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1. POM-based catalysts in removal of refractory sulfur compounds from fossil fuels

Table S1 The summary of literature known POM-based catalysts and their efficiency in removal of refractory sulfur compounds from fossil fuels.

Formula POM Conditions Efficiency il Ref.
archetype of cycles
[H3PWY'1,040-20H,0];
[Na;PWY';,040-14H,0];
[HsPMoY'1,040:15H,0]; T =50-70°C; t = 90 min; solvent — toluene; = o
[Na;PMoY;,0,0:20H,0]; Keggin 30 % H,0, as oxidant; n(catalyst) = 0.063 \E’vﬂir:’:g‘si'nemc'ency of 100 % nsp 1
[H4SiWV'1,049:25H,01]; mmol; n(DBT) = 5.43 mmol; (k = 0.064 min")
[H4SiMoY';,0,40-xH,0], DBT = dibenzothiophene ’
x = not specified by authors
(nsp)
T=60°C; t=2h; p(0,) =1 atm, 60 mL/min
. 0, flow rate; V,/Voes = 5; O, as oxidant;
Egm/jf\giig“wov'som Anderson. model dies~el ([S] = 500 ppm in decalin); DI?T removal ‘efficiency of 100 %
PEG = polyethylene glycoi Evans V(model diesel) = 20 mL; m(POM) = 0.02 g; within 120 n?nn 5 [2]
SSA = 5-sulfosalicylic acid ' V(DES)= 4 mL; (k= 0.028 min*)
DES = deep eutectic solvent; DBT =
dibenzothiophene
T=140°C; t = 6 h; p = 20 bar; n(HPA-5) =
2.50 mmol; Viy,0/Vei = 10; O, - oxidant; - o v
HgPVVsMoVY';0,4, (HPA-5) Keggin model oil (3.35 g of BT in 100 mL isooctane; ﬁT removal efficiency of 39 9 within & at least 3 [3]
[S] = 11483 ppm);
BT = benzothiophene
CNTs@PDDA@Mo4Vy;
MoyeV, =
HgP,Mov'1cVY,06,:mH,0, m = T=70"°C; t=3 h; O, flow 1.5 L/min; O, as
not specified by authors oxidant; [catalyst] = 1.0 g/L; model fuel -
(nsp), Wells- (2.87 g DBT in 250 mL n-octane; [s] = 2000 | D51 removal efficiency of 99.4 % 8 4]
Dawson within 3 h
CNTs = carbon nanotubes, ppm);
PDDA = DBT = dibenzothiophene
poly(diallyldimethylammoniu
m chloride)
T=120°C; t=5 h; V(air) = 100 mL/min;
[CVIMIPMoV,; m(catalyst) = 0.05 g; model oil ([S] = 200
PMoV, = HsPMoY';VY,040, . ppm; DBT, 4-MDBT or.4,6—DMDBT n desulfurization efficiency of 98.9 %
[CLVIM] = 1-butyl-3- Keggin dodecar?e); V(mc?del oil) =20 mL; within 5 h 7 [5]
vinylimidazolium cation DBT = dibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
Co-Pc/PMoV;
PMoV = T=100°C;t=5 h; p=1atm; m(catalyst) = DBT removal efficiency of 97.6 %
[(NH,)sHePVVgM0Y'4040:27H,0 . 12 mg; O, - oxidant; model oil ([DBT] = 500 within 5 h
1, Kegein ppm in 6 mL decalin); (k =24.21 h') and for inorganic sulfur atleast 9 (6]
Co-Pc = cobalt DBT = dibenzothiophene S* (k=29.12 h)
phthalocyanine
Tb(PW1,),@MIL-101;
E—'?éfmé?flaag)z]“’, Iacun.ary T=50 "F; t= 2-5.h; solvent — MeCN; DBT remova.l fefficiency of 95 % after 2 3 (7]
MIL-101 = metal-organic Keggin DBT = dibenzothiophene h, 100 % efficiency after 5 h
framework
T =50 °C; t = 60 min; m(catalyst) = 10 mg;
n(H,0,) = 2 mol; n(O/S) = 2; model oil (DBT,
0,1-C1sSIW-TiOy; . 3-MBT, 4-MDBT in n-octane, [S] =500 pPm); | yar o oval efficiency of 95.3 %
SIW = [SIVW,, 040 Keggin V(model oil) = 5 mL; within 60 min 8 [8]
DBT = dibenzothiophene; 3-MBT = 3-
methylbenzothiophene; 4-MDBT = 4-
methyldibenzothiophene
T =30 °C; t = 90 min; m(catalyst) = 25 mg;
m(model oil) = 10 g; model oil (BT and DBT
~ in n-dodecane, [S], = 1000 ppm); real diesel DBT removal efficiency of 92.1 % and
PIL/HWY1,05'" paratungstat ([S] = 559.7 ppm); H,0, as oxidant; BT removal efficiency of 58.3 % 8 [9]

PIL = Polymeric lonic Liquid

e

n(H;0,/S) = 4;
DBT = dibenzothiophene; BT =
benzothiophene

within 90 min

T=60"°C; t =3-5 h; solvent — hexane;
V(hexane) = 5 mL; extraction solvent — DMF
or MeCN; V(DMF or MeCN) =5 mL or 50 mL;

DBT removal efficiency of 99 %, 4,6-
DMDBT removal efficiency of 80 %
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[AcOH]/[H,0,] = 1; [substrate] = 0.01 M;
[catalyst] = 1.25 x 10"* M; substrate/catalyst
=80-100;

DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

(k(BT) = 0.0103 min%; k(DBT) = 0.0171
min and k(4,6-DMDBT) = 0.0152
min?)

NasFe"(OH)gMo"'s015/PEG20
00/BSA;

T=60 °C; t =60 min; p= 1 atm; 2000
PEG/2.5 BSA (n(PEG2000)/n(BSA) = 2.5); O,
as oxidant; m(catalyst) =10 mg; m(DESs) = 4

DBT and 4,6-DMDBT removal

PEG2000 = Polyethylene Anderson- g; model ol ([S]o = 500 ppm); V(model oil) = efficiency of 99 % in 180 min, BT95% | 5 [11]
Evans 20 mL; . .
Glycol 2000, . in 240 min
BSA = Bovine Serum Albumin DESs= deep eutectic solvents; DBT =
N dibenzothiophene; 4,6-DMDBT = 4,6~
dimethyldibenzothiophene
T =80 °C; p =1 atm; H,0, - oxidant;
. [Bmim]BF, - solvent; m(catalyst) = 0.5 g;
VI .
{Ez:m}i[l_)\i\{bﬁtot’]s’_ Keggin V(solvent) = 5 ml; m(petcoke) = 0,5 g; 5 mL sulfur removal efficiency of 36.10 % ns (12]
- .y . €8 of 30 % H,0,; t =5 h + drying for 24 hat 100 | within5h P
methylimidazolium cation N
C; petcoke pretreated by
tetrabutylammonium chloride
T =60 °C; t = 60 min; V(model oil) = 15 mL;
K,[PMo"'1,04]; V(CH30H) = 15 mL; m(catalyst) = 0.2 g; H,0, DBT removal efficiency of 99 % within
x“_ 12 ;2 440 ! Keggin - oxidant; n(H,0,)/n(DBT) = 4; V(model 60 min forx =4 5 [13]
T 0il)/V(CH;0H) =1.5:1; DBT = (k = 0.076 min‘)
dibenzothiophene
T=70"°C; t =180 min; O, — oxidant; model
oil (DBT, 4-MDBT or 4,6-DMDBT in n-octane;
P[C,VIMOY'VV/AC; [S] = 2000 ppm); V(model oil) = 50 mL; O, - o
MoV = HsP,MoV, VY Ogn; \é\;evlvlzon flow rate 1.5 L/min; n(POM) = 15 umol; aiLr:T;g 15&":'6”“ of 99.2% 8 [14]
AC = activated carbon DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene
n-[Pmim]PMo/HAP; T =40 °C; t = 60 min; n(O/S) = 6; m(catalyst)
n =10, 25; =0.1 g; model oil (DBT in n-octane; [S] = 500
PMo = HsPMoY'1,04, ) =08 ) e DBT removal efficiency of 97.2 % in
K Keggin ppm); V(model oil) = 5 mL; V(IL) =1 mL; ) 6 [15]
n-[Pmim]* = 1-propyl-3- . 60 min
methylimidazolium cation H,0, - oxidant;
HAP = hydroxyapatite DBT = dibenzothiophene; IL = ionic liquid
T =30 °C; t =30 min; H,0, as oxidant;
V(H,0,) = 50 pL; m(catalyst) = 40 mg; 75 pL
POM—PAE-1: of glacial acetic acid; V(MeCN) = 1.0 mL;
’ ~ n(H,0,)/n(DBT) = 6; model oil (TP, BT, DBT DBT removal efficiency of 98.5 % 5(2%
POM = [M0"304]*, octamolybda . L R L
. or 4,6-DMDBT in n-octane; [S] = 500 ppm); within 30 min activity [16]
PAF-1 = Porous Aromatic te . .
Framework-1 V(model oil) = 5 mL; (k=0.125 min') loss)
TP = thiophene; BT = benzothiophene; DBT
= dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
T =rt; t = 25 min; m(catalyst) = 50 mg,
PW/Ui0-66(Zr); m(model fuel) = 10 g; m(MeCN) = 10 g; O/S
PW = H;PWV',04, = 6; model fuel (BT, DBT or 4,6-DMDBT in n- DBT removal efficiency of 98.2 %
UiO-66(Zr) = zirconium- Keggin octane; [S] =1000, 1000 or 500 ppmw); within 25 min atleast4 | [17]
based metal-organic BT = benzothiophene; DBT = (TOF =293 h?)
framework dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
PW Zn@aptesPMOE;
PW,,Zn = T =70 °C; H,0, - oxidant; n(catalyst) = 3
\ Il 5- . _ : L
[PWV'1,Zn"(H,0)030]°, p.mol, MeCN extraction solvent; in model complete desulfurization after 4 h for
aptesPMOE = (3- lacunary oil: model oil/MeCN = 1:1; n(H,0,/S) = 4 . X
R . . . . a biphasic system, 1.5 h for solvent- 10 [18]
aminopropyl)triethoxysilane Keggin (solvent free) and (with MeCN) =8;t=1h free system
(APTES) grafted onto in real diesel: in MeCN/diesel = 1:1, t = 120 Y
poly(methyl oxazoline) min; n(H,0,/S) =8
(PMOE)
T =100 °C; t = 3 h; O, from air as oxidant;
CNC@PIL@POM; ot 26 OMDBT i deaydronaphtialene ]
POM = [Co(OH)¢Mo0"'s015]%, Anderson- B 50’0 m); V(diesel) —yZO mL'p ! Complete desulfurization within 3 h atleasts | [19]
CNC = cellulose nanocrystals, | Evans - ppmi; " ’ (k=1.277 h?)

PIL = polymeric ionic liquid

BT = benzothiophene; DBT =
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

T=60 °C; t = 120 min; m(catalyst) = 50 mg;
model diesel (DBT in n-hexane; [S] = 500
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ppmw); V(model diesel) = 12.5 mL; V(TBHP)
=0.9 mL;

DBT = dibenzothiophene; TBHP = tert-butyl

hydroperoxide; ppmw = parts per million by
weight

TBA-PW,;NiO5@PANI;

T =35 °C; t = 60 min; V(H,0,/HOAc) = 6 mL
as oxidant v/v 2:1; m(catalyst) =0.1 g;

model oil (TH, BT and DBT in n-heptane; [S]
=500 ppm); V(model oil) = 50 mL; MeCN —

