2/S) = 4; biphasic: 
n(H2O2/S) = 8; model diesel (1-BT, DBT, 4-
MDBT and 4,6-DMDBT in n-octane, [S] = 
2000 ppm); p = 1 atm, extraction solvent – 
MeCN; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 1-BT = 1-
benzothiophene; 4-DMDBT = 4-
methyldibenzothiophene

a) Solvent-free: complete 
desulfurization within 60 min;
b) Biphasic system: 97 % of 
desulfurization within 60 min

5 [66]

[PMoVI
12O40]@PPy-MSN,

[BPy]3[PMoVI
12O40] and

[BMIM]3[PMoVI
12O40];

PPy-MSN = polypyrrole-
coated mesoporous silica 
nanoparticles,
[BPy] = 1-butylpyridinium 
cation,
[BMIM]+ = 1-butyl-3-
methylimidazolium cation

Keggin

T = 70 °C; t = 3 h; n(POM) = 3 µmol; oxidant 
– H2O2; V(H2O2) = 75 µL; n(H2O2)/n(S) = 11; 
1:1 model diesel/[BMIM][PF6] ionic liquid; 
model oil (1-BT, DBT, 4-MDBT and 4,6-
DMDBT in n-octane, [S] = 2350 ppm); 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 1-BT = 1-
benzothiophene; 4-DMDBT = 4-
methyldibenzothiophene 

sulfur removal efficiency of 98 % 
within 3 h 3 [67]

(TBA)[PWVIFe]/PVA/CTS;
(TBA)PWFe = 
(n-
C4H9)4N)4[PWVI

11Fe(H2O)O39],
PVA = polyvinyl alcohol,
CTS = chitosan

Keggin

T = 60 °C; t = 2 h; model oil (BT, DBT, 4-
MDBT and 4,6-DMDBT in n-heptane, [S] = 
500 ppm); V(model oil) = 50 mL; oxidant – 
H2O2/acetic acid (v/v = 1:1); V(oxidant) = 6 
mL; m(catalyst) = 0.1 g; extraction solvent – 
MeCN; V(MeCN) = 10 mL; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene

a) Gas oil: sulfur removal efficiency of 
97 % in 2 h
b) Model oil: BT, DBT, 4-MDBT and 
4,6-DMDBT removal efficiency of 96 
%, 98 %, 97 % and 97 %, respectively

5 [68]

[Ni2Cl(TMR4A)2(CH3CN)2]·[P
MoVI

12O40]·4CH3CN and
[Co2Cl(TMR4A)2(CH3CN)2]·[P
MoVI

12O40]·4CH3CN;
TMR4A = resorcin[4]arene-
based ligand

Keggin

T = 50 °C; t = 3-14 h; n(catalyst) = 2 µmol; 
oxidant – TBHP; n(TBHP) = 1 mmol; 
n(substrate) = 0.4 mmol; V(CH2Cl2) = 5 mL; 
BT = benzothiophene; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; THBP = tert-
butyl hydroperoxide

Removal efficiencies of both 
catalysts:
MBT – 100% conversion within 3 h; 
DBT – 99 % conversion within 10 h; 
4,6-DMDBT – 88 % conversion within 
14 h and BT – 69 % within 14 h

5 [69]

[H3PWVI
12O40]–SiO2–TiO2 Keggin

T = 60 °C; t = 120 min; m(catalyst) = 0.02 g; 
n(O/S) = 2; model fuel (DBT, BT or 4,6-
DMDBT in petroleum ether, [S] = 1000 

DBT removal efficiency of 96 % within 
2 h 3 [70]
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µg/g); V(model oil) = 20 mL; V(MeCN) = 20 
mL; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

[PWVI
11]@aptesSBA-15;

[PWVI
11] = [PWVI

11O39]7−, 
aptesSBA-15 = amino-
functionalized ((3-
aminopropyl)triethoxysilane 
(aptes)) mesoporous silica 
(SBA-15)

lacunary 
Keggin

T = 70 °C; t = 1 h; model diesel (500 ppm of 
1-BT, DBT, 4-MDBT and 4,6-DMDBT in n-
octane); biphasic system: 1:1 diesel/MeCN; 
oxidant − H2O2; n(O/S) = 8; n(POM) = 3 
µmol; 
real diesel ([S] = 2300 ppm); n(O/S) = 4; t= 2 
h; 
1-BT = 1-benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene

a) Model oil – 
complete desulfurization of within 1 
h;
b) Real diesel: sulfur removal 
efficiency of 83.4 % within 2 h

8 [71]

(DODMAC)3Co(OH)6MoVI
6O18·

3H2O;
DODMAC = 
dodecyltrimethylammonium 
chloride surfactant

Anderson-
Evans

T = 90 °C; t = 6 h; oxidant – O2; flow rate = 
60 mL/min; biphasic system – model 
diesel/[Opy]BF4; model diesel (DBT, 4-
DMDBT or 4,6-DMDBT in decalin, [S] = 500 
ppm); V(model oil) = 20 mL; m(catalyst) = 10 
mg; V([Opy]BF4)/V(model oil) = 1:5; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene; [Opy]+ = 1-
octylpyridinium cation

complete removal of DBT within 6 h 7 [72]

K6[α-
P2WVI

18O62]·14H2O/mGO;
mGO = modified graphene 
oxide

Wells-
Dawson

T = 60 °C; m(catalyst) = 0.5 wt %; t = 300 
min; model oil (DBT, BT and 4,6-DMDBT in 
n-octane); V(model oil) = 60 mL; oxidant – 
O2; flow rate = 200 mL/min; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

sulfur removal efficiency of 96.10 % 
within 300 min 5 [73]

(NH4)3Co(OH)6MoVI
6O18/p-

TsOH/PEG4000 (1:2);
p-TsOH = para-
toluenesulfonic acid,
PEG4000 = polyethylene 
glycol with average 
molecular weight 4000

Anderson-
Evans

T = 60 °C; t = 1 h; model diesel ([S] = 500 
ppm); V(model diesel) = 20 mL; V(DES) = 4 
mL; m(catalyst) = 20 mg; p = 1 atm; oxidant 
– O2; flow rate = 60 mL/min; solvent − 
MeCN; 
DBT = dibenzothiophene; DES = deep 
eutectic solvent

DBT removal efficiency of 99 % in 1 h 5 [74]

[C7H7(CH3)3N]9PWVI
9O34 Keggin

T = 60 °C; m(catalyst) = 0.2015 g; n(O/S) = 
10; oxidant – H2O2; t = 3 h; model oil (DBT in 
n-octane; [S]0 = 500 ppm); m(H2O2) = 0.749 
g; 
DBT = dibenzothiophene

DBT removal efficiency of 100 % 
within 3 h 4 [75]

Fe2W18Fe4@NiO@CTS;
Fe2W18Fe4 = 
Na9K[(FeWVI

9O34)2Fe4(H2O)2]·
32H2O),
CTS = chitosan

sandwich-
type

T = 35 °C; t = 60 min; model oil (Th, BT and 
DBT in n-heptane, [S] = 500 ppm); V(model 
oil) = 50 mL; m(catalyst) = 0.1 g; oxidant − 
H2O2/acetic acid (v/v = 2:1); V(oxidant) = 3 
mL; V(MeCN) = 10 mL; 
Th = thiophene; BT = benzothiophene; DBT 
= dibenzothiophene

a) Gasoline: sulfur removal efficiency 
of 97 % within 60 min;
b) Model oil: Th, BT and DBT removal 
efficiencies of 97 %, 98 % and 99 %, 
respectively

5 [76]

[PyPS]3(NH4)3MoVI
7O24;

[PyPS] = 
pyridylphosphinosulfonate

heptamolybd
ate

T = 25 °C; m(catalyst) =10 mg; 
t = 60 min; n(H2O2)/n(S) = 3, V(H2O2) = 0.053 
mL; oxidant – H2O2; VIL/VOil = 1/10; 
V([Omim]BF4) = 1 mL; model oil (DBT in n-
octane);
real diesel: V(H2O2) = 2 mL; m(catalyst) = 0.2 
g; T = 80 °C; t = 4 h; 
DBT = dibenzothiophene; [Omim]+ = 1-
methyl-3-octylimidazolium cation; IL = ionic 
liquid

a) DBT removal efficiency of 99% 
within 60 min; 
b) Real diesel: sulfur removal 
efficiency of 96 % 

5 [77]

POM-PMIn;
POM = [β-MoVI

8O26]4–,
PMIn = poly(2,p-
methylphenylionene)

octamolybda
te

T = 50 °C; t = 2 h; m(catalyst) = 40 mg; 
model oil (BT, DBT and 4,6-DMDBT in n-
octane ([S] = 250, 500 or 1000 ppm)); 
m(model oil)= 10 g; n(H2O2/S) = 5; V(MeCN) 
= 10 mL; oxidant – H2O2; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT removal efficiency of 98.9 % 
within 2 h 6 [78]
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3DOM HPW/Al–TiO2;
HPW = [H3PWVI