DBT removal efficiency of 97 %, BT
and TH removal efficiency of 96 %

EB:-)PXI\I)li-I'\‘[f\;;V‘: (l\(l?"o ] :(a:uniiry extraction solvent; V(MeCN) = 10 mL; within 60 min 5 [21]
Pf’-\NgIA— t)l anili;; 394 €8 TH = tetrahydrothiophene; BT = (k(DBT) = 0.936 min, k(BT) = 0.9477
= poly benzothiophene; DBT = dibenzothiophene; min, k(TH) = 0.91 min?)
4,6-DMDBT = 4,6-
dimethyldibenzothiophene
T=. 35°C;t =1 h; V(H,0,/HOAC) = 3 mL DBT removal efficiency of 98 % and
oxidant (v/v 2:1); m(catalyst) = 0.1 g; model BT removal efficiency of 97 % within 5(3 % of
PMo,,Cd@MnFe,0,; lacunary fuel (Th, BT, DBT in n-heptane; [S] = 500 ¥ v -
PMo,,Cd = PMo"',Cd"O34 Keggin ppm); V(model fuel) = 50 mL; 1h activity (22]
’ 4 = in? =
Th = thiophene; BT = benzothiophene; DBT (k(BP 0.091 min‘, k(DBT) = 0.111 loss)
. K min-t)
= dibenzothiophene
T=120°C; t =1 h; O, as oxidant; air flow
(NRg)s[X"M0¥s0,4Hel; Anderson- ;zteT fDI'B/:;:nn((jsggl(icnatfs?litégosg;lé;T‘mde' Complete removal of DBT within 1 h 5 (23]
X =Cr, Fe, Co; R =H or alkyl Evans V(model fuel) = 30 mL; (CoMo-POM)
DBT = dibenzothiophene
La"WV'1,036@MIL-101(Cr); T =60 °C; t = 120 min; H,0, - oxidant; n-
LaW10036 = Na;[H,LaW10s6], octane/MeCN biphasic solvent system;
MIL-101(Cr) = chromium (Ill)- | Weakley m(catalyst) = 40 mg; n(O/S) = 6; V(model 99.1 % DBT conversion in 180 min atleast7 | [24]
based metal-organic gasoline) =5 mL; V(MeCN) =5 mL;
framework DBT = dibenzothiophene
T =50 °C; t =30 min; H,0, - oxidant;
n(H,0,/S) = 3, mM(POM@MOF) = 0.015 g;
V(model fuel) = 0.5 mL; V(MeCN) = 0.5 mL;
PMo,,@UiO-67; model fuel (Th, BT, DBT, 4-MDBT and 4,6-
PMo,, = H3PM0Y'1,04, . DMDBT in n-octane; [S] = 500 ppm); o Lo .
Ui0-67 = zirconium-based Keggin MOF = metal-organic framework; Th = 95.5 % DBT conversion in 30 min 6 (25]
metal-organic framework thiophene; BT = benzothiophene; DBT =
dibenzothiophene; 4-MDBT = 4-
methlydibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
T =35 °C; t = 60 min; H,0,/HOAc - oxidant
. (v:v 2/1, 3 mL); MeCN — extraction solvent; DBT removal efficiency of 99 %, BT
Fe,W,sFe,@FeTiOs; V(solvent) = 10 mL; m(catalyst) = 0.1 g;
. ; removal of 98 % and TH removal of
Fe,W,sFe, = Sandwich- model fuel (Th, BT and DBT in n-heptane; [S] . R
96 % within 60 min 5 [26]
NagK[(Fe"WVY'303,4),Fe"4(H,0), | type =500 ppmw); V(model fuel) = 50 mL; L -
A ) (k(Th) = 0.046 mint, k(BT) = 0.050min
]-:32H,0 Th = thiophene; BT = benzothiophene; DBT o
. K 1, k(DBT) = 0.055 min!)
= dibenzothiophene; ppmw = parts per
million by weight
T=80°C;t=12h; V(THBP) =4 ulL as
ZIF-8@{Mo13,}; oxidant; n(0/$) = 1; m(ca.talyst) = 150 mg; DBT removal efficiency of 92 % within
S Keplerate model fuel (500 mg DBT in 1 L of toluene);
ZIF-8 = zeolitic imidazolate 12h 5 [27]
framework (nanoball) V(model fuel) = 15 mL; (k = 0.0016 h)
DBT = dibenzothiophene; TBHP = tert-butyl e
hydroperoxide
T=70°C; t=30min; p=1atm; H,0, -
VIRVY i oxidant; [catalyst] = 7.5 g/L;
H“PZW 13505/ TMA-Si; V(solvent)/V(model oil) = 1:6; MeCN - - .
TMA-Si = Wells- . ) 95 % efficiency for model oil and 83 %
. extraction solvent; model oil ([S] = 500 i . R at least 5 [28]
tetramethylammonium- Dawson K . for real diesel in 30 min
R X - ppmw in 2,2,4-trimethyl pentane and 20 v%
functionalized silica
toluene);
ppmw = parts per million by weight
T =60 °C; t = 60 min; H,0,/HOAc - oxidant;
PW,@TiO,; Keggin xzrl\gzgg);)s_m;;mr?_?g(eol?sll) (-[56]':.—:(22:;?:1)); DBT removal efficiency of 99.9 % atleast7 | [29]
PWi; = HsPWY'1,040 88 N ! I ¥ within 60 min
=0.09 mol;
DBT = dibenzothiophene
T=60°C;t=2h; m(catalyst) =0.1g;
V(MeCN) = 10 mL; V(H,0,/HOAc, v/v 1:1) = 6
(n- mL as oxidant; MeCN - extraction solvent; DBT removal efficiency of 98 % within
C4Hg)4N]/Hs[SiV,WV'15Cd",065] | Sandwich model fuel (thiophenic compounds in n- 2 h for model fuel Ler (a1
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heptane; [S] = 500 ppmw); V(model fuel) =
50 mL;

DBT = dibenzothiophene; ppmw = parts per
million by weight

T=60 °C; t = 150 min; H,0, - oxidant; MeCN
— extraction solvent; model oil (DBT in n-

DBT removal efficiency of 99 % for
{Mo0,3,}/GO and 96 % for {Mo3,}

é“g"f;}r/a iﬁéne oxide f:aprl]zr;’:ﬁ) dodecane, [S] = 500 ppm); n(H,0,/DBT) = 6; | within 150 min 10 [31]
[catalyst] = 10 g/L; ({Mo43,}: k =0.0196 h, {Mo0,3,}/GO: k
DBT = dibenzothiophene =0.0311 h?)
T =100 °C; t = 6 h; m(catalyst) = 20 mg; O, -
. oxidant; p = 1 atm; model oil (DBT in 100 % conversion of DBT and 97 % of
(NHa)sHePV*sMo™40u Kegein decalin; [S] = 500 ppm); V(model oil) =6 mL; | Th within6 h 10 (32]
DBT = dibenzothiophene; Th = thiophene
PhPyBs-PW; T=rtor 70 °C; t = 10 min; m(catalyst) = 40
PW = H;PWV',04, mg; H,0, 30 % aq, n = 1 mmol; H,0,/S = 1:1;
PhPyBs = ionic liquids Keggin 4 mL of H,0 or H,0:EtOH (5 mL, v/v = 7:3); sulfur removal efficiency of 90 % 5 (33]
containing 4-phenyl-pyridine model fuel (DBT in 4 mL n-hexane; [S] = 100, | within 10 min in model oil
(PhPy) and 1,4-butane 700 and 1000 ppm);
sultone (Bs) DBT = dibenzothiophene
T =60 °C; t =90 min; solvent — MeCN;
. V(MeCN) = 60 mL; model fuel (sulfur 90.26 % thiophene removal efficiency
HiPW"'sM0"s04 Keggin compound in 60 mL octane; sulfur content within 90 min atleast 2 (34]
of 0.050 mass %)
' T=60 °C; p =1 atm; O, as oxidant; m(DES) =
épzygg(])}%‘leo"')EMC’V'GO”/PE 4 g; n(HBA):n(HBD) = 1:2; V(model oil) = 20
[PyPS] = ’ mL; m(POM) = 20 mg; O, flow 60 mL/min; t
. Anderson- =4 h for model oil; t = 8 h for commercial 98 % DBT removal efficiency within 3
pyridylphenylsulfonate, . N o 5 [35]
PEG2000 = polyethylene Evans diesel; T = 80 °C for commercial diesel; h
glycol 2000, HBA = hydrogen bond acceptor; HBD =
BSA = bovine serum albumin hydrogen Pond donor; DBT =
dibenzothiophene
Vv . T=80-100°C;t=4-8 h; p=1atm; O, - 10
E:(;\l:i)S(CTA)GPMO aV*s0ul; Keggin oxidant; model oil ([DBT] = 500 ppm, DBT removal efficiency of 100 % (36]
cetyltrimethylammonium V(decalin) = 6 mL); n(catalyst) = 0.05 mmol; within 8 h at 100 °C
DBT = dibenzothiophene
T =50 °C; t = 60 min; n(catalyst)/n(S) =
[Co(MIM),]PWV'1,040; 0.025; n(H,0,)/n(S) = 6; H,0, — oxidant; -
[C(MIM),] = 1-ethyl-3- Keggin V(model oil) =5 mL (DBT in n-octane); D?T .removall efficiency of 98.4 % atleast7 | [37]
methylimidazolium V(MeCN) = 0.5 mL; within 60 min
DBT = dibenzothiophene
T =35 °C; t = 60 min; model oil ([S] = 500
(In- ppm in n-heptane); V(model oil) = 50 mL; 97 % of total sulfur (wt%) removed in
. Keggin V(H,0,/AcOH) = 3 mL (v/v = 1:2); extraction real gasoline within 60 min at least 5 [38]
CaNolaN)iHIPW*1FeOs]/NiO solvent — MeCN; m(catalyst) = 0.1 g; (DBT rate constant k = 0.049 min-t)
DBT = dibenzothiophene
T=60 °C; t =9 min; H,0, — oxidant; model
oil (DBT, BT and 4,6-DMDBT in n-octane, [S]
=1000 ppm); V(model oil) =5 mL;
Al O3-P,WY'35-Cy;
P,W,5 = Naj,[a- Wells- m(cat.alyst) = 116.0 mg; V(H;0,) = _48'0 WL 100 % of sulfur removal within 9 min at least
P WYL Osc]- 24H,0, Dawson real diesel sample ([S] = 425 ppm); 2t 60 °C 10 [39]
C, wheren=8,120r 18 n(H,0,)/n(S) = 3:1;
v ! BT = benzothiophene; DBT =
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
T =35 °C; t = 60 min; model fuel (500 ppm
of Th, BT and DBT in n-heptane); V(model DBT removal efficiency of 98 % in
fuel) = 50 mL; V(oxidant) = 3 mL; oxidant model oil and 96 % in real fuel within
PWV'1,0,0@MnFe,04 Keggin system: H,0,/aceticacidv/v=2:1;p=1 60 min 5 [40]
atm; m(catalyst) = 0.1 g; (rate constant for DBT, k = 0.053 min-
Th = thiophene; BT = benzothiophene; DBT 1)
= dibenzothiophene
for model oil: T=60 °C; t = 30-120 min;
model oil (sulfur-containing compounds:
DBT, BT and 4,6-DMDBT in n-octane, [S] =
500 ppm); V(model oil) = 20 mL; m(catalyst)
" =0.08 g; V(H,0,, 30 % aq) = 100 pL; H,0, —
glg['a—PZW 17061]-20H,0/3D Wells- oxidant; V(MeCN) = 20 mL; complete removal of DBT and THT
3D GO = three-dimensional Dawson for THT: m(catalyst) = 0.02 g; V(MeCN) =5 within 120 min and 30 min, 5 [41]

graphene oxide

mL; V(H,0,, 30% aq) = 100 puL; H,0, -
oxidant; T =25 °C;

respectively
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BT = benzothiophene; DBT =
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; THT =
tetrahydrothiophene

P[Vim]POM/GO;
P[Vim] = 1-ethyl-3-
methylimidazolium cation,

Wells-

T=60 °C; t = 60-120 min; m(catalyst) = 0.13
g; n(H,0,)/n(S) = 9; model fuel ([S] = 2000
ppm in octane); V(model fuel) = 10 mL;
extraction solvent — DMF; V(DMF) = 10 mL;

DBT, 4,6-DMDBT and 4-MDBT
removal efficiency of 100 % within 60
min; Th and BT removal efficiency of

POM = Dawson DBT = dibenzothiophene; 4,6-DMDBT = 4,6- 91.8 % and 96 % within 120 min, 7 [42]
HgP,M0Y'16VY,0¢,:14H,0, dimethyldibenzothiophene; 4-MDBT = 4- respectively;
GO = graphene oxide methyldibenzothiophene; BT = k(DBT) = 0.1071 min!
benzothiophene
[Cus,(BTC)g(H,0)1,][HsPMoYy
V. .
‘[’zuzo(“g]%“:;oc);‘)ﬂ (]1[);‘ PMoV T=65"°C;t=5h; m(catalyst) =0.03 g;
va ]@(H8 0)2 (122)‘ 4 ! Kegain n(substrate) = 0.5 mmol; n(0)/n(S) = 6; DBT removal efficiency of 89.6 % (1) 4 (43]
1 Pl 0 12 88 V(CH,Cl,) = 5 mL; and 85.8 % (2) within 5 h
BTC = benzene-1,3,5- X .
. N . . DBT = dibenzothiophene
tricarboxylic acid or trimesic
acid
[PMoV',,0,,]*/Ti-TUD-1; T=70°C;t=2h; m(gas 0|!) =40 g; m(H,0,
! T 30 % aq) = 14 g; H,0, — oxidant; m(catalyst)
Ti-TUD-1 = titanium- ) ) 68 wt % of sulfur content removed at
containing mesoporous silica Keggin =2 g; solvent — toluene; extraction solvent — 70 °C within 2 h 3 [44]
. J P methanol; V(MeOH) = 40 mL; n(H,0,)/n(S) =
material 10
Fe;0,@CS@POM; T=607C;t =.60-90 min; m(cataIYSt) =100 DBT removal efficiency of 100 %
POM = PMo¥'-- > PWVI-. > mg; model oil ([DBT] = 500 ppm in octane); within 90 min
12 12 Keggin V(model oil) = 20 mL; V(H,0, 30%) = 100 puL; . 5 [45]
P,WY; > P,WY g > SIWY,, . (k =0.0761 mint) for POM =
CS = chitosan H,0, — oxidant; V(MeCN) = 20 mL; [PMo,0u]*
" DBT = dibenzothiophene 12540
[(n- T =40 °C; model oil (500 ppm of Th or BT in
C4Hy)4N);HsSi,WV'15CdyOgs]@ | sandwich n-heptane); V.(moc.jel oil) N >0 mL; oxidant - BT and Th removal efficiency of 98 %
2:1 H,0,/acetic acid; V(oxidant) = 6 mL; e A 5 [46]
PVA; type and 97 % within 2 h, respectively
PVA = polyvinyl alcohol m(catalyst) =0.1g;t=2h;
= polyviny BT = benzothiophene; Th = thiophene
VI .
{Eﬁ%:::m}iivzrlgon‘:oc’ T=50°C; t = 105 min; model oil (DBT in n-
s T g . . octane); n(0)/n(S) = 15; H,0, — oxidant; DBT removal efficiency of 99.4 wt %
sulfonic acid-functionalized Keggin L. . at least 6 [47]
heterocvelic ammonium solvent — DMF; within 105 min
. Y DBT = dibenzothiophene
cation
MoV'0 = [Mo044]%, ) ) PP ! N ! DBT removal efficiency of 100 %
. Lindqvist m(catalyst) = 0.010 g; n(O/S) = 2; H,0, — s . 7 [48]
50-DTA = 50 % loading of . within 40 min
dodecyltrimethylammonium oxidant; V(H;0,, 30 %) = 11 ul;
4 Y DBT = dibenzothiophene
i VI i0-
([gllm(CHZ)ECOOhPW @uio T =70 °C; t = 60 min; model oil (DBT in n-
[m,im(CH 1,CO0]* = octane; [S] = 1000 ppm); V(model oil) =5
meth Iimzisjazoliur; Keggin mL; m(catalyst) = 40 mg; V(MeCN) = 4.5 mL; DBT removal efficiency of 100 % at least (49]
v am- o g8 n(0/S) = 5; m(H,0, 30 %) = 0.09 g; H,0, — within 60 min 10
propionate derivative cation, )
UiO-66 = zirconium-based oxidant;
R DBT = dibenzothiophene
metal-organic framework
T =70 °C; t = 40-190 min; model diesel (BT,
DBT, 4-MDBT and 4,6-DMDBT in n-octane,
[S] = 2000 ppm); V(model diesel) = 1 mL;
TBAPW,,J; lacunary n(H,0,/S) = 3; p = 1 atm; n(catalyst) = .3 comyf)lete desulfurization .of .
TBA = tetrabutvlammonium Keggin umol; n(H,0,) = 0.24 mmol; H,0, — oxidant; multicomponent model diesel within 10 [50]
= ¥ €8 DBT = dibenzothiophene; 4,6-DMDBT = 4,6- | 190 min
dimethyldibenzothiophene; 4-MDBT = 4-
methyldibenzothiophene; BT =
benzothiophene
o Vi - °C.t = in. —A-
Sj!g[((c:s:l?)aPCMHzg]aPMO 1,0 (T)”) EEOS r(;Lt mts;)tg;:;)n_(%/g)s g~4i3 \lls(Tm_odeI DBT and 4,6-DMDBT removal
40/ 5~-3N3g, . - 2 =U. ’ = . . o, o eals
g-CsN, = graphitic carbon Keggin dibenzothiophene; 4,6-DMDBT = 4,6- efﬁmepcy of 100/) and 94.8 % within 6 (511
L . . . 180 min, respectively
nitride dimethyldibenzothiophene
T =60 °C; t = 2 h; model oil (DBT ([S] = 500
ppm, in 200 mL petroleum ether); V(model
[H:PWV,,040]/2r0, Keggin oil) = 20 mL; m(catalyst) = 0.05 g; solvent — complete removal of DBT within 2 h 20 (52]

MeCN; V(MeCN) = 10 mL; n(O/S) = 4;
V(H,0,, 30 wt % aq) = 64 uL; H,0, — oxidant;
DBT = dibenzothiophene

(k =0.0421 min?)
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[H3PMo0"';,0,4]/Si0,@C;
SiO,@C = silica (SiO,) coated

T =40 °C; t =3 h; model oil (800 ppm of DBT
in n-octane); V(model oil) = 2 mL; V(MeCN)

DBT removal efficiency of > 99 %

Keggin =2 mL; n(H,0,, 30 wt %) = 0.15 mmol; H,0, - 5 [53]
z;i’:ir;?srtw on carbon (C) — oxidant; n(catalyst) = 0.002 mmol; within 3 h
DBT = dibenzothiophene
T =100 °C; t = 3 h; model oil (DBT, BT and
POM/PIL/Gr; 4,6-DMDBT in decahydronaphtalene, [S] =
POM = Anderson- 500 ppm); V(model oil) = 20 mL; m(catalyst) DBT, BT and 4,6-DMDBT removal
[(NH,)3Co(OH)¢M0Y'¢04s], Evans =10 mg; efficiency of 100 %, 72.5% and 100% | 6 [54]
PIL = poly(ionic) liquid, DBT = dibenzothiophene; 4,6-DMDBT = 4,6- within 3 h, respectively
Gr = graphene dimethyldibenzothiophene; BT =
benzothiophene
T=35°C; t=1h; CH;COOH:H,0, (v/v = 2:1)
as oxidant; V(oxidant) = 6 mL;
model oil (DBT, BT and Th in n-heptane, [S] Th, BT and DBT removal efficiency of
CaHaNz-[HsPW1;040] @CTS; Keggin =500 ppm); V(model oil) = 50 mL; V(MeCN) | 96 %, 97 % and 97 % within 1 h, 5 [55]
CTS = chitosan .
=10 mL; respectively
DBT = dibenzothiophene; BT =
benzothiophene; Th = thiophene
IMoV'¢@iPAF-1; T=90-100 °C; t = 5-6 h; O, - oxidant; -model oil: DBT removal efficiency of
IMoVg = Anderson- m(catalyst) = 10-20 mg; model oil (500 mg/L | 100 % at 90 °C within 5 h;
[Nas[IMoV'¢0,,4]-3H,0], Evans DBT in 6 mL decalin); V(diesel or gasoline) = -real gasoline and diesel: sulfur 9 [56]
iPAF-1 = ionic porous 10 mL; removal of 99.3 % and 99.4 % at 100
aromatic framework DBT = dibenzothiophene °C within 6 h, respectively
1.5HPA@MOF-199@CA;
HPA = T=40"°C; t=3h; O, - oxidant; [catalyst] = sulfur removal efficiency of 99.23 %
[H3sPM0v'sWV's0,40-nH,0], ) 12 K -
Keggin 1.8 g/L; model oil (thiophene in n-octane, within 3 h 10 [57]
MOF-199 = porous copper- [S] = 1000 ppm); V(model oil) = 50 mL (k = 1.655 h)
based MOF platform, ! ’
CA = carbon aerogel
E%Sfi@[':l':;;a’!iwxgi]w' T=50°C; t = 60 min; air flow rate = 1000
- . L/min; model oil (DBT in n-dodecane, [S] = DBT removal efficiency of 100 % in 60
NH,-MIL-101 = metal-organic | Keggin K 15 [58]
framework with amino 2000 ppm); [cata.lyst] =07-08g/L; min
DBT = dibenzothiophene
groups (NH,)
T=35°C; t=1h; model oil (Th (500 ppm),
BT (500 ppm) and DBT (500 ppm) in n-
Cu-SPOM@PbO@PVA; heptane); V(model oil) = 50 mL; Model oil: Th, BT and DBT removal
Cu-SPOM = lacunary V(H,0,/CH;COOH, v/v 2:1) =3 mL; efficiencies of 97 %, 98 % and 98 %
Nay3[(CuWY'403,),H3Cu,(H,0), Keggin H,0,/CH;COOH — oxidant; real gasoline ([S] within 1 h, respectively; 5 [59]
]-39H,0, = 4996 ppmw); m(catalyst) =0.1 g; Real gasoline: sulfur removal
PVA = polyvinyl alcohol DBT = dibenzothiophene; BT = efficiency of 97 % within 1 h
benzothiophene; Th = thiophene; ppmw =
parts per million by weight
T=60 °C; t =2 h; model oils (500, 1000 and
2000 ppm of DBT, BT and 4,6-DMDBT in
[B-SiMoY;W¥l40,0] @1-CCNF; '_’esptaﬂe&' :gat;')y“l ;/1(_) i \L’.(r:cgje' ol | b7, BT and 4,6-DMDBT removal
1-CCNF = 1-dimensional Keggin o d";n'tl_ (H:02 30 wt %) = 50 ul; H;0, - efficiencies of 99, 89 and 100 % atleast3 | [60]
carbon chain nanofibers DBT = dibenzothiophene; 4,6-DMDBT = 4,6- within 2 h, respectively
dimethyldibenzothiophene; BT =
benzothiophene
T=30"°C; t =100 min; H,0, - oxidant; model
oils ([S] = 500 mg/L, DBT, BT or 4,6-DMDBT
in petroleum ether); V(model oil) = 10 mL;
[H3PWY'1,04]/Si0, Keggin \f;}(:lijct)az,'\';é)w’cq’zl) i.éé(l\:f;CN) 10 mL; t;::\zlegg :(e:moval of DBT within 100 6 61]
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; BT =
benzothiophene
T=70°C; t = 1-2 h; n(H,0,/S) = 13-16; real
diesel ([S] = 23100 ppm); H,0, - oxidant;
SMPOM@TMA-LPMS; model diesel (BT, DBT, 4-DMDBT and 4,6-
SmPOM = DMDBT in n-octane, [S] =2100 ppm);
[Sm(PM0Y'1;030),]'%, Keggin extractant system — model a) Model diesel: complete
TMA-LMPS = sandwich- diesel/[BMIM]PFg (v/v = 1:1); desulfurization within 1 h; 3 (62]
trimethylammonium- type DBT = dibenzothiophene; 4,6-DMDBT = 4,6- b) Real diesel: sulfur removal of 74 %

functionalized (TMA) large-
pore mesoporous silica
spheres (LMPS)

dimethyldibenzothiophene; BT =
benzothiophene; 4-DMDBT = 4-
methyldibenzothiophene; [BMIM]PF; = 1-

in2h
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butyl-3-methylimidazolium
hexafluorophosphate

[PMoV]@CuO@PAN;

T=35°C; t =1 h; model oil (500 ppmw of
Th, BT and DBT in n-heptane); V(model oil) =
50 mL; 700 rpm; V(oxidant) = 3 mL; oxidant
—H,0,/acetic acid (v/v = 2:1); solvent —

a) Th, BT and DBT removal efficiency
of 96 %, 97 % and 97 % respectively

= VI \/V i . - . -
PMoV K4[PM9 121VV04q], Keggin MeCN; m(catalyst) = 0.1 g; V(MeCN) = 10 b) Real gasoline- sulfur removal 5 [63]
PAN = polyaniline ml; efficiency of 96 % within 1 h
DBT = dibenzothiophene; BT = ¥ °
benzothiophene; Th = thiophene; ppmw =
parts per million by weight
VI N -
{gw l]léJ@l'-ll\-/lMAf\PﬁgEls and T =70 °C; t = 60 min; model oil (500 ppm of
1 ’ 1-BT, DBT, 4-MDBT and 4,6-DMDBT in n- .
[PWy3] = [PWY};05]7, octane, [5] = 2000 ppm); n(POM) = 3 umol: a) Complete conversion of DBT, 4-
TMA-SBA-15 = SBA-15 ) s ppmy; oo Hmor; MDBT and 4,6-DMDBT within 30 min
L biphasic system: 1:1 of model diesel/MeCN
aminosilylated mesoporous . under solvent-free system (both
e X . (V = 1.5 mL); oxidant — H,0,; V(H,0,, 30 %) = -
silica (SBA-15) functionalized 40 L n(H,0,/5) = 4; catalyst); for 1-BT: removal efficiency
with trimethylammonium Keggin HY 22A=TE . of 99.6 % within 60 min only with max. 6 [64]
solvent-free experiments: V(model diesel) =
groups, PW;;@TMA-SBA-15
750 uL; n(H,0,) = 3 umol; n(H,0,/S) = 4; - .
TMA-PMOE = . . b) Biphasic system: sulfur removal
. . DBT = dibenzothiophene; 4,6-DMDBT = 4,6- - .
trimethylammonium- . . . efficiency of 93.1 % with PW,; @TMA-
functionalized (TMA) dimethyldibenzothiophene; 1-BT = 1- SBA-15
L benzothiophene; 4-DMDBT = 4-
periodic mesoporous methyldibenzothiophene
organosilica (PMOE) Y P
T=35°C; t=1h; m(catalyst) = 0.1 g; oxidant
DBT, BT and Th |
[PMo",,Cu] @MgCu;0,@Cs; — CH3COOH/H,0,; V(oxidant) = 3 mL; a) DBT, BT and Th remova
N . efficiencies of 99 %, 98 % and 97 %
CS = chitosan, Keggin extraction solvent — MeCN; V(solvent) = 10 within 1 h. respectivel 5 (65]
[PMo,Cu] = % mL; V(fuel) = 50 m; b) Real a;olin’; - sulf:r removal
[PM0oY';;CuQy4)>- DBT = dibenzothiophene; BT = efficienf of 98 %
benzothiophene; Th = thiophene ¥ ?
T =70 °C; t = 60 min; oxidant — H,0,;
" e solvent-free: n(H,0,/S) = 4; biphasic:
{E‘P\:\;S;léz}ﬂaf’ﬁ?:ﬁ 1 n(H,0,/5) = 8; model diesel (1-BT, DBT, 4-
P R e MDBT and 4,6-DMDBT in n-octane, [S] = a) Solvent-free: complete
functionalized ((3- ) . s .
aminopropyl)triethoxysilane Keggin 2000 ppm); p = 1 atm, extraction solvent — desulfurization within 60 min; 5 66]
(a tes)F; miio orous zilica &8 MeCN; b) Biphasic system: 97 % of
(SSA»ls) P DBT = dibenzothiophene; 4,6-DMDBT = 4,6- desulfurization within 60 min
PWY Zr,1] = [PW,,ZnOss]> dimethyldibenzothiophene; 1-BT = 1-
ne e e benzothiophene; 4-DMDBT = 4-
methyldibenzothiophene
VI _
EE';"‘]’ [gsl‘:‘;ll@gp‘g g’r'zN’ T=70°C; t =3 h; n(POM) = 3 umol; oxidant
BMIMLPMO O] —H,05; V(H;05) = 75 L n(H;05)/n(S) = 11;
PP —MS?\I = bol 12 :‘;olle— 1:1 model diesel/[BMIM][PFg] ionic liquid;
v = polypy . model oil (1-BT, DBT, 4-MDBT and 4,6- ..
coated mesoporous silica . . sulfur removal efficiency of 98 %
nanoparticles Keggin DMDBT in n-octane, [S] = 2350 ppm); within 3 h 3 [67]
(BP ]p_ 1-but ,I ridinium DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
cati\c/m_ yiey dimethyldibenzothiophene; 1-BT = 1-
: benzothiophene; 4-DMDBT = 4-
[BMIM]* = 1-butyl-3- enzothiophene;
- . . methyldibenzothiophene
methylimidazolium cation
T=60 °C; t =2 h; model oil (BT, DBT, 4-
MDBT and 4,6-DMDBT in n-heptane, [S] =
(TBA)[PWV'Fe]/PVA/CTS; 500 ppm); V(model oil) = 50 mL; oxidant — - -
(TBA)PWFe = H,0,/acetic acid (v/v = 1:1); V(oxidant) = 6 3)7(2;?”0'2' .hsulfur removal efficiency of
. 0
(n- Keggin mL; m(catalyst) = 0.1 g; extraction solvent — b) Model oil: BT, DBT, 4-MDBT and 5 (68]
C4Hg)sN)4[PWV'y;Fe(H,0) 03], MeCN; V(MeCN) = 10 mL; o
. ) 4,6-DMDBT removal efficiency of 96
PVA = polyvinyl alcohol, BT = benzothiophene; DBT = % 98 % 97 % and 97 %. respectivel
CTS = chitosan dibenzothiophene; 4,6-DMDBT = 4,6- ” ” ? o Tesp v
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene
[Ni,CI(TMR4A),(CH;CN),]-[P T=507C;t=3-14 h; n(catalyst) = 2 umol; Removal efficiencies of both
oxidant — TBHP; n(TBHP) = 1 mmol;
Mo*,2040]-4CH;CN and n(substrate) = 0.4 mmol; V(CH,Cl,) = 5 mL; catalysts:
. =u. N L) = ) _ 9, . s .
[Co,CI(TMR4A),(CH;CN),]-[P Keggin BT = benzothiophene: MBT — 100% conversion within 3 h; 5 (69]