12O40],
3DOM HPW/Al–TiO2 = three-
dimensionally ordered 
macroporous (3DOM) 
alumina (Al) doped 
phosphotungstic acid (HPW)-
TiO2 material

Keggin

T = 60 °C; m(catalyst) = 0.03 g; n(O/S) = 4; t = 
1 h; oxidant – H2O2; [S] = 500 ppm; V(model 
oil) = 10 mL; V(MeCN) = 10 mL; 
DBT = dibenzothiophene

DBT removal efficiency of 99.7 % 
within 1 h 6 [79]

PMo12@TBA-MSN;
PMo12 = [PMoVI

12O40]3−,
TBA-MSN = 
tetrabutylammonium-
functionalized (TBA) 
mesoporous silica 
nanoparticles (MSN)

Keggin

T = 70 °C; t = 2 h; model oil (1-BT, DBT,4-
MDBT and 4,6-DMDBT in n-octane, [S] = 
2016 ppm); n(catalyst) = 3 µmol; n(O/S) = 
13; V(H2O2) = 75 µL; oxidant – H2O2; 
extraction solvent − MeCN; 
1-BT = 1-benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene

complete desulfurization of model oil 
within 2 h 3 [80]

40 % HPW-GO;
40 % HPW = 40 % (wt %) of 
[H3PWVI

12O40],
GO = graphene oxide

Keggin

T = 60 °C; t = 30-60 min; oxidant − H2O2; 
extraction solvent – MeCN; n(O/S) = 6; 
[catalyst] = 5 g/L; 
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

complete removal of DBT and 4,6-
DMDBT within 30 min and complete 
removal of BT within 60 min

8 [81]

TBA-Si2WVI
18Mn4@SAB;

TBA-Si2WVI
18Mn4 = 

(n-C4H9)4N)7H5[(SiWVI
9O34)2M

nII
4(H2O)2,

SBA = mesoporous silica 
material

sandwich-
type

T = 35 °C; t = 1 h; CH3COOH/H2O2 – oxidant; 
V(oxidant) = 3 mL; m(catalyst) = 0.1 g; 
model fuel (DBT, BT and Th in n-heptane, [S] 
= 500 ppm); V(model fuel) = 50 mL; solvent 
– MeCN; V(MeCN) = 10 mL; 
BT = benzothiophene; DBT = 
dibenzothiophene; Th = thiophene

a) Real gasoline: sulfur removal 
efficiency of 97 % within 1 h;
b) Model fuel: DBT, BT and Th 
removal efficiency of 98 %, 97 % and 
96 %, respectively

5 [82]

[(C6H13)3P(C14H29)]3PMoVI
12O40

/ChCl/2Ac;
ChCl = choline chloride, 
Ac = acetate

Keggin

T = 50 °C; t = 120 min; model oil ([S] = 500 
ppm in n-octane); V(model oil) = 5 mL; 
oxidant – H2O2; n(catalyst) = 0.0156 mmol; 
n(O)/n(S) = 4; V(ChCl/2Ac) = 2.5 mL; 
DBT = dibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

DBT, 4-MDBT and 4,6-DMDBT 
removal efficiencies of 97.2 %, 80.7 % 
and 76.0 % within 2 h, respectively

5 [83]

HPA–GO;
HPA = [H3PMoVI

12O40], 
[H3PMoVI

8WVI
4O40], 

[H3PMoVI
6WVI

6O40], or 
[H3PWVI

12O40];
GO = graphene oxide

Keggin
T = 50 °C; t = 30 min; catalyst loading: 2.4 g 
L−1; n(O/S) = 6; extraction solvent – MeCN; 
[S] = 500 ppm or 1000 ppm

sulfur removal efficiency of 100 % ([S] 
= 500 ppm) and 97.5 % ([S] = 1000 
ppm) within 30 min

nsp [84]

[C4mim]3PMoVI
12O40/SiO2;

[C4mim]+ = 1-butyl-3-
methylimidazolium cation

Keggin

m(catalyst) = 0.01 g; T = 60 °C; t = 60 min; 
n(O/S) = 3; model oil (BT, DBT, 4-MDBT and 
4,6-DMDBT in n-octane, [S] = 250 ppm); 
V(model oil) = 5 mL, oxidant − H2O2; 
BT = benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene

sulfur removal efficiency of 100 %
7 (7 % 
activity 
loss)

[85]

FeWVI
11V@CTAB-MMT;

FeWVI
11V = [FeIIIWVI

11VVO40]7−, 
CTAB-MMT = 
cetyltrimethylammonium 
bromide-modified 
montmorillonite

Keggin

T = 35 °C; t = 1 h; m(catalyst) = 0.10 g; 
V(oxidant) = 3 mL; oxidant − HOAc/H2O2; 
extraction solvent – MeCN; model oil (Th, BT 
and DBT in n-heptane, [S] = 500 ppmw); 
V(gasoline) = 50 mL;
BT = benzothiophene; DBT = 
dibenzothiophene; Th = thiophene; ppmw = 
parts per million by weight

BT, DBT and Th removal efficiencies 
of 98 %, 99 % and 97 % within 1 h, 
respectively
gasoline: sulfur removal efficiency of 
97 % within 1 h

5 [86]

[Cnmim]3H3VV
10O28/g-BN;

n = 8, 12, 16; 
[Cnmim] = 1-cyanomethyl-3-
methylimidazolium,
g-BN = graphitic boron 
nitride

decavanadat
e

T = 120 °C; t = 4 h; m(catalyst) = 0.08 g; 
model oil ([S] = 500 ppm); V(model oil) = 40 
mL; oxidant – air; flow rate = 100 mL/min;
DBT = dibenzothiophene

DBT removal efficiency of up to 99.8 
% within 4 h

6 (0.4 % 
activity 
loss)

[87]

42 % PTA@MOF-808A;
42 % PTA = 42 % (wt %) 
loading of [H₃PWVI₁₂O₄₀],
MOF-808A = zirconium-
based metal-organic 
framework

Keggin

T = 60 °C; t = 30 min; m(catalyst) = 12 mg; 
extraction solvent – MeCN; V(MeCN) = 2 
mL; model oil ([S] = 1000 ppm); V(model oil) 
= 2 mL; oxidant – H2O2; V(H2O2) = 21 µL

complete desulfurization within 30 
min 
(k = 0.16 min-1)

at least 5 [88]
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CNTs@MOF-199-Mo16V2;
Mo16V2 = 
[H8P2MoVI

16VV
2O62·mH2O),

CNTs = carbon nanotubes,
MOF-199 = copper-based 
metal-organic framework

Wells-
Dawson

T = 80 °C; t = 180 min; m(catalyst) = 0.12 g; 
model oil (2.87 g DBT in 250 mL n-octane, 
[S] = 2000 ppm); V(model oil) = 50 mL; 
oxidant – O2; flow rate = 1.5 L/min; 
DBT = dibenzothiophene

DBT removal efficiency of 98.30 % 
within 180 min 7 [89]

PMo/BzPN-SiO2;
PMo = [PMoVI

12O40]3−,
BzPN-SiO2 = benzyl-modified 
porous silica (SiO2)

Keggin

T = 60 °C; t = 3 h; p = ambient pressure; 
model oil (DBT, BT or 4,6-DMDBT (0.50 
mmol) in heptane (10 mL)); n(POM) = 
0.0056 mmol; oxidant – 30% H2O2; n(H2O2) = 
1.51 mmol;
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

100 % of DBT and 4,6-DMDBT 
conversion nsp [90]

[H8PVV
5MoVI

7O40] Keggin

T = 120 °C; t = 12 h; n(oxalic acid) = 0.5 
mmol; n(POM) = 0.5 mmol in 100 mL of 
H2O; model oil (0.25 mmol of DBT in 10 mL 
n-tetradecane); p = 20 bar; oxidant – O2; 
DBT = dibenzothiophene

complete desulfurization of model oil 
within 12 h at least 5 [91]

[Cnquin]4MoVI
8O26,

n = 2, 5, 8;
[Cnquin]+ = N-
alkylquinolinium cation with 
alkyl chain lengths n = 2, 5, 8

octamolybda
te

T = 60 °C; t = 90 min; n(H2O2)/n(DBT) = 4; 
n(DBT)/n(catalyst) = 100; model oil (500 
ppm of S-compounds in n-dodecane); 
V(model oil) = 5 mL; V([C8mim]BF4) = 1 mL; 
[C8mim]BF4 – ionic liquid phase;
DBT = dibenzothiophene; [C8mim]+ = 1-
octyl-3-methylimidazolium cation

DBT removal efficiency of up to 99.2 
% within 90 min

5 (4.8 % 
of 
activity 
loss)

[92]

PMo12@MOF;
PMo12 = [PMoVI

12O40]3−,
MOF = metal-organic 
framework NH2-MIL-101(Cr)