Mo¥';,040]-4CH5CN;
TMRA4A = resorcin[4]arene-
based ligand

DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; THBP = tert-
butyl hydroperoxide

DBT — 99 % conversion within 10 h;
4,6-DMDBT — 88 % conversion within
14 h and BT — 69 % within 14 h

T=60 °C; t =120 min; m(catalyst) = 0.02 g;
n(0O/S) = 2; model fuel (DBT, BT or 4,6-
DMDBT in petroleum ether, [S] = 1000
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ug/g); V(model oil) = 20 mL; V(MeCN) = 20
mL;

BT = benzothiophene; DBT =
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

[PWY';]@aptesSBA-15;

T=70°C; t=1h; model diesel (500 ppm of
1-BT, DBT, 4-MDBT and 4,6-DMDBT in n-
octane); biphasic system: 1:1 diesel/MeCN;

[PWV'3,] = [PWY',036]7-, oxidant - H,0,; n(0/S) = 8; n(POM) = 3 a) Model oil -
aptesSBA-15 = amino- lacunary umol; complete desulfurization of within 1
functionalized ((3- Keggin real diesel ([S] = 2300 ppm); n(O/S) = 4;t=2 h; [71]
aminopropyl)triethoxysilane h; b) Real diesel: sulfur removal
(aptes)) mesoporous silica 1-BT = 1-benzothiophene; DBT = efficiency of 83.4 % within 2 h
(SBA-15) dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene
T=90°C; t =6 h; oxidant — O,; flow rate =
60 mL/min; biphasic system — model
diesel/[Opy]BF,; model diesel (DBT, 4-
gz?oD;MAC)3C°(OH)6M°W60”' DMIDBT or 4,6-DMDBT in decalin, [5] = 500
DODMAC = Anderson- ppm); V(model oil) = 20 mL; m(catalyst) =10 || 010 emoval of DBT within 6 h [72]
dodecyltrimethylammonium Evans me; V([pr]BF;,)/.V(modeI oil) = 1:5;
. DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
chloride surfactant . R .
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene; [Opy]* = 1-
octylpyridinium cation
T =60 °C; m(catalyst) = 0.5 wt %; t = 300
min; model oil (DBT, BT and 4,6-DMDBT in
Ke[ot- . oy = . ayi
P,WV'150¢,]-14H,0/mGO; Wells- n-octane); V(model oil) = ,60 mL; oxidant - sulfur removal efficiency of 96.10 %
mGO = modified graphene Dawson 0y; flow rate = 200 mL/min; within 300 min (73]
oxide BT = benzothiophene; DBT =
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
(NH,4)3Co(OH)sM0ov's015/p- T=60 °C; t =1 h; model diesel ([S] = 500
TsOH/PEG4000 (1:2); ppm); V(model diesel) = 20 mL; V(DES) = 4
p-TsOH = para- Anderson- mL; m(catalyst) = 20 mg; p = 1 atm; oxidant
toluenesulfonic acid, Evans — 0,; flow rate = 60 mL/min; solvent - DBT removal efficiency of 99 % in 1 h [74]
PEG4000 = polyethylene MeCN;
glycol with average DBT = dibenzothiophene; DES = deep
molecular weight 4000 eutectic solvent
T =60 °C; m(catalyst) =0.2015 g; n(O/S) =
10; oxidant — H,0,; t = 3 h; model oil (DBT in - o
[C;Hy(CH3)sN]sPWY50s, Keggin n-octane; [S]o = 500 ppm); m(H,0;) = 0.749 \?viThir:?Eval efficiency of 100 % (75]
g
DBT = dibenzothiophene
T =35 °C; t = 60 min; model oil (Th, BT and
Fe,WsFe,@NiO@CTS; DBT in n-heptane, [S] = 500 ppm); V(model a) Gasoline: sulfur removal efficiency
Fe,W,sFe, = sandwich- oil) = 50 mL; m(catalyst) = 0.1 g; oxidant - of 97 % within 60 min;
NaoK[(FeWV'503,),Fes(H,0),]: ¢ H,0,/acetic acid (v/v = 2:1); V(oxidant) = 3 b) Model oil: Th, BT and DBT removal [76]
32H,0), ype mL; V(MeCN) = 10 mL; efficiencies of 97 %, 98 % and 99 %,
CTS = chitosan Th = thiophene; BT = benzothiophene; DBT respectively
= dibenzothiophene
T =25 °C; m(catalyst) =10 mg;
t = 60 min; n(H,0,)/n(S) = 3, V(H,0,) = 0.053
mL; oxidant — H,0,; V,/Voi = 1/10;
[(PyPS](NH4);MoY,0,; ) " V([OmirTﬂ]BF‘,) =1 mL; model oil (DBT in n- a)‘ DhBT remgve.\l efficiency of 99%
[PyPS] = eptamolybd octang), within 69 min; (77]
. . ate real diesel: V(H,0,) = 2 mL; m(catalyst) =0.2 | b) Real diesel: sulfur removal
pyridylphosphinosulfonate g T=80°C;t=4h; efficiency of 96 %
DBT = dibenzothiophene; [Omim]* = 1-
methyl-3-octylimidazolium cation; IL = ionic
liquid
T =50 °C; t = 2 h; m(catalyst) = 40 mg;
model oil (BT, DBT and 4,6-DMDBT in n-
POM-PMI,; octane ([S] = 250, 500 or 1000 ppm));
POM = [B-M0"304]*, octamolybda | m(model oil)= 10 g; n(H,0,/S) = 5; V(MeCN) DBT removal efficiency of 98.9 % (78]
PMI, = poly(2,p- te =10 mL; oxidant — H,0,; within 2 h

methylphenylionene)

BT = benzothiophene; DBT =
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene

S9



3DOM HPW/AI-TiO,;

HPW = [H3PWY'1,04],

3DOM HPW/AI-TiO, = three-
dimensionally ordered

T =60 °C; m(catalyst) =0.03 g; n(0/S) = 4; t =
1 h; oxidant — H,0,; [S] = 500 ppm; V(model

DBT removal efficiency of 99.7 %

macroporous (300M) Keggin oil) = 10 mL; V(MeCN) = 10 mL; within 1 h 6 (79]
alumina (Al) doped DBT = dibenzothiophene
phosphotungstic acid (HPW)-
TiO, material
T=70°C; t=2h; model oil (1-BT, DBT,4-
PMo,,@TBA-MSN; MDBT and 4,6-DMDBT in n-octane, [S] =
PMo,, = [PMoY'1,040]%", 2016 ppm); n(catalyst) = 3 umol; n(O/S) =
TBA-MSN = . . 13; V(H.ZOZ) = 75 u; oxidant = H,0,; complete desulfurization of model oil
tetrabutylammonium- Keggin extraction solvent - MeCN; L 3 [80]
functionalized (TBA) 1-BT = 1-benzothiophene; DBT = within 2 h
mesoporous silica dibenzothiophene; 4,6-DMDBT = 4,6-
nanoparticles (MSN) dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene
40 % HPW-GO; T=60 ".C; t = 30-60 min; oxidant — H,0,;
40 % HPW = 40 % (wt %) of ‘ extraction solvent — MeCN; n(O/S) = 6; complete !’er.noval of DBT and 4,6-
[H:PWY,,0,0] Keggin [catalyst] = 5 g/L; DMDBT within 30 min and complete 8 [81]
GO = graphenle oxide DBT = dibenzothiophene; 4,6-DMDBT = 4,6- removal of BT within 60 min
dimethyldibenzothiophene
TBA-SL,WYL.Mn, @SAB; T= 3.5 °C; t = 1 h; CH;COOH/H,0, — oxidant; .
TBA-SL,WYLMn, = V(oxidant) =3 mL; m(catalys.t) =0.1g; a) I.?(?al gasoline: sulf.ur.removal
(n-CaHo)aN) Hs [(SIWs054),M sandwich- model fuel (DBT, BT and Th in n-heptane, [S] | efficiency of 97 % within 1 h;
N (H,0), type =500 ppm); V(model fuel) = 50 mL; solvent b) Model fuel: DBT, BT and Th 5 [82]
SBA = me-lsoporous silica — MeCN; V(MeCN) = 10 mL; removal efficiency of 98 %, 97 % and
material BT = benzothiophene; DBT = 96 %, respectively
dibenzothiophene; Th = thiophene
T =50 °C; t = 120 min; model oil ([S] = 500
. ppm in n-octane); V(model oil) = 5 mL;
E(Ccrfgl;;fc(.c”H”)]3PM° 12040 oxidant — H,0,; n(catalyst) = 0.0156 mmol; DBT, 4-MDBT and 4,6-DMDBT
Chel = cho’line chloride Keggin n(0)/n(S) = 4; V(ChCl/2Ac) = 2.5 mL; removal efficiencies of 97.2%,80.7% | 5 [83]
Ac = acetate ! DBT = dibenzothiophene; 4-MDBT = 4- and 76.0 % within 2 h, respectively
methyldibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
HPA-GO;
- Vi
}[-iHZ/:’I\_/Ic[)U':m'?OZ?AOL T =50 °C; t = 30 min; catalyst loading: 2.4 g sulfur removal efficiency of 100 % ([S]
! Keggin L%; n(O/S) = 6; extraction solvent — MeCN; =500 ppm) and 97.5 % ([S] = 1000 nsp [84]
[HsPMOYeW"'sOso], or [S] = 500 ppm or 1000 ppm ppm) within 30 min
[H3PWY'1,040];
GO = graphene oxide
m(catalyst) =0.01 g; T =60 °C; t = 60 min;
n(0/S) = 3; model oil (BT, DBT, 4-MDBT and
[Cmim]sPMoV1,040/S105: 4,6-DMDBT in n-octane., [S] =250 ppm); 707%
[C4mim]* = 1-butyl-3- Keggin Vimodel oil) =5 mL, oxidant - H,0,; sulfur removal efficiency of 100 % activity [85]
methylimidazolium cation BT = benzothiophene; DBT = loss)
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; 4-DMDBT = 4-
methyldibenzothiophene
T=35°C;t=1h; m(catalyst) =0.10 g;
FeWV',,V@CTAB-MMT; 7 V(oxida.nt) =3 mL; oxidant - HOAC/"_‘zOz; BT, DBT and Th removal efficiencies
FeWV';1V = [Fe"WV'1,VVO 4] 7, extraction solvent — MeCN; model oil (Th, BT o o of iep
CTAB-MMT = ) and DBT in n-heptane, [S] = 500 ppmw); of 98 %, 99 % and 97 % within 1,
. . Keggin . respectively 5 [86]
cetyltrimethylammonium V(gasoline) = 50 mL; . -
bromide-modified BT = benzothiophene; DBT = gasolmfe: §ulfur removal efficiency of
. . K . 97 % within 1 h
montmorillonite dibenzothiophene; Th = thiophene; ppmw =
parts per million by weight
[Camim]3H5VV100,5/8-BN;
n=38,12,16; T=120°C; t =4 h; m(catalyst) = 0.08 g; 6(04%
[C,mim] = 1-cyanomethyl-3- decavanadat model oil ([S] = 500 ppm); V(model oil) = 40 DBT removal efficiency of up to 99.8 87
methylimidazolium, e mL; oxidant — air; flow rate = 100 mL/min; % within 4 h f:st;\)”ty [
g-BN = graphitic boron DBT = dibenzothiophene
nitride
42 % PTA@MOF-808A;
42 % PTA =42 % (wt %) T =60 °C; t = 30 min; m(catalyst) = 12 mg; o -
loading of [H3PWV4,040], . extraction solvent — MeCN; V(MeCN) = 2 co.mplete desulfurization within 30
Keggin min at least 5 [88]

MOF-808A = zirconium-
based metal-organic
framework

mL; model oil ([S] = 1000 ppm); V(model oil)
=2 mL; oxidant — H,0,; V(H,0,) = 21 uL