Keggin

model diesel (S-compounds ([S] = 2000 
ppm) in n-octane); V(model diesel) = 0.75 
mL; oxidant – H2O2; T = 50 °C; extraction 
solvent – MeCN or [BMIM][BF6]; n(POM) = 3 
µmol; V(extracting solvent) = 0.75 mL; 
n(H2O2) = 0.30 mmol; t = 2 h;
[BMIM] = 1-butyl-3-methylimidazolium

a) Real diesel: sulfur removal 
efficiency of 80 % within 2 h;
b) Model diesel: sulfur removal 
efficiency of 95 % 

3 [93]

POM@MOF-199@LZSM-5;
POM = [H3PMoVI

6WVI
6O40],

MOF-199 = copper-based 
metal-organic framework,
LZSM-5 = large pore size 
zeolite

Keggin
T = 60 °C; t =120 min; [catalyst] = 1.5 g/L; [S] 
= 2000 ppm; oxidant – O2; flow rate = 1000 
mL/min

complete desulfurization within 120 
min

10 (8.96 
% of 
activity 
loss)

[94]

[Dda-pX]2[β-MoVI
8O26];

[Dda-pX] = N,N-
didodecylammonium with a 
p-substituted group "X" on 
the aromatic or alkyl chain

octamolybda
te

T = 40 °C; t = 120 min; m(catalyst) = 40 mg; 
m(model oil) = 10 g; oxidant – H2O2; 
n(H2O2)/n(S) = 6; model oil (DBT in n-octane, 
[S] = 1000 ppm);
DBT = dibenzothiophene

DBT removal efficiency of 99.7 % 
within 120 min 6 [95]

[H3PMoVI
12O40]-GO;

GO = graphene oxide Keggin

T = 50 °C; t = 30 min; [catalyst] = 2.5 g/L; 
n(O/S) = 6; oxidant – H2O2; model oil (DBT in 
n-hexane, [S] = 500 ppm); V(model oil) = 5 
mL;
DBT = dibenzothiophene

complete desulfurization within 30 
min 6 [96]

ODA7PW11;
ODA+ = octadecylammonium 
cation,
PW11 = [PWVI

11O39]7−

lacunary 
Keggin

T = 70 °C; t = 40 min; oxidant – H2O2; 
n(H2O2)/n(S) = 3 or 8; n(catalyst) = 3 µmol; 
model diesel ([S] = 500 ppm); V(model 
diesel) = 0.75 mL

complete desulfurization within 40 
min nsp [97]

C@PMoVI
10VV

2;
C = carbon composite, 
PMoVI

10VV
2 = 

[H5PMoVI
10VV

2O40]

Keggin

T = rt; t = 2 h; m(catalyst) = 1.4 x 10-4 g; 
V(H2O2) = 8 µl; solvent – EtOH:n-heptane 
(v/v = 1:1); model oil ([S] = 250, 500 or 1000 
ppm); V(model oil) = 5 mL;
rt = room temperature

sulfur removal efficiency of 94 % 
within 2 h at least 4 [98]

Cs5[PM(H2O)MoVI
11O39]·5H2O;

M = Co2+, Ni2+, Zn2+, and Mn2+ Keggin

T = 60 °C; t = 100 min; model oil (refractory 
S-compounds in n-octane, [S] = 500 ppm); 
V(model oil) = 5 mL; solvent – MeCN; 
V(MeCN) = 5 mL; oxidant – H2O2 30 %; 
n(catalyst) = 4 µmol; n(H2O2)/n(DBT) = 8; BT 
= benzothiophene;
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

for CoII-POM: DBT, 4,6-DMDBT and BT 
removal efficiencies of 99.8 %, 92.9 % 
and 85.3 % within 100 min, 
respectively

at least 4 [99]

PW11Zn@BMIMPF6;
PW11Zn = 
TBA4H[PWVI

11Zn(H2O)O39]·5H2

O,
TBA = tetrabutylammonium Keggin

T = 50 °C; t = 3 h; oxidant – H2O2; model oil 
(DBT, 1-BT and 4,6-DMDBT in n-octane, [S] = 
500 ppm of each); biphasic system – model 
diesel/ BMIMPF6 (v/v = 1:1); V(H2O2) = 30 
µL;

a) Model diesel: complete 
desulfurization within 3 h;
b) Real diesel: desulfurization 
efficiency of 80 %

at least 3 [100]
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BMIMPF6 = 1-butyl-3-
methylimidazolium 
hexafluorophosphate

1-BT = 1-benzothiophene; DBT = 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

[cetrimonium]11[P2WVI
13VV

5O6

4]
Wells-
Dawson

T= 60 °C; t = 60 min; [catalyst] = 7.5 g/L; 
n(O)/n(S) = 4; oxidant − H2O2/formic acid 
(n(O)/n(acid) = 1); model oil (500 ppmw of 
DBT and 500 ppmw of BT in isooctane); 
extracting solvent – MeCN;
BT = benzothiophene; DBT = 
dibenzothiophene; ppmw = parts per million 
by weight

a) Model oil: DBT and BT removal 
efficiencies of 98 % and 82 %, 
respectively
b) Real diesel: total sulfur removal 
efficiency of 90 %

8 [101]

TBA4[PWVI
11FeIII(H2O)O39]@P

bO;
TBA = tetrabutylammonium

Lacunary 
Keggin

T = 60 °C; t = 2 h; oxidant – CH3COOH/H2O2 
(v/v = 1:1); model oil (aromatic sulfur 
compounds in n-heptane (BT, DBT, 4-MDBT 
and 4,6-DMDBT, [S] = 500 ppmw of each 
compound); V(model oil) = 50 mL; 
V(oxidant) = 6 mL; m(catalyst) = 0.1 g; 
V(MeCN) = 10 mL;
BT = benzothiophene; DBT = 
dibenzothiophene; 4-MDBT = 4-methyl 
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; ppmw = parts 
per million by weight

a) Real gas oil: sulfur removal 
efficiency of 97 % after 2 h;
b) Model oil: BT, DBT, 4-MDBT and 
4,6-DMDBT removal efficiencies of 93 
%, 97 %, 94 % and 95 %, respectively

5 (4 % of 
activity 
loss)

[102]

(OTA)3PWVI
11SnO39/TiO2;

OTA = 
octadecyltrimethylammoniu
m

Lacunary 
Keggin

T = 60 °C; t = 20 min; m(catalyst) = 0.02 g; 
n(O)/n(S) = 6; oxidant – H2O2; model oil ([S] 
= 500 ppm in n-octane); V(model oil) = 5 mL; 
V([BMIM]PF6) = 1 mL;
[BMIM]PF6 = 1-butyl-3-methylimidazolium 
hexafluorophosphate; DBT = 
dibenzothiophene

DBT removal efficiency of 100 % 
within 20 min 7 [103]

[PSPy]3[PMoVI
12O40]/GC;

[PSPy] = N-(3-
sulfonatepropyl)-pyridinium,
GC = graphite carbon

Keggin

T = 50 °C; t = 60 min; model oil (500 ppmw 
of DBT in n-octane); V(model oil) = 5 mL; 
V(H2O2, 30 %) = 24 µL; n(O)/n(S) = 3; 
m(catalyst) = 0.05 g;
DBT = dibenzothiophene; ppmw = parts per 
million by weight

DBT removal efficiency of 100 % 
within 60 min

6 (2.8 % 
of 
activity 
loss)

[104]

[Na3PWVI
12O40] Keggin

T = 70 °C; t = 30 min; model oil (500 ppm of 
DBT or BT in toluene); oxidant – H2O2;
BT = benzothiophene; DBT = 
dibenzothiophene

DBT removal efficiency of 97.4 % 
within 30 min 
(k = 0.4008 min-1)

nd [105]

[VimAm]Br−PMoVI
6WVI

6O40@
CA;
CA = green fiber,
[VimAm]Br = 1-vinyl-3-amyl 
imidazolium bromide

Keggin
T = 60 °C, t = 60 min; [catalyst] = 2.0 g/L; 
n(O/S) = 7; [S] = 1000 ppm;
DBT = dibenzothiophene

DBT removal efficiency of 99.91 % 
within 60 min 5 [106]

HPW@HUSY;
HPW = [H3PWVI

12O40],
HUSY = H-type ultrastable Y 
zeolite

Keggin

T = 333 K; t = 120 min; model oil (500 ppm 
DBT in n-octane); V(model oil) = 20 mL; 
n(O/S) = 5; m(catalyst) = 0.1 g;
DBT = dibenzothiophene

99.2 % DBT removal within 120 min 6 [107]

Mo8/h-BN;
Mo8 = [MoVI

8O26]4–,
h-BN = hexagonal boron 
nitride

octamolybda
te

T = rt; t = 35 min; n(O/S) = 4; POM loading 
amount = 50 wt %; V([BMIM]BF6) = 1 mL; [S] 
= 500 ppm;
BMIMPF6 = 1-butyl-3-methylimidazolium 
hexafluorophosphate;
DBT = dibenzothiophene; rt = room 
temperature

100 % DBT conversion within 35 min 5 [108]

Fe3O4@CTS@PMoW;
CTS = chitosan,
PMoW = PMoVI

6WVI
6O40

Keggin 99 % S-removal efficiency within 60 
min

Fe3O4@CTS@HPWV;
CTS = chitosan,
HPWV = H11P2WVI

13VV
5O62

Wells-
Dawson

Model oil (5 mL hexane with 500 ppm S-
compounds); n(O/S) = 5; T = 60 °C; t = 120 
min 97 % S-removal efficiency within 60 

min

5 [109]

PMo11V/NiO/PAN;
PMo11V = H4PMoVI

11VVO40,
PAN = polyaniline

Keggin
T = 35 °C; [S] = 500 ppm; t = 60 min; 
[catalyst] = 0.10 g; V(H2O2, 30 %) = 3 mL; 
V(MeCN) = 10 mL

97 % S-removal efficiency after 60 
min 5 [110]

IL(CoMo6)-MIL-101-NH2;
CoMo6 = 
(NH4)3H6CoMoVI

6O24,
Metal-organic framework = 
IL(Br)-MIL-101-NH2

Anderson-
Evans

T = 90 °C; t = 120 min; model oil ([S] = 500 
ppm in n-octane); m(catalyst) = 20 mg; O2 (1 
atm, 60 mL/min); 
DBT = dibenzothiophene

100 % DBT removal efficiency within 
120 min 6 [111]
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HPW/H-β-
TPAOH@TiO2@SiO2-T+S;
H-β-TPAOH = tetrapropyl 
ammonium hydroxide H-β 
zeolite (n(SiO2/Al2O3) = 20.5),
T+S = simultaneous titanium 
silylation treatment,
HPW = [PWVI

12O40]3−

Keggin

T = 50 °C; t = 1 h; moil/mcatalyst = 35:1; n(O/S) 
= 13; model oil ([S] = 1100 ppmw in n-
octane); 
DBT = dibenzothiophene; BT = 
benzothiophene; ppmw = parts per million 
by weight

99.9 % DBT and BT removal efficiency 
in 60 min 4 [112]

PMo10V2/APTES-HMSNS;
PMo10V2 = H5PMoVI

10VV
2O40,

APTES-HMSNS = 3-
aminopropyltriethoxysilane - 
hollow mesoporous silica 
nanomaterials

Keggin

T = 60°C; t = 60 min; [catalyst] = 2.5 g/L; 
n(O/S) = 10; model oil ([S] = 2000 ppm in n-
octane);
DBT = dibenzothiophene

99.99 % DBT removal in 60 min 8 [113]

[C12mim]3PWVI
12O40/RE-UiO-

66;
RE = rare-earth metals (Y or 
La),
UiO-66 = Zr-based metal-
organic framework,
[C12mim] = 1-dodecyl-3-
methylimidazolium

Keggin

T = 60 °C; t = 40 min; n(O/S) = 5, m(catalyst) 
= 0.1 g; model oil ([S] = 500 µg/g); V(model 
oil) = 10 mL; V(MeCN) = 0.5 mL;
DBT = dibenzothiophene

100 % DBT removal efficiency within 
40 min 13 [114]

n[H3PWVI
12-MIL-

101(Cr)]/m(TiO2),
n/m = 1:5.78,
MIL-101(Cr) = Cr-based 
metal-organic framework 
MIL-101

Keggin
T = 50 °C; n(O/S) = 4; t = 180 min, 
m(catalyst) = 0.02 g; model oil ([S] = 500 
ppm in n-octane)

99 % desulfurization efficiency within 
180 min 6 [115]

[C16mim]PMoVI
12O40/MIL-

101;
[C16mim] = 1-hexadecyl-3-
methylimidazolium,
MIL-101 = Cr-based metal-
organic framework

Keggin

[C16mim]Cl – ionic liquid; model oil ([S] = 200 
ppm in n-octane); V(model oil) = 5 mL; 
m(catalyst) = 50 mg; T = 50 °C; n(O/S) = 5;
DBT = dibenzothiophene

99.8 % DBT removal efficiency 8 [116]

p-C4VIM-V10;
V10 = [VV

10O28]6−

[C4VIM] = 1-vinyl-3-
alkylimidazolium (ionic 
liquid)

decavanadat
e

T = 120 °C, t = 3 h; air flow = 100 mL/min; 
m(catalyst) = 0.05 g 98.8 % sulfur removal efficiency in 3 h 10 [117]

P2W18Co4@ZnFe2O4@PVA
PVA = polyviniyl alcohol,
P2W18Co4 = 
[(PWVI

9O34)2Co4(H2O)2]10−

sandwich-
type

[S] = 100 ppm; UV lamp: 50 W Hg lamp, λ = 
313 nm; t = 90 min; m (catalyst) = 0.03 g;
BT = benzothiophene; DBT = 
dibenzothiophene

97 % BT and 94 % DBT removal 
efficiency in 90 min 5 [118]

Fe3O4@C@P2W18,
P2W18 = [P2WVI

18O62]6−,
C = carbon composite

Wells-
Dawson

T = 70 °C; t = 5 min; n(O/S) = 2; model oil ([S] 
= 2000 ppm in n-octane); m(catalyst) = 0.03 
g

100 % sulfur removal efficiency within 
5 min at 70 °C 12 [119]

PDC-PMo12, PDC-Mo8, and 
PDC-Mo6;
PMo12 = H3PMoVI

12O40,
Mo8 = [(n-C4H9)4N]4[α-
MoVI

8O26],
Mo6 = [(n-
C4H9)4N]2[MoVI

6O19],
PDC = polyionic liquid 
(prepared from 3-propionic 
acid-1-vinylimidazolium 
bromine)

Keggin, 
Lindqvist and 
octamolybda
te

T = 50 °C; t = 40 min; model oil ([S] = 500 
ppm in n-octane); n(O/S) = 4; m(catalyst) = 
10 mg;
DBT = dibenzothiophene

PDC-PMo12: 14.6 % DBT removal 
efficiency within 40 min;
PDC-Mo8: 100 % DBT removal 
efficiency within 40 min; and PDC-
Mo6: 52.4 % DBT removal efficiency 
within 40 min

5 [120]

[C16MIM]4[PWVI
11FeIII(H2O)O39

];
[C16MIM] = 1-hexadecyl-3-
methylimidazolium

Keggin

model oil ([S] = 500 ppm); t = 150 min; 1 % 
catalyst dosage (relative to model oil mass); 
T = 70 °C; H2O2 – oxidant;
DBT = dibenzothiophene

98.54 % DBT removal efficiency in 
150 min 5 [121]

[H2BBPTZ]2Co(BBPTZ)2[P2WVI
1

8O62]·2H2O;
BBPTZ = 4,4ʹ-bis(1,2,4-triazol-
1-ylmethyl)biphenyl

94.6 % DBT removal efficiency within 
8 h

[(Ni2(TBTZ)2(H2O)4][H2P2WVI
18

O62]·17.5H2O;
TBTZ = 1,3,5-tris(1,2,4-
triazol-1-ylmethyl)-2,4,6-
trimethyl benzene

Wells-
Dawson

T = 50 °C; t = 8-12 h; V(CH2Cl2) = 5 mL; 
n(DBT) = 0.3 mmol; n(catalyst) = 0.075 
mmol; n(tert-butyl hydroperoxide) = 2 
mmol;
DBT = dibenzothiophene 98.3 % DBT removal efficiency within 

8 h

6 [122]
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  *nsp- not specified by authors

2. POMs and POM-based composites in the removal of various organic pollutants from water
Table S2 A Summary of published POMs and POM-based composites for application in the removal of various organic pollutants from water.

Formula POM 
archetype Pollutants Conditions Efficiency Number of 

cycles Ref

SiO2@[n-
C7H15)4N]8SiWVI

11O39
8− Keggin PBV

[PBV] = 32 µM; amount of catalyst = 800 
mg;
PBV = dye patent blue V

95 % nsp [123]

PTMS-treated 
alumina/PEI-
PVV

2MoVI
10O40;

PTMS = 3-aminopropyl 
trimethoxysilane,
PEI = polyetherimide

Keggin RB5
[RB5] = 20 ppm; T = 25 °C; Operating time 
= up to 3 h;
RB5 = reactive black 5

100 % 6 [124]

K6P2WVI
18O62@UiO-66;

UiO-66 = Zr-based metal-
organic framework

Wells-
Dawson RhB [RhB] = 30 ppm; pH = 3; T = 25 °C;

RhB = rhodamine B
99 % within 120 min,
(k = 0.00438 g mg-1 min-1) nsp [125]

PW12@MIL-101(Fe);
PW12 = [PWVI

12O40]3−,
MIL-101(Fe) = Fe-based 
metal-organic framework

Keggin MB
[MB] = 5 ppm; amount of catalyst = 10 
mg/100 mL;
MB = methylene blue

99.5 % within 30 min 3 [126]

[Cu2(btx)2(C2O4)][H2SiWVI
12

O40]·12H2O;
btx = 1,4-bis(triazol-1-
ylmethyl)benzene)

Keggin MB nsp;
MB = methylene blue

78 % within 60 min, under visible 
light;
91 % within 60 min, under UV 
light

nsp [127]