(k=0.16 min')
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CNTs@MOF-199-Mo,5Vs; . )
MoV, = T =80 °C; t = 180 min; m(catalyst) =0.12 g;
[HgP,M0"16VY,06,"mH,0), Wells- model oil (2.87 g DBT in 259 ml n-octane, DBT removal efficiency of 98.30 %
[S] = 2000 ppm); V(model oil) = 50 mL; L. R 7 [89]
CNTs = carbon nanotubes, Dawson R . within 180 min
MOF-199 = based oxidant — O,; flow rate = 1.5 L/min;
~197 = copper-base DBT = dibenzothiophene
metal-organic framework
T=60°C; t=3h; p=ambient pressure;
o 101, r T 059
PMo = [PMo"1:0:”, Keggin 0.0056 mmoFT' oxidant — 30% H,0,; n(H,0,) = | 100 % of DBT and 4,6-DMDBT ns [90]
BzPN-SiO, = benzyl-modified €8 ’ ! o TR 2R =1 conversion P
orous silica (SiO,) 1.51 mmol;
P 2 DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
T=120°C; t = 12 h; n(oxalic acid) = 0.5
mmol; n(POM) = 0.5 mmol in 100 mL of complete desulfurization of model oil
[HgPVVsMoY';04] Keggin H,0; model oil (0.25 mmol of DBT in 10 mL | p at least 5 [91]
. within 12 h
n-tetradecane); p = 20 bar; oxidant — O5;
DBT = dibenzothiophene
T =60 °C; t = 90 min; n(H,0,)/n(DBT) = 4;
[C,quin]s,M0V'504, n(DBT)/n(catalyst) = 100; model oil (500
) 5(4.8%
n=254% octamolybda | PP Of S-compounds in n-dodecane); DBT removal efficiency of up to 99.2 of
[C,quin]* = N- ¥ V(model oil) =5 mL; V([Csmim]BF,) =1 mL; L . ¥ P ’ L [92]
T . . te . Lo % within 90 min activity
alkylquinolinium cation with [Cemim]BF,—ionic liquid phase; loss)
alkyl chain lengths n=2,5,8 DBT = dibenzothiophene; [Csmim]* = 1-
octyl-3-methylimidazolium cation
model diesel (S-compounds ([S] = 2000
PMo,,@MOF; ppm) I? n-octane); V(modeol diesel) = .0'75 a) Real diesel: sulfur removal
PMoy, = [PM0¥';,040]% mL; oxidant - H,0,; T = 50 °C; extraction efficiency of 80 % within 2 h;
v 1200 Keggin solvent — MeCN or [BMIM][BF¢]; n(POM) = 3 ! ’ 3 [93]
MOF = metal-organic umol; V(extracting solvent) = 0.75 mL; b) Model diesel: sulfur removal
A ; =0. ; - o
framework NH,-MIL-101(Cr) n(H;05) = 0.30 mmol; t = 2 h; efficiency of 95 %
[BMIM] = 1-butyl-3-methylimidazolium
POM@MOF-199@LZSM-5;
- VI \\VI
POM = [H;PMo"eW"'sOsl, T =60 °C; t =120 min; [catalyst] = 1.5 g/L; [S] o 10(8.96
MOF-199 = copper-based . X complete desulfurization within 120 % of
R Keggin = 2000 ppm; oxidant — O,; flow rate = 1000 R . [94]
metal-organic framework, mL/min min activity
LZSM-5 = large pore size loss)
zeolite
[Dda-pX],[B-M0V'sO5]; T =40 °C; t = 120 min; m(catalyst) = 40 mg;
[Dda-pX] = N,N- m(model oil) = 10 g; oxidant — H,0,; - o
didodecylammonium with a ;)ectamolybda n(H,0,)/n(S) = 6; model oil (DBT in n-octane, ai‘[]irr:srfzo(;/:;fﬂuency of 99.7% 6 [95]
p-substituted group "X" on [S] = 1000 ppm);
the aromatic or alkyl chain DBT = dibenzothiophene
T =50 °C; t = 30 min; [catalyst] = 2.5 g/L;
[H3PMoY"1,0,4,]-GO; ) n(0/5) = 6; oxidant — H,0,; model OII.(DBT " | complete desulfurization within 30
| Keggin n-hexane, [S] = 500 ppm); V(model oil) = 5 R 6 [96]
GO = graphene oxide mLs min
DBT = dibenzothiophene
ODA,PW,; T =70 °C; t = 40 min; oxidant — H,0,;
ODA* = octadecylammonium | lacunary n(H,0,)/n(S) = 3 or 8; n(catalyst) = 3 umol; complete desulfurization within 40 ns (97]
cation, Keggin model diesel ([S] = 500 ppm); V(model min P
PW3; = [PWV'};05]7 diesel) =0.75 mL
T=rt; t=2h; m(catalyst) = 1.4 x 10* g;
VI V_.
E(? cht?o:\c/ozr% osite V(H0,) = 8 Wl; solvent — EtOH:n-heptane sulfur removal efficiency of 94 %
- P ’ Keggin (v/v = 1:1); model oil ([S] = 250, 500 or 1000 L ¥ v atleast4 | [98]
PMoV';,VY, = R within 2 h
ppm); V(model oil) = 5 mL;
[HsPMoY'15VY,040]
rt = room temperature
T =60 °C; t = 100 min; model oil (refractory
S-compounds in n-octane, [S] = 500 ppm);
V(model oil) = 5 mL; solvent — MeCN; for Co'"-POM: DBT, 4,6-DMDBT and BT
Css[PM(H,0)Mo"';,034]-5H,0; Keggin V(MeCN) = 5 mL; oxidant — H,0, 30 %; removal efficiencies of 99.8 %, 92.9 % at least 4 (99]
M = Co?*, Ni%, Zn?*, and Mn?* £8 n(catalyst) = 4 umol; n(H,0,)/n(DBT) = 8; BT and 85.3 % within 100 min,
= benzothiophene; respectively
DBT = dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene
PW1,Zn@BMIMPFg; T=50°C; t = 3 h; oxidant — H,0,; model oil
PW;,Zn = (DBT, 1-BT and 4,6-DMDBT in n-octane, [S] =
TBA,H[PWY';,Zn(H,0)030]-5H, 500 ppm of each); biphasic system — model a) Model diesel: complete
o, . diesel/ BMIMPF; (v/v = 1:1); V(H,0,) = 30 desulfurization within 3 h;
TBA = tetrabutylammonium Keggin uL; b) Real diesel: desulfurization atleast 3 (100]
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BMIMPFs = 1-butyl-3- 1-BT = 1-benzothiophene; DBT =
methylimidazolium dibenzothiophene; 4,6-DMDBT = 4,6-
hexafluorophosphate dimethyldibenzothiophene
T=60 °C; t = 60 min; [catalyst] = 7.5 g/L;
n(0)/n(s) N 4; oxidant - quz/formlc acid a) Model oil: DBT and BT removal
(n(0)/n(acid) = 1); model oil (500 ppmw of L
. ) o efficiencies of 98 % and 82 %,
[cetrimonium]q;[P,WY'15VVs06 | Wells- DBT and 500 ppmw of BT in isooctane); X
. respectively 8 [101]
4] Dawson extracting solvent — MeCN; R
. b) Real diesel: total sulfur removal
BT = benzothiophene; DBT = -
. K - efficiency of 90 %
dibenzothiophene; ppmw = parts per million
by weight
T =60 °C; t = 2 h; oxidant — CH;COOH/H,0,
(v/v = 1:1); model oil (aromatic sulfur
compounds in n-heptane (BT, DBT, 4-MDBT
and 4,6-DMDBT, [S] = 500 ppmw of each .
compound); V(model oil) = 50 mL; a) Real gas oil: sulfur removal
TBA,[PWV';Fe"(H,0)035] @P Lacunar V(oxFinant) ” 6 mL: m(catal_ ot) = 0’1 . efficiency of 97 % after 2 h; 5 (4 % of (102]
bo; nary Tomy yst =018 b) Model oil: BT, DBT, 4-MDBT and activity
. Keggin V(MeCN) = 10 mL; L
TBA = tetrabutylammonium K 4,6-DMDBT removal efficiencies of 93 | loss)
BT = benzothiophene; DBT = %, 97 %, 94 % and 95 %, respectivel
dibenzothiophene; 4-MDBT = 4-methyl i i ? o Tesp v
dibenzothiophene; 4,6-DMDBT = 4,6-
dimethyldibenzothiophene; ppmw = parts
per million by weight
T =60 °C; t = 20 min; m(catalyst) =0.02 g;
(OTA);PW,Sn05o/TiO; n(0)/n(S) =.6; oxidant — H,0,; modgl oil ([S]
=500 ppm in n-octane); V(model oil) = 5 mL; -
OTA= Lacunary DBT removal efficiency of 100 %
octadecyltrimethylammoniu Keggin VIBMIMJPF) = 1 mL; within 20 min 7 (103]
m ¥ v &8 [BMIM]PF¢ = 1-butyl-3-methylimidazolium
hexafluorophosphate; DBT =
dibenzothiophene
T =50 °C; t = 60 min; model oil (500 ppmw
[PSPy]5[PM0Y'1,040]/GC; of DBT in n-octane); V(model oil) = 5 mL; 6(2.8%
[PSPy] = N-(3- Keggin V(H,0,, 30 %) = 24 uL; n(0)/n(S) = 3; DBT removal efficiency of 100 % of (104]
sulfonatepropyl)-pyridinium, £8 m(catalyst) = 0.05 g; within 60 min activity
GC = graphite carbon DBT = dibenzothiophene; ppmw = parts per loss)
million by weight
T=70°C; t.= 30 min; mO(,jeI oil (500 ppm of DBT removal efficiency of 97.4 %
" X DBT or BT in toluene); oxidant — H,0,; L R nd
[NasPWV',040] Keggin . within 30 min [105]
BT = benzothiophene; DBT = o
) . (k = 0.4008 mint)
dibenzothiophene
[VimAm]Br-PMov'sWV'c0,,@
CA; T =60 °C, t = 60 min; [catalyst] = 2.0 g/L; - o
CA = green fiber, Keggin n(0/S) = 7; [S] = 1000 ppm; \?viL{:r;wg\r:iLeff|C|ency of 99.91% 5 [106]
[VimAm]Br = 1-vinyl-3-amyl DBT = dibenzothiophene
imidazolium bromide
HPW@HUSY; T =333 K; t = 120 min; model oil (500 ppm
HPW = [H3PWY',0,40], . DBT in n-octane); V(model oil) = 20 mL; o - .
HUSY = H-type ultrastable Y Keggin n(0/S) = 5; m(catalyst) = 0.1 g; 99.2 % DBT removal within 120 min 6 [107]
zeolite DBT = dibenzothiophene
T =rt; t = 35 min; n(0/S) = 4; POM loading
= /. = .
Mog/h-BN; ?r;ggr;tpmffo wt %; V([BMIM]BFg) = 1 mL; [S]
= i 4- - ’
Mos = [Mo"s0z]", octamolybda | g\ \1pF, = 1-butyl-3-methylimidazolium 100 % DBT conversion within 35 min | 5 [108]
h-BN = hexagonal boron te
nitride hexafluorophosphate;
DBT = dibenzothiophene; rt = room
temperature
Fe304@(;TS@PMoW; . 99 % S-removal efficiency within 60
CTS = chitosan, Keggin . . .
PMoW = PMoVWY.0 Model oil (5 mL hexane with 500 ppm S- min
for0 @CTS@H;WVG_ a0 compounds); n(0/S) = 5; T = 60 °C; t = 120 5 [109]
sPa K ! Wells- min 97 % S-removal efficiency within 60
CTS = chitosan, Dawson min
HPWV = Hy;P,W"'15VVs06,
PMo,,V/NiO/PAN; T=35°C; [S] =500 ppm; t = 60 min; o -
PMo,,V = H,PM0"'1;VV0,0, Keggin [catalyst] = 0.10 g V(H,0, 30 %) = 3 mL; 2;””’ S-removal efficiency after 60 5 [110]
PAN = polyaniline V(MeCN) = 10 mL
'CL(()%’(')\A?G)'M'L'MLNH” T=90°C; t = 120 min; model oil ([S] = 500
6 Anderson- ppm in n-octane); m(catalyst) =20 mg; O, (1 | 100 % DBT removal efficiency within
(NH,)3sHgCoM0Y'c0,,, . . 6 [111]
. Evans atm, 60 mL/min); 120 min
Metal-organic framework = DBT = dibenzothiophene
IL(Br)-MIL-101-NH, - B
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HPW/H-B-
TPAOH@TiIO2@Si02-T+S; T=50°C; t=1 h; mgi/Meatayst = 35:1; n(O/S)
H-B-TPAOH = tetrapropyl =13; model oil ([S] = 1100 ppmw in n-
ammonium hydroxide H-B Keggin octane); 99.9 % DBT and BT removal efficiency 4 (112]
zeolite (n(SiO,/Al,05) = 20.5), DBT = dibenzothiophene; BT = in 60 min
T+S = simultaneous titanium benzothiophene; ppmw = parts per million
silylation treatment, by weight
HPW = [PWV'1,040]3"
PMoy,V,/APTES-HMSNS;
PMo4,V; = HsPM0Y'14VY,040, T=60°C; t = 60 min; [catalyst] = 2.5 g/L;
APTES-HMSNS =3- Keggin n(0/5) = 10; model il ([S] = 2000 ppmin n- | g g5 o/ pET removal in 60 min 8 [113]
aminopropyltriethoxysilane - octane);
hollow mesoporous silica DBT = dibenzothiophene
nanomaterials
[C1,mim]sPWV',0,0/RE-UiO-
66;
RE = rare-earth metals (Y or T =60 °C; t = 40 min; n(O/S) = 5, m(catalyst)
La?), Keggin =.0.1 g; model oil ([S] = 500 pg/g); V(model 100 % DBT removal efficiency within 13 (114]
Ui0-66 = Zr-based metal- oil) =10 mL; V(MeCN) = 0.5 mL; 40 min
organic framework, DBT = dibenzothiophene
[C1,mim] = 1-dodecyl-3-
methylimidazolium
n[HsPWY',,-MIL-
10{Cr)l/m(TiO,), T=50°C; n(0/S) = 4; t = 180 min, o -
n/m=1:5.78, Keggin m(catalyst) = 0.02 g; model ol ([S] = 500 99 % desulfurization efficiency within 6 (115]
MIL-101(Cr) = Cr-based . ! 180 min
. ppm in n-octane)
metal-organic framework
MIL-101
[C16mim]PM0oY';,040/MIL-
101; [C1smim]Cl —ionic liquid; model oil ([S] = 200
[Cimim] = 1-hexadecyl-3- . ppm in n-octane); V(model oil) = 5 mL; -
methylimidazolium, Keggin m(catalyst) = 50 mg; T =50 °C; n(O/S) = 5; 99.8 % DBT removal efficiency 8 [116]
MIL-101 = Cr-based metal- DBT = dibenzothiophene
organic framework
p-CaVIM-Vyg;
Vio = V%1002 decavanadat T=120°C, t =3 h; air flow = 100 mL/min;
[C4VIM] = 1-vinyl-3- ! ! ! 98.8 % sulfur removal efficiencyin3 h | 10 [117]
L . L e m(catalyst) =0.05 g
alkylimidazolium (ionic
liquid)
P,W,5Co,@ZnFe,0,@PVA [S] = 100 ppm; UV lamp: 50 W Hg lamp, A =
PVA = polyviniyl alcohol, sandwich- 313 nm; t = 90 min; m (catalyst) = 0.03 g; 97 % BT and 94 % DBT removal 5 [118]
P,W5Co, = type BT = benzothiophene; DBT = efficiency in 90 min
[(PWVY'403,),C04(H,0),]10- dibenzothiophene
Ee\sl\(l)“@zc[s)&;\\/{vlg - Wells- I;o7c?o G :n_irsl nm-:c’tgmoeg-S)rn_(czz;t:‘IOng:oCl)l (()[,;] 100 % sulfur removal efficiency within 1 [119]
2W1s = 7 W e Vel Dawson PP i sty =0 5 min at 70 °C
C = carbon composite g
PDC-PMo,,, PDC-Mog, and
PDC-Mog;
PM'\gof ['(n"_'scp':")’v;\ﬁc[)gf_’ PDC-PMoy,: 14.6 % DBT removal
Mos' Ol 4ol Keggin, T =50 °C; t = 40 min; model oil ([S] = 500 efficiency within 40 min;
g 26l Lindgvistand | ppm in n-octane); n(0/S) = 4; m(catalyst) = PDC-Mog: 100 % DBT removal