[{Cl4Cu10(pz)11}{As2WVI
18O62

}]·1.5H2O;
pz = pyrazine

Wells-
Dawson RhB

[RhB] = 10-5 M; amount of catalyst = 50 
mg; light source = 250 W Hg lamp; RhB = 
rhodamine B

96.8 % within 80 min,
(k = 0.005 min-1) 5 [128]

(CH3NH2CH3)[Cu2(TPB)2(P
WVI

12O40)]·4DMF·6H2O;
TPB = 1,2,4,5-tetra(4-
pyridyl)benzene

Keggin MO, MB

[dye] = 10 ppm; amount of adsorbent = 50 
mg; light source = 300 W Xe lamp; H2O2 = 
2 ml (30 %);
MB = methylene blue; MO = methyl 
orange

> 95 % MB removal within 120 
min;
98.8 % MO removal within 120 
min under visible light

nsp [129]

[NaP5WVI
30O110]14−/MIL-

101(Cr);
MIL-101(Cr) = Cr-based 
metal-organic framework

Preyssler MB
[MB] = 50 ppm; amount of catalyst = 30 
mg; pH = 2; 
MB = methylene blue

100 % within 8 min, 
(k = 1.19 g mg-1 min-1) 4 [130]

[P2WVI
18O62]6−/CoFe2O4/MI

L-101(Cr);
MIL-101(Cr) = Cr-based 
metal-organic framework

Wells-
Dawson MB

[MB] = 100 ppm; amount of catalyst = 30 
mg; pH = 6; T = 25 °C;
MB = methylene blue

100 % 3 [131]

H6P2WVI
18O62@Cu3(BTC)2;

BTC = trimesic acid
Wells-
Dawson MB

[MB] = 10 ppm; amount of catalyst = 20 
mg/mL;
MB = methylene blue

80 % within 60 min,
(k = 0.0047 g mg-1 min-1) nsp [132]

[PMoVI
12O40]@[CuII

6O(TZI)3

(H2O)9]4·OH·31H2O (HLJU-
1)
[SiMoVI

12O40]@[CuII
6O(TZI)3

(H2O)9]4·32H2O (HLJU-2)
[PWVI

12O40]@[CuII
6O(TZI)3(

H2O)6]4·OH·31H2O (HLJU-
3);
H3TZI = 5-
tetrazolylisophthalic acid

Keggin RhB, CV
[RhB] = 9.5 ppm; [CV] = 15 ppm; amount 
of catalyst = 50 mg;
RhB = rhodamine B; CV = crystal violet

> 60 % RhB removal and CV for 
HLJU-3, 80 % < for HLJU-1 and > 
95 % for HLJU-2 within 360

5 [133]

H6P2W18O62/MOF-5;
MOF-5 = Zn-based metal-
organic framework

Wells-
Dawson MB

[MB] = 20 ppm; amount of catalyst = 15 
mg/20 mL;
MB = methylene blue

100 % within 10 min,
(k = 0.2953 g mg-1 min-1) nsp [134]

FcSiW,
Fc = ferrocene,
SiW = H4SiWVI

12O40·xH2O, x 
= nsp

Keggin 4-CP

amount of catalyst = 0.1 g L−1; [H2O2] = 10 
mM; [4-CP] = 50 mg L−1; pH = 6.5; light 
source = 250 W Hg lamp; T = 35 °C;
4-CP = 4-chlorophenol

100 % within 100 min under UV 
light; 97 % within 100 min in dark 3 [135]

Cs3PMoVI
12O40/Bi2O3 Keggin phenol

amount of catalyst = 50 mg; [Phenol] = 10 86.6 % within 300 min, 4 [136]
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ppm; light source = 300 W Xe lamp; O2 
pressure = 0.1 MPa

(k = 0.0065 min-1)

[Ag4(H2pyttz-I)(H2pyttz-
II)(Hpyttz-
II)][HSiWVI

12O40]·4H2O (1)
[Ag4(H2pyttz-II)(Hpyttz-
II)2][H2SiWVI

12O40]·3H2O 
(2);
H2pyttz-I = 3-(pyrid-2-yl)-
5-(1H-1,2,4-triazol-3-yl)-
1,2,4-triazolyl;
H2pyttz-II = 3-(pyrid-4-yl)-
5-(1H-1,2,4-triazol-3-yl)-
1,2,4-triazolyl

Keggin RhB
[RhB] = 10-5 M; amount of catalyst = 50 
mg; light source = 125 W Hg lamp;
RhB = rhodamine B

63.3 % removal for (1) within 150 
min,
(k = 0.006 min-1);
81 % removal for (2) within 150 
min,
(k = 0.1 min-1)

nsp [137]

per-6-deoxy-6-
ethylenediamine-β-
cyclodextrin/H3PWVI

12O40

Keggin

RhB, MO, 
MB, XO, 
CV, NFZ, 
TCY, BE

[dye/antibiotic] = 1 mM; amount of 
catalyst = 0.055 mM POM + 0.03 mM 
EDA-CD; [H2O2] = 50 µL; light source = 50 
W Hg lamp;
RhB = rhodamine B; MB = methylene 
blue; MO = methyl orange; XO = xylenol 
orange; CV = crystal violet; NFZ = 
nitrofurazone; TCY = tetracyclines; BE = 
berberine

> 95 % removal efficiency of RhB 
within 4 min,
(k = 0.868 ± 0.061 min-1);
> 95 % removal efficiency of XO 
within 15 min, 
(k = 0.214 ± 0.023 min-1);
> 95 % removal efficiency of MO 
within 20 min,
(k = 0.164 ± 0.016 min-1);
> 95 % removal efficiency of MB 
within 30 min,
(k = 0.119 ± 0.002 min-1);
> 95 % removal efficiency of CV 
within 35 min,
(k = 0.084 ± 0.003 min-1);
> 95 % removal efficiency of NFZ 
within 19 min,
(k = 0.163 ± 0.016 min-1);
> 95 % removal efficiency of TCY 
within 25 min,
(k = 0.152 ± 0.016 min-1);
> 95 % removal efficiency of BE 
within 30 min,
(k = 0.115 ± 0.007 min-1)

nsp [138]

[PWVI
12O40]3− Keggin lindane [lindane] = 2.4 × 10-5 M; amount of 

catalyst = 7×10-4 M; pH = 1 100 % within 10 h nsp [139]

Fe2O3@SiO2@[n-
C7H15)4N]8SiWVI

11O39
8− Keggin PBV

[PBV] = 32 µM; amount of catalyst = 50 
mg;
PBV = dye patent blue V

99 % within 24 h nsp [140]

{HCuII(N,Nʹ-bis(2-
pyrazinecarboxamide)-
1,2-
ethane)[CrIIIMoVI

6(OH)6O18

]}·4H2O (1)
[CuII

3(N,Nʹ-bis(2-
pyrazinecarboxamide)-
1,2-
ethane)0.5(TeVIMoVI

6O24)(H2

O)9] (2)

Anderson
-Evans

GV, MB, TB, 
MV

[dye] = 10 ppm; amount of catalyst = 50 
mg; T = room temperature;
GV = gentian violet; MB = methylene blue; 
TB = toluidine blue dye; MV = methylene 
violet

99 % GV removal for (1) and 
71.43 % for (2);
95.63% MB removal for (1) and 
81.25 % for (2);
90.65 % TB removal for (1) and 
77.84 % for (2);
65.79 % MV removal for (1) and 
44.87 % for (2)

4 [141]

[(NH4)6(MoVI
7O24)]·4H2O

heptamol
ybdate MB

[MB] = 220 ppm; amount of catalyst = 50 
mg; pH = 1; T = 303 K;
MB = methylene blue

> 97 % MB removal within 60 
min,
(k = 0.000234 min-1)

nsp [142]

poly-[N,N-dimethyl-
dodecyl-(4-
vinylbenzyl)ammonium 
chloride]/([MoVI

8O26]4−)

octamoly
bdate AR87 [AR87] = 200 ppm; T = 20 °C;

AR87 = acid red 87 > 98 % 5 [143]

{HCuII(HPCAP)2[CrIIIMoVI
6(O

H)6O18]}·2H2O (1)
{Zn4(PCAP)2[CrIIIMoVI

6(OH)6

O18]2(H2O)12}·4H2O (2)
{Zn3(PCAP)2[CrIIIMoVI

6(OH)5

O19](H2O)6}·6H2O (3)
{NiII3(PCAP)2[NiIIMoVI

6(OH)5

O19](H2O)6}·8H2O (4)
{CuII

3(PCAP)2[AlMoVI
6(OH)5

O19](H2O)6}·6H2O (5)

Anderson
-Evans GV, MB

[dye] = 10 ppm; amount of catalyst = 50 
mg;
GV = gentian violet; MB = methylene blue

96.9 % GV removal for (1), 97.9% 
for (2), 97.3 % for (3), 96.6 % for 
(4), 98.6 % for (5) and 97.1 % for 
(6),
87.3 % MB removal for (1), 92.1 
% for (2), 93.8 % for (3), 94.4 % 
for (4), 90.3 % for (5) and 95.3 % 
for (6)

nsp [144]
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{CoII
3(HPCAP)2[AlMoVI

6(OH
)6O18](H2O)10}[AlMoVI

6(OH)
6O18]·6H2O (6);
HPCAP = 3-(2-
pyridinecarboxylic acid 
amido)pyridine
[NiII(2,2ʹ-biimidazole)3]2[β-
MoVI

8O26]·8DMF (1)
(dimethyl-
ammonium)2[NiII(2,2ʹ-
biimidazole)2(H2O)2][β-
MoVI

8O26]·4DMF (2)
(dimethyl-
ammonium)2[CoII(2,2ʹ-
biimidazole)2(H2O)2][β-
MoVI

8O26]·4DMF (3)
[Zn(2,2ʹ-
biimidazole)(DMF)3]2[β-
MoVI

8O26]·2DMF (4)
[CuII(2,2ʹ-
biimidazole)(DMF)3]2[β-
MoVI

8O26]·2DMF (5)

octamoly
bdate MB

[MB] = 10 ppm; amount of catalyst = 15 
mg;
MB = methylene blue

> 80 % for compounds (2)-(5);
< 10 % for (1) within 10 min 3 [145]

Fe3O4@[NiII(2-
acetylpyridine-
thiosemicarbazone)2]2H2[P
2MoVI

5O23]·4H2O (1)
Fe3O4@[2-acetylpyridine-
thiosemicarbazone]5H[P2

MoVI
5O23]·12H2O (2)

Strandber
g MO, MB

[dye] = 15 ppm; amount of catalyst = 25 
mg;
MB = methylene blue; MO = methyl 
orange

94.8 % MB removal for (1) within 
240 min, 97.67 % for (2) within 
60 min;
13.13 % MO removal for (1) 
within 240 min and 8.84 % for (2) 
within 60 min

7 [146]

[N(C4H9)4]3[MnIIMoVI
6O18{(

OCH2)3CN = 
CHC6H4OH}2]/hexachloroc
yclotriphosphazene

Anderson
-Evans

AOG, PS, 
BF, MB

[MB] = 100 ppm; amount of catalyst = 
0.125 mgL-1;
AOG = acid orange G; PS = ponceau S; BF = 
basic fuchsin; MB = methylene blue

98 % MB removal within 240 min, 
< 2 % AOG and PS removal and 
95 % BF removal

nsp [147]

H6P2WVI
18O62@Cu-BTC;

BTC = trimesic acid
Wells-
Dawson TBBPA

[TBBPA] = 2 ppm; amount of catalyst = 40 
mg; T = 298 K;
TBBPA = tetrabromobisphenol-A

95 %,
(k = 5.56 g mg-1 min-1) 6 [148]

aminopropylsilanized-
Co3O4/H3PWVI

12O40
Keggin RhB, MO, 

MB

[dye] = 25 ppm; amount of catalyst = 20 
mg;
RhB = rhodamine B; MB = methylene 
blue; MO = methyl orange

98 % MB removal within 12 min, 
(k = 0.037 g mg-1 min-1);
20 % RhB removal within 32 min;
the removal efficiency of MO was 
negligible

3 [149]

NH2-Fe3O4 
/[CuII(pca)2(SiWVI

12O40)](py
)2;
pca = pyridine-2-
carboxylic acid;
py = pyrazine

Keggin TCY pH = 6.8,
TCY = tetracycline 88.6 % 5 [150]

LaMnO3@SiO2/PMoVI
12 (1)

LaMnO3@SiO2/PWVI
12 (2)

LaMnO3@SiO2/SiWVI
12 (3)

Keggin MB
[MB] = 25 ppm; amount of catalyst = 25 
mg; T = 25 °C;
MB = methylene blue

100 % removal for (1) within 1 
min, 98 % for (2) within 30 min 
and 100 % for (3) within 0.5 min

3 [151]

LaNiO3@SiO2/PWVI
12 Keggin MB

[MB] = 25 ppm; amount of catalyst = 30 
mg; T = 25 °C;
MB = methylene blue

98.5 % within 60 min,
(k = 0.066 g mg-1 min-1) 3 [152]

m-
phenylenediamine/P5WVI

30
Preyssler MB

[MB] = 20 ppm; amount of catalyst = 5 
mg;
MB = methylene blue

> 95 % within 15 min nsp [153]

[Cd(pyridine-2-
carbaldehyde 
semicarbazone)6][pyridine
-2-carbaldehyde 
semicarbazone]+

4[PMoVI
12

O40]4·18MeOH·4H2O

Keggin RhB, MB
[dye] = 25 ppm; amount of catalyst = 30 
mg; T = 25 °C;
RhB = rhodamine B; MB = methylene blue

98 % MB removal within 5 min 
and 86 % RhB removal within 5 
min

3 [154]

CuS@PANI/PWVI
12 (1)

CuS@PANI/PMoVI
12 (2)

CuS@PANI/SiWVI
12 (3);

PANI = polyaniline

Keggin MB
[MB] = 25 ppm; amount of catalyst = 25 
mg; pH = 6; T = 25 °C;
MB = methylene blue

93 % removal efficiency for (1) 
within 20 min (k = 0.0036 g mg-1 
min-1), 94 % for (2) within 0.5 min 
and 100 % for (3) within 2 min

4 [155]

amide-functionalized N-
dodecyl-Nʹ-
acetamideimidazolium 
bromide/PWVI

12

Keggin RhB
[RhB] = 0.25 mM; amount of catalyst = 0.2 
mg/mL; T = 25 °C;
RhB = rhodamine B

100 % within 1 min 5 [156]
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PWVI
12/BEA zeolite;

BEA = microporous 
crystalline aluminosilicate 
(zeolite)

Keggin nicosulfuro
n

PW12/zeolite weight ratio = 20 %; 
UltraSound = 30 min adsorption capacity = 25.5 mg g-1 nsp [157]

POM−GA;
POM = HSiW,
GA = 3D graphene 
aerogels

Keggin

various 
water-
soluble 
organic 
pollutants

reduction in N2H4; POM content = 30 % wt absorption capacities = 100-210 g 
g-1 10 [158]

H3K2[Ag5(DTB)5][SiWVI
12O40

]2·Cl2·8H2O;
DTB = 1,4-di(1H-1,2,4-
triazol-1-yl)benzene

Keggin

MB, BY, CV, 
Rh6G, RhB, 
EB*, CFB, 
MO

amount of catalyst = 20 mg;
MB = methylene blue; BY = basic yellow 1; 
CV = crystal violet; Rh6G = rhodamine 6G; 
RhB = rhodamine B; EB*= eosin B; CFB = 
chromotrope FB; MO = methyl orange

74.33 % removal efficiency of CV; 
84.94 % removal efficiency of 
MB;
40.51 % removal efficiency of BY; 
30.23 % removal efficiency of 
Rh6G;
12.91 % removal efficiency of 
RhB;
< 10 % removal efficiency for EB*, 
CFB, and MO within 90 min

nsp [159]

NiAl-SiWVI
12O40

4− Keggin MG
[MG] = 12 ppm; amount of catalyst = 50 
mg;
MG = malachite green

94 % within 120 min,
(k = 0.0218 g/mg min) 5 [160]

DODA·Br-
PVV

2MoVI
10/PVDF;

DODA·Br = 
dimethyldioctadecylamm
onium bromide, 
PVV

2MoVI
10 = 

H5[PVV
2MoVI

10O40],
PVDF = polyvinylidene 
fluoride

Keggin RB5
[RB5] = 15 ppm; amount of catalyst = 26 
mg; T = 45 °C;
RB5 = reactive black 5

97.5 % within 120 min 3 [161]

amine-functionalized 
graphene 
oxide/PTi2WVI

10O40
7−

Keggin RhB, MB
[dye] = 100 ppm; amount of catalyst = 10 
mg;
RhB = rhodamine B; MB = methylene blue

adsorption capacity of MB = 1095 
mg g-1;
adsorption capacity of RhB = 540 
mg g-1

5 [162]

ZnAlFe-P2W17 (1)
ZnAlFe-CoW12 (2);
P2W17 = [P2WVI

17]10−,
CoW12 = [CoWVI

12]5−

Wells-
Dawson,
Keggin

MB pH = 6.3; light source = 25 W Xe lamp;
MB = methylene blue

< 10 % removal efficiency for (1) 
within 6 h and > 90 % for (2) 
within 6 h

nsp [163]

[C16H33(CH3)3N]H4PMoVI
10V

V
2O40

Keggin DEP
[DEP] = 0.45 mM; amount of catalyst = 3.0 
mM; [H2O2] = 0.014 M; T = 25 °C; pH = 7.0; 
DEP = diethyl phthalate

90.2 % within 30 min 10 [164]

FePW/LDH (1)
MnPW/LDH (2);
LDH = layered double 
hydroxide,
FePW = [PFeIIIWVI

11O39]4−,
MnPW = [PMnIIWVI

11O39]6−

Keggin AR27
[AR27] = 20 ppm; amount of catalyst = 0.5 
g/L; pH = 3; [H2O2] = 0.2 mL/L; T = 40 °C; 
AR27 = acid red 27 