Mog = [(n- o - . 5 [120]
CoHa)NLL[Mo¥05a], octamolybda 10 mg; . . efficiency within 40 min; and.P.DC—

Lo te DBT = dibenzothiophene Mog: 52.4 % DBT removal efficiency
PDC = polyionic liquid e ;

_— within 40 min

(prepared from 3-propionic
acid-1-vinylimidazolium
bromine)
[C1MIM],[PWV'3;Fe"(H,0)039 model oil ([S] = 500 ppm); t = 150 min; 1 %
1; Keggin catalyst dosage (relative to model oil mass); 98.54 % DBT removal efficiency in 5 (121]
[C16MIM] = 1-hexadecyl-3- T=70"°C; H,0, — oxidant; 150 min
methylimidazolium DBT = dibenzothiophene
[H,BBPTZ],Co(BBPTZ),[P,W",
3062]:2H,0; 94.6 % DBT removal efficiency within
BBPTZ = 4,4"-bis(1,2,4-triazol- T=50"°C; t=28-12 h; V(CH,Cl,) =5 mL; 8h
1-ylmethyl)biphenyl Wells- n(DBT) = 0.3 mmol; n(catalyst) = 0.075
[(Ni(TBTZ),(H,0)4][H,P, WV g Dawson mmol; n(tert-butyl hydroperoxide) = 2 6 [122]
O6,]-17.5H,0; mmol; - o
TBTZ = 1,3,5-tris(1,2,4- DBT = dibenzothiophene :8h'3 % DBT removal efficiency within
triazol-1-ylmethyl)-2,4,6-
trimethyl benzene
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*nsp- not specified by authors

2. POMs and POM-based composites in the removal of various organic pollutants from water

Table S2 A Summary of published POMs and POM-based composites for application in the removal of various organic pollutants from water.

POM - . . Number of
Formula S Pollutants Conditions Efficiency Sl Ref
$i0,@[n- . [PBV] = 32 uM; amount of catalyst = 800 .
CHis)aNIgSIWV; 10565 Keggin PBY me; 95 % nsp [123]
7HslaTs 1 PBV = dye patent blue V
PTMS-treated
alumina/PEl- o .
PVY MoV O, [RB5] = 20 ppm; T = 25 °C; Operating time
PTI\;IS _ 31_03;(;’[10 ronvl Keggin RB5 =upto3h; 100 % 6 [124]
V1> = S-aminopropy RBS5 = reactive black 5
trimethoxysilane,
PEI = polyetherimide
VI O-GE:
LKfiPOZ_\QIG ?gjﬁig nise'tal_ Wells- BB [RhB] = 30 ppm; pH = 3; T = 25 °C; 99 % within 120 min, ns 1
o Dawson RhB =rhodamine B (k=0.00438 g mg* min) P [125]
organic framework
ialz?;\g:)\}_}loé“;)j [MB] =5 ppm; amount of catalyst = 10
MIL10 1(Fe) S Fe b Keggin mB mg/100 mL; 99.5 % within 30 min 3 [126]
. MB = methylene blue
metal-organic framework
[Cuz(btx)y(C204)1[HoSIWY', 78 % within 60 min, under visible
0O40]:12H,0; . nsp; light;
btx = 1,4-bis(triazol-1- Keggin M8 MB = methylene blue 91 % within 60 min, under UV nsp (127]
ylmethyl)benzene) light
VI = -5 . =
oo o s | T e og.| 55 %vitnsom, . |
o Dawson € len - g lamp; - (k =0.005 min) (128]
pz = pyrazine rhodamine B
(CHsNH,CH5)[Cu,(TPB),(P [dye] = 10 ppm; amount of adsorbent =50 | gc o/ 15 romoval within 120
mg; light source = 300 W Xe lamp; H,0, = .
W¥12040)]- 4DMF-6H,0; Keggin MO, MB 2 ml (30 %); min; ns
TPB =1,2,4,5-tetra(4- £8 ! o 98.8 % MO removal within 120 P (129]
A MB = methylene blue; MO = methyl ; . .
pyridyl)benzene orange min under visible light
[NaPsW"'3,0110]*/MIL- _ . _
101(Cr); orevesler - Ll:/lB] |—-|5_02p')pm, amount of catalyst = 30 100 % within 8 min, . .
MIL-101(Cr) = Cr-based ¥ 6 PR =& (k= 1.19 g mg min<) (130]
. MB = methylene blue
metal-organic framework
VI 6-
[PW*15062]*"/CoFe,04/MI [MB] = 100 ppm; amount of catalyst = 30
L-101(Cr); Wells- MB mg; pH = 6; T = 25 °C; 100 % 3
MIL-101(Cr) = Cr-based Dawson B, PR =0; 1 = ’ ? (131]
. MB = methylene blue
metal-organic framework
HeP,W",:05,@Cus(BTC),; | Wells- B m%i.lo ppm; amount of catalyst =201 g o, \yithin 60 min, nsp 1321
= tri H : ’ - -1 min-1
BTC = trimesic acid Dawson MB = methylene blue (k =0.0047 g mg™* min?)
[PM0Y'1,040] @[Cu"s0(TZI);
(H,0)0]4-0H-31H,0 (HUU-
1)
[SiM0Y'1,040]@[Cu"s0(TZI)s _ . _ .
(H:0)s]32H,0 (HUU-2) | RhB. CV E;hczlt; zf_pé’g‘;nlc_v] =15 ppm;amount |, ¢4 o; RhB removal and CV for s .
[PWY'1,0,0] @[Cu"sO(TZl)s( €8 g ohe e rzod;mine gB’_ V= ervstal violet HLIU-3, 80 % < for HUU-1 and > [133]
H,0)g]4-0H-31H,0 (HUU- N Vs 95 % for HLJU-2 within 360
3);
H,TZI =5-
tetrazolylisophthalic acid
HgP>W1506,/MOF-5; Wells- [MB] = 20 ppm; amount of catalyst = 15 100 % within 10 min,
MOF-5 = Zn-based metal- Dawson MB mg/20 mL; (k = 0.2953 g mg min) nsp [134]
organic framework MB = methylene blue e gme
FcSiw, amount of catalyst = 0.1 g L™%; [H,0,] = 10
Fc = ferrocene, Keggin a-cp mM; [4-CP] = 50 mg L%; pH = 6.5; light 100 % within 100 min under UV 3 1
SIW = H,SiWY,,0,40XH,0, X €8 source = 250 W Hg lamp; T = 35 °C; light; 97 % within 100 min in dark (135]
=nsp 4-CP = 4-chlorophenol
amount of catalyst = 50 mg; [Phenol] = 10 26 6 % within 300 min
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ppm; light source = 300 W Xe lamp; O,
pressure = 0.1 MPa

(k = 0.0065 min)

[Aga(H,pyttz-1)(Hopyttz-
I1)(Hpyttz-
IN][HSIWY'1,04]-4H,0 (1)
[Aga(Hopyttz-Il)(Hpyttz-
11),][H2SiWY'1,040]-3H,0
(2);

[RhB] = 10> M; amount of catalyst = 50

63.3 % removal for (1) within 150
min,
(k = 0.006 min');

H,pyttz-l = 3-(pyrid-2-yl)- Keggin RhB me; light source = 125 W Hg lamp; 81 % removal for (2) within 150 nsp (137]
5—2(1H—1 2,4-triazol-3-yl)- RhB = rhodamine B min
1,2,4-triazolyl; (k=0.1 min?)
H,pyttz-1l = 3-(pyrid-4-yl)-
5-(1H-1,2,4-triazol-3-yl)-
1,2,4-triazolyl
> 95 % removal efficiency of RhB
within 4 min,
(k=0.868 + 0.061 min'%);
> 95 % removal efficiency of XO
within 15 min,
(k=0.214 +0.023 min'l);
> 95 % removal efficiency of MO
[dye/antibiotic] = 1 mM; amount of E’;’(‘Eh(l)nléirrlg’me min);
catalyst = 0.055 mM POM + 0.03 mM e
. > 95 % removal efficiency of MB
EDA-CD; [H,0,] = 50 uL; light source = 50 L. .
per-6-deoxy-6- RhB, MO, W Hg lamp; within 30 min,
’ = + int);
ethylenediamine-B- Keggin EAVB,I\TFOZ’ RhB = rhodamine B; MB = methylene (>k95?’}1r1:n1_o(\)/§0e2ffri:i|2nl, of CV nsp [138]
cyclodextrin/HsPWVY',0,40 4 ! blue; MO = methyl orange; XO = xylenol 227 . ¥
TCY, BE . within 35 min,
orange; CV = crystal violet; NFZ = .
nitrofurazone; TCY = tetracyclines; BE = (k= 0.084 +0.003 min™);
berberine ’ ! > 95 % removal efficiency of NFZ
within 19 min,
(k=0.163 £ 0.016 min);
> 95 % removal efficiency of TCY
within 25 min,
(k=0.152 £ 0.016 min);
> 95 % removal efficiency of BE
within 30 min,
(k=0.115 + 0.007 min)
i = EEVE
(PW,,0. ] Keggin lindane [c':t‘:;‘/:f]: 73140?; |1v(|)- p":'za;m“”t of 100 % within 10 h nsp [139]
. [PBV] = 32 uM; amount of catalyst = 50
26;03)@:\151'25\,(‘3},” ous Keggin PBV mg; 99 % within 24 h nsp [140]
7HslaTs e PBV = dye patent blue V
{HCu"(N,N’"-bis(2-
pyrazinecarboxamide)- 99 % GV removal for (1) and
1,2- _ . _ 71.43 % for (2);
ethane)[Cr'"MoY's(OH)s015 [dy.e!r-_10 ppr?, amour:t of‘catalyst =30 95.63% MB removal for (1) and
J}4H,0 (1) Anderson | GV, MB, TB, | & ' = room temperature; 81.25 % for (2);
[Cu"3(N,N’-bis(2- -Evans MV GV = gentian violet; MB = methylene blue; 90.65 % TB removal for (1) and 4 (141]
- . TB = toluidine blue dye; MV = methylene
pyrazinecarboxamide)- iolet 77.84 % for (2);
1,2- viole 65.79 % MV removal for (1) and
ethane)qs(TeV'MoV'¢04)(H, 44.87 % for (2)
0)o] (2)
heptamol [MB] =220 ppm; amount of catalyst = 50 > 97 % MB removal within 60
[(NHq)g(M0",0,4)]-4H,0 bga " MB mg; pH = 1; T = 303 K; min, nsp [142]
Y MB = methylene blue (k = 0.000234 min)
poly-[N,N-dimethyl-
dodecyl-(4- octamoly [AR87] = 200 ppm; T = 20 °C; o
vinylbenzyl)Jammonium bdate AR87 AR87 = acid red 87 >98% > (143]
chloride]/([Mo0"'0,6]*)
{HCU"(HPCAP),[Cr'""Movs(O
H)6015]}-2H,0 (1)
{Zn4(PCAP),[Cr'"Mo"s(OH)s
olS]Z(HZO)IZ}"lHZO (2)
{Zn3(PCAP),[Cr'"MoV's(OH)s 96.9 % GV removal for (1), 97.9%
016](H,0)6}-6H,0 (3) for (2), 97.3 % for (3), 96.6 % for
il HU VI [} 0,
g\“f((:%ip})zg[:IOM(z)s(OH)s Anderson [dye] = 10 ppm; amount of catalyst = 50 E;;’ 98.6 % for (5) and 97.1.% for
19]{M20)ej oM, . )
{Cu';(PCAP),[AIM0Ys(OH)s | -Evans GV, MB mei 87.3% MB removal for (1), 92.1 | P [144]

ols](HzO)e}'6H20 (5)

GV = gentian violet; MB = methylene blue

% for (2), 93.8 % for (3), 94.4 %
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{Co"3(HPCAP),[AIMoV's(OH
)6015](H20)10{AIM0V'g(OH)
6015]"6H,0 (6);

HPCAP = 3-(2-
pyridinecarboxylic acid
amido)pyridine

[Ni"(2,2'-biimidazole);],[B-
MoV'50,6]-8DMF (1)
(dimethyl-
ammonium),[Ni"(2,2'-
biimidazole),(H,0),][B-
MoV'50,6]-4DMF (2)
(dimethyl-