98 % removal efficiency of AR27 
for (1) within 30 min, and 99 % 
for (2) within 30 min

4 [165]

PWVI
12O40

3−-γ-Fe2O3/SrCO3 Keggin IBP
[IBP] = 10 ppm; amount of catalyst = 50 
mg; light source = sunlight;
IBP = ibuprofen

nsp 3 [166]

KH[SiWVI
12O40][NiII(H2O)6]c

ucurbit[6]uril·7H2O
Keggin MO

[MO] = 10 ppm; amount of catalyst = 0.5 
gL-1; pH = 2.5; [H2O2] = 1.5 mmol L−1;
MO = methyl orange

95.6 % within 120 min 4 [167]

Cs3PMoVI
12O40 Keggin BR46

[BR46] = 10 ppm; amount of catalyst = 2 
gL-1; [H2O2] = 2 mM; light source = 300 W 
Xe lamp;
BR46 = basic red 46

100 % within 90 min 3 [168]

{[(Cu4Cl)(4-(4-
carboxyphenyl)-1,2,4-
triazolate)4]·(HSiWVI

12O40)·
31H2O}

Keggin RhB

[RhB] = 10 ppm; amount of catalyst = 15 
mg; [H2O2] = 2 mL (30%); light source = 
300 W Xe lamp;
RhB = rhodamine B

99 % within 80 min 3 [169]

Na3PWVI
12O40/D201 resin;

D201 = type I anion 
exchange resin

Keggin RhB
[RhB] = 2 x 10-5 M; [H2O2] = 2 x 10-3 M; pH 
= 2.5; light source = 500 W halogen lamp; 
RhB = rhodamine B

99 % within 240 min 7 [170]

K3PWVI
12O40 Keggin RhB

[RhB] = 2 x 10-5 M; amount of catalyst = 
0.5 gL-1; [H2O2] = 2 x 10-3 M; pH = 2.1; light 
source = 500 W halogen lamp;
RhB = rhodamine B

100 % within 150 min 7 [171]
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{[Cu(en)2]1.5[Cu(en)(2,2ʹ-
bipy)(H2O)n]Ce[(α-
PWVI

11O39)2]}6− (1)
{[Cu(en)2]1.5[Cu(en)(2,2ʹ-
bipy)(H2O)n]Pr[(α-
PWVI

11O39)2]}6− (2)
{[Cu(en)2]2(H2O)[Cu(en)(2,
2ʹ-bipy)]Gd[(α-
HPWVI

11O39)2]}4− (3)
{[Cu(en)2]2(H2O)[Cu(en)(2,
2ʹ-bipy)]Tb[(α-
HPWVI

11O39)2]}4− (4)
{[Cu(en)2]2(H2O)[Cu(en)(2,
2ʹ-bipy)]Er[(α-
HPWVI

11O39)2]}4− (5)
{[Cu(en)2]1.5[Cu(en)(2,2ʹ-
bipy)]Nd[(α-
H5PWVI

11O39)2]}3− (6);
2,2ʹ-bipy =2,2ʹ-bipyridine; 
en = ethylenediamine

Lacunary 
Keggin RhB

[RhB] = 2 x 10-5 M; amount of catalyst = 2 
x 10-6 mol; light source = 500 W Hg lamp; 
RhB = rhodamine B

26 % removal efficiency for (1), 
34 % for (2), 29 % for (3), 35 % 
for (4) and 46 % for (5)

nsp [172]

H3PWVI
12O40/ZrO2 Keggin

BCG, RhB, 
MO, MB, 
CV, 4-
nitrophenol
, DCP

[dye] = 10-5 M; amount of catalyst = 25 mg 
for dye degradation and 40 mg for 
herbicides; PW12/ZrO2 weight ratio = 1/3; 
light source = 50 W Hg lamp;
BCG = bromo cresol green; RhB = 
rhodamine B; MO = methyl orange; MB = 
methylene blue; CV = crystal violet; DCP = 
2,4- dichlorophenoxy acetic acid

78 % removal efficiency of MB 
within 70 min
(k = 0.0218 min-1);
99 % removal efficiency of RhB 
within 80 min
(k = 0.0456 min-1);
82 % removal efficiency of MO 
within 60 min
(k = 0.0261 min-1);
89 % removal efficiency of CV 
within 50 min
(k = 0.0342 min-1);
73 % removal efficiency of BCG 
within 20 min;
90 % removal efficiency of 4-
nitrophenol within 90 min 
(k = 0.02373 min-1);
85 % removal efficiency of DCP 
within 120 min
(k = 0.015 min-1)

3 [173]

[Ag(bbi)][{Ag(bbi)}4{Ag3(VV

4O12)2}]·2H2O; 
bbi = 1,1ʹ-(1,4-
butanediyl)bis(imidazole)

octavana
date MB

[MB] = 10 ppm; amount of catalyst = 150 
mg; light source = 125 W Hg lamp;
MB = methylene blue

70 % within 90 min 5 [174]

{(H2O)2[Cu8(μ4-
OH)6Cu6(H2O)6(cpt)12](SiW
VI

12O40)3(EtOH)4(H2O)7};
Hcpt = 4-(4ʹ-
carboxyphenyl)-1,2,4-
triazole

Keggin MB, RhB
[dye] = 10-5 M; amount of catalyst = 20 
mg; light source = Xe lamp;
MB = methylene blue; RhB = rhodamine B

94.3 % removal efficiency of MB 
within 50 min;
85.4 % removal efficiency of RhB 
within 70 min

nsp [175]

H3PMoVI
12O40@MOG-Cr;

MOG-Cr = metal-organic 
gel

Keggin MB, RhB, 
MO

[dye] = 10 ppm; amount of catalyst = 10 
mg; light source = 50 W Xe lamp;
MB = methylene blue; RhB = rhodamine 
B; MO = methyl orange

99 % removal efficiency of MB 
within 60 min;
97 % removal efficiency of RhB 
within 60 min and 91 % removal 
efficiency of MO within 120 min

3 [176]

Fe-PWVI
12O40/TiO2 Keggin BPA

[BPA] = 50 ppm; amount of catalyst = 50 
mg;
BPA = bisphenol A

100 % within 24 min 4 [177]

H3PWVI
12O40/TiO2 Keggin

CR, MO, 
PG, OII, EB, 
AS, MB, NR, 
RhB, FA

[dye] = 50 ppm; amount of catalyst = 250 
mg; light source = 400 W Xe lamp;
CR = Congo red; MO = methyl orange; PG 
= Ponceau G; OII = orange II; EB = 
eriochrome blue black B; AS = alizarin S; 
MB = methylene blue; NR = neutral red; 
RhB = rhodamine B; FA = fuchsin acid

92 % removal efficiency of CR 
within 120 min;
72.4 % removal efficiency of MO 
within 240 min;
94.8 % removal efficiency of PG 
within 180 min;
67.2 % removal efficiency of OII 
within 240 min;
75.8 % removal efficiency of EB 
within 180 min;
72.8 % removal efficiency of AS 
within 240 min;

nsp [178]
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96 % removal efficiency of MB 
within 60 min;
98.2 % removal efficiency of NR 
within 60 min;
98 % removal efficiency of RhB 
within 60 min;
75 % removal efficiency of FA 
within 240 min

[Cu2(CPBPY)4(H2O)2][PWVI
1

2O40][OH]·6H2O;
CPBY = N-(3-
carboxyphenyl)-4,4ʹ-
bipyridinium

Keggin MB

[MB] = 10 ppm; amount of catalyst = 50 
mg; pH = 6.3; light source = 300 W Xe 
lamp;
MB = methylene blue 

98.2 % within 60 min under 
visible light and 97.7 % within 60 
min under NIR light

nsp [179]

(NH4)5[{PWVI
11O39}MnII(H2

O)] (1)
(NH4)5[{PWVI

11O39}FeII 
(H2O)] (2)
(NH4)5[{PWVI

11O39}CoII 
(H2O)] (3)
(NH4)3[PWVI

12O40] (4)
(NH4)5[{PWVI

11O39}NiII 
(H2O)] (5)
(NH4)5[{PWVI

11O39}CuII 
(H2O)] (6)
(NH4)5[{PWVI

11O39}Zn(H2O)] 
(7)

Lacunary 
Keggin MG

[MG] = 10 µM; amount of catalyst = 24 
mg; pH = 5.77; light source = 500 W Xe 
lamp; in the presence of O2;
MG = malachite green

< 80 % removal efficiency of MG 
for (1), (2), (3), (4);
> 80 % removal efficiency of MG 
for (5), (6), (7) within 30 min

5 [180]

SiW12 (1), SiW11V (2), 
SiW10V2 (3), SiW9V3 (4)
PW12 (5), PW11V (6), 
PW10V2 (7), PW9V3 (8); 
SiW12 = [α-SiWVI