[MB] = 10 ppm; amount of catalyst = 15

ammonium),[Co'"(2,2'- octamoly ] > 80 % for compounds (2)-(5);
biimidazole),(H,0),][B- bdate M8 Ei’_ methviene blue <10 % for (1) within 10 min 3 [145]
MoY50,]-4DMF (3) = methy
[zn(2,2"-
biimidazole)(DMF);],[B-
MoV'50,6]:2DMF (4)
[Cu'(2,2'-
biimidazole)(DMF);],[B-
MoV'50,6]:2DMF (5)
Hip ™
Zi;?;lfy[:\ilclji(rfe— 94.8 % MB removal for (1) within
= ; = i [ ithi
thiosemicarbazone),],Hs[P strandber E:\g/fe] 15 ppm; amount of catalyst = 25 égomrrr:n 97.67 % for (2) within
Vi . 7 ;
;’ZI% gf;l—:ciztol(l)ridine— g MO, M8 MB = methylene blue; MO = methyl 13.13 % MO removal for (1) 7 [146]
3= vipy orange within 240 min and 8.84 % for (2)
thiosemicarbazone]sH[P, within 60 min
MoV'50,3]-:12H,0 (2)
IMQV! - . —
[N(C4Ho)4)3[MN"MoV's04{( [MB] 109 ppm; amount of catalyst 98 % MB removal within 240 min,
OCH,)sCN = Anderson | AOG, PS, 0.125 mgL?; < 2% AOG and PS removal and ns
CHCgH,40H},]/hexachloroc -Evans BF, MB AOG = acid orange G; PS = ponceau S; BF = ? P (147]
" . . 95 % BF removal
yclotriphosphazene basic fuchsin; MB = methylene blue
HeP, W40, @Cu-BTC; Wells- [TBBPA] = 2 ppm; amount of catalyst = 40 95 %,
BTC = trimesic acid Dawson TBBPA mg; T =298 K; (k=5.56 g mg' min?) 6 (148]
B TBBPA = tetrabromobisphenol-A =208 Mg
5 — -
[dye] = 25 ppm; amount of catalyst = 20 98 % M8 remoYaI V\.”t,hm 12 min,
. - (k=0.037 g mgt mint);
aminopropylsilanized- Keggin RhB, MO, | meg; 20 % RhB removal within 32 min; | 3
C030,4/H3PWV'1,049 €8 MB RhB = rhodamine B; MB = methylene ? . § [149]
the removal efficiency of MO was
blue; MO = methyl orange L
negligible
NH,-Fes;0,
/[Cu"(pca),(SiW"'1,040)l(py
)2 : pH=6.8, o
pca = pyridine-2- Keggin ey TCY = tetracycline 88.6% > [150]
carboxylic acid;
py = pyrazine
LaMnO;@SiO,/PMoVv', (1) [MB] = 25 ppm; amount of catalyst = 25 100 % removal for (1) within 1
LaMnO;@Si0,/PWVY'y, (2) Keggin MB mg; T=25°C; min, 98 % for (2) within 30 min 3 [151]
LaMnO;@Si0,/SiWY';, (3) MB = methylene blue and 100 % for (3) within 0.5 min
[MB] = 25 ppm; amount of catalyst = 30 o s .
LaNiO,@SiI0,/PW", Keggin | MB mg; T=25°C; ?,f 15 within 60 min) 3 [152]
MB = methylene blue =0.0568me
- [MB] = 20 ppm; amount of catalyst =5
N Preyssler MB mg; > 95 % within 15 min nsp [153]
VI
phenylenediamine/PsWV'3, MB = methylene blue
[Cd(pyridine-2-
carbaldehyde .y .
semicarbazone)e] [pyridine [dye] = 25 ppm; amount of catalyst = 30 98 % MB removal within 5 min
sILPY Keggin RhB, MB mg; T =25 °C; and 86 % RhB removal within 5 3 [154]
-2-carbaldehyde . .
. RhB = rhodamine B; MB = methylene blue | min
semicarbazone]*,[PMo"';,
Ouol4-18MeOH-4H,0
VI P —
CuS@PANI/PWVY'y, (1) [MB] = 25 ppm: amount of catalyst = 25 93. Aa removgal efficiency for (1)_
CuS@PANI/PMoY';, (2) Keggin MB me: oH = 6 T = 25 °C: within 20 min (k = 0.0036 g mg* 4
CUS@PANI/SIWY, (3); g8 e eme bl mint), 94 % for (2) within 0.5 min [155]
PANI = polyaniline B Y and 100 % for (3) within 2 min
ZZZZi_TNnStlona“ZEd N- [RhB] = 0.25 mM; amount of catalyst = 0.2
Y Keggin RhB mg/mL; T =25 °C; 100 % within 1 min 5 [156]

acetamideimidazolium
bromide/PWV';,

RhB = rhodamine B
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PWV';,/BEA zeolite;

BEA = microporous Kesgin nicosulfuro PW,,/zeolite weight ratio = 20 %; adsorption capacity = 25.5 ma g1 ns e
crystalline aluminosilicate €8 n UltraSound = 30 min P pacity = Mmee P (157]
(zeolite)
POM-GA; various
POM = HSiW, water- absorption capacities = 100-210 g
! Keggin soluble reduction in N,H,; POM content = 30 % wt ) 10 [158]
GA = 3D graphene R gt
organic
aerogels
pollutants
74.33 % removal efficiency of CV;
84.94 % removal efficiency of
MB;
HsK,[Ags(DTB)s][SIW"'1,040 MB, BY, cy, | 2mountof catalyst=20mg; 40.51 % removal efficiency of BY;
MB = methylene blue; BY = basic yellow 1; ..
1,:Cl,-8H,0; . Rh6G, RhB, R K 30.23 % removal efficiency of
. Keggin N CV = crystal violet; Rh6G = rhodamine 6G; nsp [159]
DTB =1,4-di(1H-1,2,4- EB", CFB, ) . ) Rh6G;
. RhB = rhodamine B; EB"= eosin B; CFB = =
triazol-1-yl)benzene MO 12.91 % removal efficiency of
chromotrope FB; MO = methyl orange RRB:
< 10 % removal efficiency for EB’,
CFB, and MO within 90 min
o _ . [MG] = 12 ppm; amount of catalyst = 50 94 % within 120 min,
NiAI-SiWV',0,40* Keggin MG mg; (k = 0.0218 g/mg min) 5 [160]
MG = malachite green e g/me
DODA-Br-
PVY,MoV',/PVDF;
DODA-Br =
dimethyldioctadecylamm [RB5] = 15 ppm; amount of catalyst = 26
onium bromide, Keggin RB5 mg; T =45°C; 97.5 % within 120 min 3 [161]
PVV,MoV', = RB5 = reactive black 5
Hs[PVY;M0"'1004],
PVDF = polyvinylidene
fluoride
amine-functionalized [dye] = 100 ppm; amount of catalyst = 10 adso:pt|on capacity of MB = 1095
graphene Keggin RhB, MB mg; mes 5 [162]
’ ! d ti ity of RhB = 540
oxide/PTi,WV'1,0,407" RhB = rhodamine B; MB = methylene blue ;;ZT lon capacity o
ZnAlFe-P,Wy; (1) o -
ZnAlFe-CoWy, (2); Wells pH = 6.3; light source = 25 W Xe lamp; <10 % removal Eff'co'e”cy for(2)
~ o Dawson, MB _ within 6 h and > 90 % for (2) nsp [163]
P,W;; = [P,WV,]10, Keggin MB = methylene blue within 6 h
CoW;, = [CoWV';, >~ &8
[DEP] = 0.45 mM; amount of catalyst = 3.0
Vi
Eccl;’H”(CHs)sN]H“PMO wV Keggin DEP mM; [H,0,] = 0.014 M; T = 25 °C; pH = 7.0; | 90.2 % within 30 min 10 [164]
2040 DEP = diethyl phthalate
FePW/LDH (1)
MnPW/LDH (2);
LDT-I N I{a ereE:I L'ouble [AR27] = 20 ppm; amount of catalyst =0.5 | 98 % removal efficiency of AR27
X y Keggin AR27 g/L; pH = 3; [H,0,] = 0.2 mL/L; T=40 °C; for (1) within 30 min, and 99 % 4 [165]
hydroxide, AR27 = acid red 27 for (2) within 30 min
FePW = [PFe"WV';,05]*, h
MnPW = [PMn"WV;,05]5-
[IBP] = 10 ppm; amount of catalyst = 50
PWY';,0403"-y-Fe,03/5rCO; Keggin IBP mg; light source = sunlight; nsp 3 [166]
IBP = ibuprofen
. . [MO] = 10 ppm; amount of catalyst = 0.5
KH[SiWV Ni'(H
[SIW" 1204l INF(H,0)le |y ooi MO L% pH = 2.5; [H,0,] = 1.5 mmol L%; 95.6 % within 120 min 4 1167]
ucurbit[6]uril-7H,0
MO = methyl orange
[BR46] = 10 ppm; amount of catalyst = 2
-1. - - i -
CssPMoY;,040 Keggin BRA6 it |,a[r::3-02] 2 mM,; light source = 300 W 100 % within 90 min 3 [168]
BR46 = basic red 46
{[(Cu,Cl)(4-(4- [RhB] = 10 ppm; amount of catalyst = 15
carboxyphenyl)-1,2,4- ) mg; [H,0,] = 2 mL (30%); light source = o withi ;
triazolate),]- (HSIWV050) | <EBEM RhB 300 W Xe lamp; 99 % within 80 min 3 [169]
31H,0} RhB = rhodamine B
Na;PWV',0,4,/D201 resin; [RhB] =2 x 10° M; [H,0,] =2 x 103 M; pH
D201 = type | anion Keggin RhB =2.5; light source = 500 W halogen lamp; 99 % within 240 min 7 [170]
exchange resin RhB = rhodamine B
[RhB] = 2 x 10> M; amount of catalyst =
1. = 3 VM- - - i
KsPW'1,0,4 Keggin RhB 0.5 8L [Ha00] = 2 10° M; pH = 2.1; light | ) ) o\ itin 150 min 7 [171]

source = 500 W halogen lamp;
RhB = rhodamine B
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{[Cu(en),]s[Cu(en)(2,2"-
bipy)(H,0).]Ce[(o-
PWY'1;055),]35 (1)
{[Cu(en),]s[Cu(en)(2,2"-
bipy)(H,0).]Pr[(a-
PWVY'11030),]}¢ (2)
{[Cu(en),](H,0)[Cu(en)(2,
2'-bipy)]Gd[(a-
VI 4-
HPW"1,039)al}*" (3) [RhB] = 2 x 10° M; amount of catalyst = 2 26 % removal efficiency for (1),
{[Cu(en),],(H,0)[Cu(en)(2, Lacunary } .
2-bipy)]Tbl(a- Keggin RhB x 10® mol; light source = 500 W Hg lamp; 34 % for (2), 29 % for (3), 35 % nsp [172]
HPWQ'ynOw)z]}“’ @) €8 RhB = rhodamine B for (4) and 46 % for (5)
{[Cu(en),](H,0)[Cu(en)(2,
2'-bipy)]Er[(a-
HPWV1,03,),]}* (5)
{[Cu(en),]1s[Cu(en)(2,2"-
bipy)INd([(a-
HsPWVY'1,05,),] 1 (6);
2,2'-bipy =2,2'-bipyridine;
en = ethylenediamine
78 % removal efficiency of MB
within 70 min
(k =0.0218 min);
99 % removal efficiency of RhB
within 80 min
(k = 0.0456 min);
[dye] = 10° M; amount of catalyst =25 mg | 82 % removal efficiency of MO
BCG. RhB for dye degradation and 40 mg for within 60 min
MO ’MB ’ herbicides; PW,,/ZrO, weight ratio = 1/3; (k=0.0261 min);
HuPW',,0,0/2rO Keggin ov ’4_ ! light source = 50 W Hg lamp; 89 % removal efficiency of CV 3 173
3 1240 2 g8 nit’ro henol BCG = bromo cresol green; RhB = within 50 min [ ]
DCPp rhodamine B; MO = methyl orange; MB = (k = 0.0342 min);
! methylene blue; CV = crystal violet; DCP = | 73 % removal efficiency of BCG
2,4- dichlorophenoxy acetic acid within 20 min;
90 % removal efficiency of 4-
nitrophenol within 90 min
(k =0.02373 min?);
85 % removal efficiency of DCP
within 120 min
=0.015 min-
(k=0.0 int)
i H Vv
[gg()bk})]I.);[l_{lAgbbl)}"{AgS(V TR [MB] = 10 ppm; amount of catalyst = 150
Tobliz:l 1,_(21 l’l— date MB mg; light source = 125 W Hg lamp; 70 % within 90 min 5 [174]
butanediyl)bis(imidazole) MB = methylene blue
{(H20),[Cug(ps-
OH)6Cug(H,0)s(cpt)12](SIW [dye] = 105 M; amount of catalyst = 20 94.3 % removal efficiency of MB
V11,040)3(EtOH)4(H,0)7}; ) ; ! within 50 min;
A Keggin MB, RhB mg; light source = Xe lamp; - nsp [175]
Hept = 4-(4'- MB = methvlene blue: RhB = rhodamine B 85.4 % removal efficiency of RhB
carboxyphenyl)-1,2,4- N Y ’ - within 70 min
triazole
_ ) B 99 % removal efficiency of MB
H:PMo"".,0,,@MOG-Cr; [dye].— 10 ppm; amount of catalyst = 10 within 60 min;
. . MB, RhB, mg; light source = 50 W Xe lamp; =
MOG-Cr = metal-organic Keggin MO MB = methvlene blue: RhB = rhodamine 97 % removal efficiency of RhB 3 [176]
gel B: M_O h mgth L oran ,e - within 60 min and 91 % removal
’ - 4 s efficiency of MO within 120 min
[BPA] = 50 ppm; amount of catalyst = 50
Fe-PWV',0,4,/TiO, Keggin BPA mg; 100 % within 24 min 4 [177]
BPA = bisphenol A
92 % removal efficiency of CR
within 120 min;
72.4 % removal efficiency of MO
within 240 min;
94.8 % removal efficiency of PG
within 180 min;
o -
[dye] = 50 ppm; amount of catalyst = 250 67.'2/) remO\{aI. efficiency of Ol
; light source = 400 W Xe lamp; within 240 min;
CR, MO, me; e ! 75.8 % removal efficiency of EB
CR = Congo red; MO = methyl orange; PG L .
i ) . PG, Oll,EB, | _ P e within 180 min;
H3PWVY'1,0,0/TiO, Keggin AS. MB. NR =Ponceau G; Oll = orange Il; EB = 72.8 % removal efficiency of AS nsp [178]
’ '’ | eriochrome blue black B; AS = alizarin S; o )
RhB, FA " an Ll e ol within 240 min;
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96 % removal efficiency of MB
within 60 min;

98.2 % removal efficiency of NR
within 60 min;

98 % removal efficiency of RhB
within 60 min;

75 % removal efficiency of FA
within 240 min

[Cu,(CPBPY)4(H,0),][PWY!y
2040][OH]'6H20;

[MB] = 10 ppm; amount of catalyst = 50
mg; pH = 6.3; light source = 300 W Xe

98.2 % within 60 min under

CPBY = N-(3- Keggin MB ] visible light and 97.7 % within 60 nsp [179]
carboxyphenyl)-4,4'- lamp; min under NIR light
L ’ MB = methylene blue
bipyridinium
(NH,)s[{PWV';;055}Mn'(H,
0)1 (1)
(NHg)s[{PWV'1;030}Fe"
(H,0)] (2)
m?g;i[({:)vkuow}co“ [MG] = 10 uM; amount of catalyst = 24 < 80 % removal efficiency of MG
(NHa)s[PW¥'1,040] (4) tacur)ary MG mg; pH =5.77; light source — 500 W Xe for (:I;), (2), (3), (4),. . 5 [180]
(NHa)[{(PW, 05N eggin lamp; in the Presence of O,; >80 % removal (?flelency (?f MG
MG = malachite green for (5), (6), (7) within 30 min
(H,0)1 (5)
(NH,)s[{PWV';;055}Cu"
(H,0)] (6)
(NHy)s[{PWV'1;030}Zn(H,0)]
(7)
> 80 % removal efficiency of
atrazine for (1);
<40 % removal efficiency of
atrazine for (4) within 90 min;
< 60 % removal efficiency of
SiW,, (1), SIW4,V (2), atrazine for (5);
SiWy,V; (3), SiWoVs (4) < 30 % removal efficiency of
PW; (5), PWy,V (6), atrazine for (8) within 90 min;
PW oV, (7), PWsV; (8); > 70 % removal efficiency of
SiW;, = [a-SiWY'1,0,40]%, chlorpyrifos for (1);
SiW.,V = [a- < 40 % removal efficiency of
SiVVYWVY1;,0,0]%, . chlorpyrifos for (4) within 120
. atrazine, - ) )
SiWoV; = [a- Keggin chlorpyrifos [pesticides] = 100 ppm; light source = 100 min; nsp [181]
SiVV,WVY'0040]6, dieldrin W Hg lamp > 45 % removal efficiency of
SiW,eV; = [a- ! chlorpyrifos for (5);
SiVV3WVY50,40]7, < 25 % removal efficiency of
PW,, = [PWVY',04]*, chlorpyrifos for (8) within 120
PWy,V = [PVYWY';,0,0]%, min;
PW oV, = [PVV.WY'4040]%7, > 40 % removal efficiency of
PW,V3 = [PVY3WY504]¢ dieldrin for (1);
< 30 % removal efficiency of
dieldrin for (4) within 120 min;
> 40 % removal efficiency of
dieldrin for (5);
< 20 % removal efficiency of
Dieldrin for (8) within 120 min
[NAD] = 3 x 10* M; amount of catalyst = 3
-4 B H -
W30+ f;iatungs NAD :vi?] a“r/:;;'r]g:;hsr‘:)l:;iorigzoa\ggie amP 1100 9% within 22 h nsp [182]
NAD = 2-(1-naphthyl)acetamide
94 % removal efficiency of CR for
(1) and 93 % for (2) within 60
APS-functionalized min;
TiO,/CoPWV'y; (1) 98 % removal efficiency of MO
A.PS-furlctionaIized [dye] = 50 ppm; [pesticide] = 2 ppm; fo.r (1) and 95 % for (2) within 30
TiO,/NiPWY'y; (2); R min;
APS = 3- amount of catalyst = 100 mg; light source 94 % removal efficiency of NR for
aminopropyltriethoxysilan | Keggin CR, MO, AS, | =125 W Hg lamp; (1) and 90 % for (2) within 40 nsp [183]
NR, HCB CR = Congo red; MO = methyl orange; AS

€,

CoPWV; =
Ks[Co"(H,0)PWV'1,05],
NiPWVy, =
Ks[Ni"(H,0)PW"';;03]

= alizarin S; NR = neutral red; HCB =
hexachlorobenzene

min;

89% removal efficiency of AS for
(1) and 83 % for (2) within 240
min;

99.4 % removal efficiency of HCB
for (1) and 97.8 % for (2) within
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60 min

[Fe(phen)s],[SIWY'1,040]-3
DMF;

[DCP] = 10 ppm; amount of catalyst = 300

phen = 1’10__ Keggin DCP ppm; light source = 400 W Hg lamp; 100 % within 60 h 5 [184]
phenanthroline, DCP = 2,4-dichlorophenol
DMF = N,N- ’
dimethylformamide
(H,bimb)[Cu"(bimb)][SiWV!
12040]2H,0 (1)
(Hz.blmb)z[Co”(HZO)g(blmb) 89.5 % removal efficiency for (1);
1[SiWY'1,C0"036]-6H,0 (2) - . - o fici for (2):
KHICU'(bimb)],[SiWV,Co" . [MI.B]. 10 ppm; amount of catalys.t 50 87.5 OA: removal e iciency fo ;
05577(H,0)]-2H,0 (3) Keggin MB mg; light source = 125 W Hg lamp; 90.4 % removal eff!c!ency for (3); nsp [185]
. MB = methylene blue 84.7 % removal efficiency for (4)
[CuM{bimb)]a[GeW1;0u0]- within 90 min
H,0 (4);
bimb = 1,4-bis(1-
imidazolyl)benzene;
[pesticides] = 6.5 ppm; amount of catalyst | 95 % removal efficiency of HCH
vi . . =250 ppm for 1 and 350 ppm for 2; light for (1) and 75 % for (2) within 4
:3:(/\/\/\“12%40//55'% ((]i))’ Keggin HCH, PCNB | source = 125 W Hg lamp; h; 8 [186]
4 1240 2 HCH = hexachlorocyclohexane; PCNB = 100 % removal efficiency of PCNB
pentachloroe????nitrobenzene for (2) within 50 min
PWVY, (1)
SiwYy; (2) [X-3B] = 6.37 x 10> M; amount of catalyst k =0.0004 minfor (1);
GeWV'y, (3); Keggin X-3B =50mg; pH=1; k =0.0037 minfor (2); nsp [187]
XWy, = [XMHWY5,0,0] @) X-3B = reactive brilliant red k =0.001 minfor (3)
(Xn+ = P5+, Si4+' Ge4+)
[dye] =5 ppm; amount of catalyst = 100 84 % removal efficiency of DEP;
PW,,/TiO,; Keggin DEP, DMP, mg; light source = 300 W Xe lamp; 80 % removal efficiency of DMP; nsp [188]
PW3, = [PWV'1,040]3" DBP DEP = diethyl phthalate; DMP = dimethyl 98 % removal efficiency of DBP
phthalate; DBP = di-n-butyl phthalate within 90 min
TEOS/PW3, (1) 100 % removal efficiency of MB
TEOS/SiW3;, (2); [dye] = 2.975 x 105 M; amount of catalyst | for (1) within 5 min;
TEOS = tetraethoxysilane, Keggin MB, RhB =75 mg; light source = 100 W Hg lamp; 89 % removal efficiency of RhB nsp [189]
PWy, = [PWY',040]%, MB = methylene blue; RhB = rhodamine B | for (1) and 89 % for (2) within 5
SiW;; = [SIWY'1,040]+ min
] . [MO] = 10 ppm; pH = 2; light source = 300
;lvc\)lz/zvtlssvw O Keggin MO W Hg lamp; 93.2% nsp [190]
12 12540 MO = methyl orange
[SIWY'1,040]%/rGO; [dye] = 35 ppm; NaBH,;=0.05 M; amount reduction reactions completed in
rGO = reduced graphene Keggin MB, RhB of catalyst = 0.5 mL; 34 min for MB and in 81 min for - [191]
oxide MB = methylene blue; RhB = rhodamine B | RhB
H3PWVY';,040/N-decyl-N'- [MO] = 1.2 mM; amount of catalyst = 3.0 Highly efficient degradation of
carboxymethyl Keggin MO mL; pH = 3-6.5; MO without light irradiation in 6-8 [193]
imidazolium bromide MO = methyl orange the presence of H,0,
[MB] = 10> M; amount of catalyst = 125
(NH4)3sPMo0Y'1,040 Keggin MB mg; pH =5; 94.6 % 16 [194]
MB = methylene blue
GO-H3;PWVY'1,040- [MB] = 25 ppm; amount of catalyst = 25
triethylenetetramine; Keggin MB mg; light source = sunlight; MB = 84 % within 150 min 5 [195]
GO = graphene oxide methylene blue
POMOF/wood filter;
POM = H3PMo"'1,0,0,
) . [dye] = 8 ppm; 96.63 %;
MOF = Ui0-66, Kegein M8, GV MB = methylene blue; GV = gentian violet 97.41% 3 [196]
MOF = metal-organic
framework
[dye] = 5 ppm; amount of catalyst = 3 mg - _
(EtaN){[VYMoY;,0,5] MeCN for AB10B and 2 mg for MB; H,0, 30 % 99 % removal efficiency within 45
. min for AB10B;
; Keggin AB108,MB | (2.0 mmol); 99 % removal efficiency within 20 3 [197]
MeCN = CH;CN AB10B = amido black 10B; MB = .
min for MB
methylene blue
HgP,Mo"1sW";05, @MIL- [MB] = 40 ppm; amount of catalyst = 10
96(AI); Wells- MB mg; pH = 4; 92.4 % removal within 5 min 5 [198]
MIL-96(Al) = Al-based Dawson ¢ ! ’
. MB = methylene blue
metal-organic framework
SPT-T-G;
SPT = Nag[H,W"'1,0u0], Polytungs . [AO] =u15rppm; amount of catalyst = 40 o o
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T = C4HgOg, AO = auramine-O
G = CsHgNO,
1n_{i Inpg/VI
[Cg Zl(lgapg((:;o)ﬂ[cu w complete degradation within 40
12Ug0]° 312 . .
[Co"y(H,ipbp)s(H,0),(Co"O [dye] = 0.02 mM/L; amount of catalyst = E]ylrl.for MB and 180 min for RhB
RYY . . : . e f . y ~
e)z] [SIWY'1,040]-H,0 (2); Keggin MB, RhB 25 mg; under visible light; ‘ complete degradation within 50 4-6 [200]
H,ipbp-Cl = 1-(3,5- MB = methylene blue; RhB = rhodamine B ; .
: , min for MB and 60 min for RhB
dicarboxyphenyl)-4,4'-
L by 2
bipyridinium
[dye] = 100 mg/L; amount of catalyst = o o o
(EtsNH)s[PM0YgMov'g0,0(V! . MB, CV, 300, 140, and 80 mg for MB, CV, and RhB; 99.7 % 9.9'8 A’.9.9'7 %
Keggin ; flocculation efficiency for MB, 5 [201]
VO),] RhB MB = methylene blue; CV = crystal violet; e K
. CV, and RhB within 5 min
RhB = rhodamine B
[SIWVIgVV30,0)-@MIL- ~ ] ~
101(Cr); Kegein MB. RhB E:y?] = 10 mg/L; amount of catalyst = 30 98 % removal efficiency within 12 3 202
MIL-101(Cr) = Cr-based g8 ' & _ min for MB and 18 min for RhB [202]
. MB = methylene blue; RhB = rhodamine B
metal-organic framework
84.6% antibacterial efficacy
[PWV',0,0]> @ZIF67 (1) against E. coli and 98.8% against
[PMV'01,040]>-@ZIF-67 (2) . E. coli _ S. aureus for (1) and 69.2%
ZIF-67 = Co-based metal- Keggin S. aureus [sample] = 1 mg/ml antibacterial efficacy against E. nsp (203]
organic framework coliand 97.8% against S. aureus
for (2)
v .
[Co(L)(V*s01a)os(H;0)1-2H, [phenolic compounds] = 400 mg/L; 94%, 92.9%, 92.6% degradation
(0] - phenol, 2- . -
L. [V404,]* amount of catalyst = 10 mg; under visible efficiency for phenol, 2-
L=N,N’-bis(3- CP, m- R L. 4 [204]
- cluster light; n(H,0,)/(phenol) = 46; 2-CP = 2- chlorophenol and m-cresol within
methylpyridin-3-yl)-2,6- cresol )
L chlorophenol 140 min
naphthalenediamide
- VI
Eggg:g\&/oéf (](')2) [phenol] = 400 mg/L; amount of catalyst = | 100% degradation efficiency
2 Keggin phenol 20 mg; light source = 300 W Xe lamp; H,0, | within 20 min for (1) and 10 min 5 [205]
H,TCPP = tetrakis(4-
) =3ml (30%) for (2)
carboxyphenyl) porphyrin
Pd-PTA-MIL-100(Fe)
Pd = Palla.d|um . [pollutant] = 20 mg/L; T = 30 °C; amount 99% degradation efficiency for
nanoparticle Keggin theophyllin | of catalyst =5 mg; pH = 6; H,0, = 40 uL; theophvlline and ~ 50% for 4 -
PTA = PWY,, g8 e, 1BP light source = 300 W Xe lamp; IBP = o o [206]
MIL-100(Fe) = Iron-based ibuprofen P
metal-organic framework
100% degradation efficiency for
2,4-DFP within 120 min; 100%
degradation efficiency for 2,4-
2,4-DFP [DHP] = 10 ppm; [HFBPA] = 10 ppm; [TC] = | DCP within 180 min; 100%
2,4-DCP 20 ppm; [Cr(VI)] = 80 ppm; [MO] = 20 degradation efficiency for 2,4-
PMV-TiO,/Ag 2,4-DBP ppm; T =10 °C; amount of catalyst = 20 DBP within 210 min; 100%
PMV = [PMo"'1;VY,040]>" Keggin HFBPA mg; light source = 300 W Xe lamp degradation efficiency for HFBPA 4 [207]
Ag = Silver nanoparticle TC DHP = dihalophenol; HFBPA = within 210 min; 90% degradation
Cr(VI) hexafluorobisphenol; TC = tetracycline; efficiency for TC within 80 min;
MO Cr(VI) = K,Cr,0;; MO = methyl orange 100% reduction efficiency for
Cr(VI) within 30 min; 100%
degradation efficiency for MO
within 30 min;
*nsp- not specified by authors
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