12O40]4−, 
SiW11V = [α-
SiVVWVI

11O40]5−,
SiW10V2 = [α-
SiVV

2WVI
10O40]6−,

SiW9V3 = [α-
SiVV

3WVI
9O40]7−,

PW12 = [PWVI
12O40]4−, 

PW11V = [PVVWVI
11O40]4−, 

PW10V2 = [PVV
2WVI

10O40]5−,
PW9V3 = [PVV

3WVI
9O40]6−

Keggin
atrazine, 
chlorpyrifos
, dieldrin

[pesticides] = 100 ppm; light source = 100 
W Hg lamp 

> 80 % removal efficiency of 
atrazine for (1);
< 40 % removal efficiency of 
atrazine for (4) within 90 min;
< 60 % removal efficiency of 
atrazine for (5);
< 30 % removal efficiency of 
atrazine for (8) within 90 min;
> 70 % removal efficiency of 
chlorpyrifos for (1);
< 40 % removal efficiency of 
chlorpyrifos for (4) within 120 
min;
> 45 % removal efficiency of 
chlorpyrifos for (5);
< 25 % removal efficiency of 
chlorpyrifos for (8) within 120 
min;
> 40 % removal efficiency of 
dieldrin for (1);
< 30 % removal efficiency of 
dieldrin for (4) within 120 min;
> 40 % removal efficiency of 
dieldrin for (5);
< 20 % removal efficiency of 
Dieldrin for (8) within 120 min

nsp [181]

WVI
10O32

4− decatungs
tate NAD

[NAD] = 3 × 10-4 M; amount of catalyst = 3 
× 10-4 M; light source = 1000 W Xe lamp 
with a monochromator (λ = 365);
NAD = 2-(1-naphthyl)acetamide

100 % within 22 h nsp [182]

APS-functionalized 
TiO2/CoPWVI

11 (1)
APS-functionalized 
TiO2/NiPWVI

11 (2);
APS = 3-
aminopropyltriethoxysilan
e,
CoPWVI

11 = 
K5[CoIII(H2O)PWVI

11O39], 
NiPWVI

11 = 
K5[NiII(H2O)PWVI

11O39]

Keggin CR, MO, AS, 
NR, HCB

[dye] = 50 ppm; [pesticide] = 2 ppm; 
amount of catalyst = 100 mg; light source 
= 125 W Hg lamp;
CR = Congo red; MO = methyl orange; AS 
= alizarin S; NR = neutral red; HCB = 
hexachlorobenzene

94 % removal efficiency of CR for 
(1) and 93 % for (2) within 60 
min;
98 % removal efficiency of MO 
for (1) and 95 % for (2) within 30 
min;
94 % removal efficiency of NR for 
(1) and 90 % for (2) within 40 
min;
89% removal efficiency of AS for 
(1) and 83 % for (2) within 240 
min;
99.4 % removal efficiency of HCB 
for (1) and 97.8 % for (2) within 

nsp [183]
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60 min
[Fe(phen)3]2[SiWVI

12O40]·3
DMF;
phen = 1,10-
phenanthroline,
DMF = N,N-
dimethylformamide

Keggin DCP
[DCP] = 10 ppm; amount of catalyst = 300 
ppm; light source = 400 W Hg lamp;
DCP = 2,4-dichlorophenol

100 % within 60 h 5 [184]

(H2bimb)[CuII(bimb)][SiWVI

12O40]·2H2O (1)
(H2bimb)2[CoII(H2O)3(bimb)
][SiWVI

11CoIIO39]·6H2O (2)
KH[CuII(bimb)]2[SiWVI

11CoII

O39
-??????(H2O)]·2H2O (3)

[CuII(bimb)]4[GeWVI
12O40]·

H2O (4);
bimb = 1,4-bis(1-
imidazolyl)benzene;

Keggin MB
[MB] = 10 ppm; amount of catalyst = 50 
mg; light source = 125 W Hg lamp;
MB = methylene blue 

89.5 % removal efficiency for (1);
87.5 % removal efficiency for (2);
90.4 % removal efficiency for (3);
84.7 % removal efficiency for (4) 
within 90 min

nsp [185]

H3PWVI
12O40/SiO2 (1);

H4SiWVI
12O40/SiO2 (2) Keggin HCH, PCNB

[pesticides] = 6.5 ppm; amount of catalyst 
= 250 ppm for 1 and 350 ppm for 2; light 
source = 125 W Hg lamp;
HCH = hexachlorocyclohexane; PCNB = 
pentachloroe????nitrobenzene

95 % removal efficiency of HCH 
for (1) and 75 % for (2) within 4 
h;
100 % removal efficiency of PCNB 
for (2) within 50 min

8 [186]

PWVI
12 (1)

SiWVI
12 (2)

GeWVI
12 (3);

XW12 = [Xn+WVI
12O40](8−n)− 

(Xn+ = P5+, Si4+, Ge4+)

Keggin X-3B
[X-3B] = 6.37 × 10-5 M; amount of catalyst 
= 50 mg; pH = 1;
X-3B = reactive brilliant red

k = 0.0004 min-1 for (1);
k = 0.0037 min-1 for (2);
k = 0.001 min-1 for (3)

nsp [187]

PW12/TiO2;
PW12 = [PWVI

12O40]3− Keggin DEP, DMP, 
DBP

[dye] = 5 ppm; amount of catalyst = 100 
mg; light source = 300 W Xe lamp;
DEP = diethyl phthalate; DMP = dimethyl 
phthalate; DBP = di-n-butyl phthalate

84 % removal efficiency of DEP;
80 % removal efficiency of DMP;
98 % removal efficiency of DBP 
within 90 min

nsp [188]

TEOS/PW12 (1)
TEOS/SiW12 (2);
TEOS = tetraethoxysilane,
PW12 = [PWVI

12O40]3−,
SiW12 = [SiWVI

12O40]4−

Keggin MB, RhB
[dye] = 2.975 × 10-5 M; amount of catalyst 
= 75 mg; light source = 100 W Hg lamp; 
MB = methylene blue; RhB = rhodamine B

100 % removal efficiency of MB 
for (1) within 5 min;
89 % removal efficiency of RhB 
for (1) and 89 % for (2) within 5 
min

nsp [189]

TiO2/PW12;
PW12 = [PWVI

12O40]3− Keggin MO
[MO] = 10 ppm; pH = 2; light source = 300 
W Hg lamp;
MO = methyl orange

93.2 % nsp [190]

[SiWVI
12O40]4−/rGO;

rGO = reduced graphene 
oxide

Keggin MB, RhB
[dye] = 35 ppm; NaBH4 = 0.05 M; amount 
of catalyst = 0.5 mL;
MB = methylene blue; RhB = rhodamine B

reduction reactions completed in 
34 min for MB and in 81 min for 
RhB

- [191]

phenyl/amine Janus silica/ 
PWVI

12O40
3− Keggin MO [MO] = 50 ppm; v[H2O2] = 10 µL; 

MO = methyl orange 99.2 % within 3 h 6 [192]

H3PWVI
12O40/N-decyl-Nʹ-

carboxymethyl 
imidazolium bromide

Keggin MO
[MO] = 1.2 mM; amount of catalyst = 3.0 
mL; pH = 3-6.5;
MO = methyl orange

Highly efficient degradation of 
MO without light irradiation in 
the presence of H2O2

6−8 [193]

(NH4)3PMoVI
12O40 Keggin MB

[MB] = 10-5 M; amount of catalyst = 125 
mg; pH = 5;
MB = methylene blue

94.6 % 16 [194]

GO-H3PWVI
12O40-

triethylenetetramine;
GO = graphene oxide

Keggin MB
[MB] = 25 ppm; amount of catalyst = 25 
mg; light source = sunlight; MB = 
methylene blue

84 % within 150 min 5 [195]

POMOF/wood filter;
POM = H3PMoVI

12O40,
MOF = UiO-66,
MOF = metal-organic 
framework

Keggin MB, GV [dye] = 8 ppm;
MB = methylene blue; GV = gentian violet

96.63 %;
97.41 %

3 [196]

(Et4N)4[VVMoVI
12O40].MeCN

;
MeCN = CH3CN

Keggin AB10B, MB

[dye] = 5 ppm; amount of catalyst = 3 mg 
for AB10B and 2 mg for MB; H2O2 30 % 
(2.0 mmol);
AB10B = amido black 10B; MB = 
methylene blue

99 % removal efficiency within 45 
min for AB10B;
99 % removal efficiency within 20 
min for MB

3 [197]

H6P2MoVI
15WVI

3O62 @MIL-
96(Al);
MIL-96(Al) = Al-based 
metal-organic framework

Wells-
Dawson MB

[MB] = 40 ppm; amount of catalyst = 10 
mg; pH = 4;
MB = methylene blue

92.4 % removal within 5 min 5 [198]

SPT-T-G;
SPT = Na6[H2WVI

12O40], Polytungs
tate AO

[AO] = 15 ppm; amount of catalyst = 40 
mg; pH = 5; 100 % within 110 min nsp [199]
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*nsp- not specified by authors
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