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Text S1. Chemicals and Materials.

An inductively coupled plasma multi-element standard solution (PerkinElmer
Multi-Element Calibration Standard, containing Au, Ag, Cu, Ti, Al, Ce, and La, each at
10 mg/L in 5% HNO3) was obtained from PerkinElmer (Waltham, USA). A spherical
Au NPs dispersion (100 nm, BAu = 50.0 mg/L, number concentration of Au NPs =
5.71x109 particles per mL, coated with carboxylic acid) was also purchased from
PerkinElmer (Waltham, USA). Hydrochloric acid (36.5%, 500 mL, SCR®) and nitric
acid (69.0%, 2.5 L, EMPARTA® ACS) were purchased from HUSHI (Shanghai, China)
and Merck (Darmstadt, Germany), respectively. All chemicals were of at least
analytical grade and were verified for contamination by inductively coupled plasma
mass spectrometry (ICP-MS) prior to use. Ultrapure water (with a resistivity of 18.2
MQ-cm) was supplied by a Milli-Q® reference water purification system equipped with
a 0.22 ym membrane filter from Merck (Milli-Q® IQ 7005, Darmstadt, Germany). All
glassware was soaked in 5% (w/w) HNO; overnight and subsequently rinsed three

times each with nitric acid and ultrapure water before use.

Text S2. Sample Collection and Pretreatment

Sample Collection

Sampling was conducted from July to August2021 across five glaciers in the
southern QTPs. Snowpack samples were collected from the surface layer at locations
distant from trails, camps, and infrastructure to minimize local anthropogenic influence.
Runoff samples were taken along flow paths from the glacier terminus, covering
upstream, midstream, and downstream sections. At each site, at least three replicate

water samples were collected.

To prevent contamination, operators wore nitrile gloves during sampling.
Pre-cleaned polypropylene bottles (rinsed three times with methanol and Milli-Q water)
were used for all samples. Approximately 100 mL of snow was collected directly into
bottles and allowed to melt in the dark under laboratory conditions. Runoff water (about
200 mL per sample) was collected directly from the flow. Field blanks were prepared
by exposing ultrapure water to ambient air at the sampling sites and handling it

identically to the samples.

Sample Pretreatment



In the laboratory, each sample was divided into two aliquots: one for elemental
analysis and one for single-particle analysis. The aliquot for elemental analysis was
acidified to 3.25 % (w/w) with ultrapure nitric acid immediately after melting/filtration.
The aliquot for particle analysis remained unacidified to avoid nanoparticle dissolution.

All samples were filtered through 0.45 ym membrane filters prior to further processing.

For single-particle analysis, filtered samples were concentrated using ultrafiltration
devices (Amicon Ultra, Millipore) with molecular-weight cut-offs of 10 kDa or 100 kDa
to increase nanoparticle concentration. All pretreatment steps (filtration, ultrafiltration)
were performed in parallel with procedural blanks consisting of ultrapure water treated

identically to the samples.
Quality Assurance

Throughout the SP-ICP-MS analysis, instrument blanks (2% HNOs) were
measured routinely to establish background signal levels. The limit of detection (LOD)
for particle number concentration was defined as a signal-to-noise ratio of 3. No
quantifiable signals for the target MNPs were observed in any procedural, or

instrument blanks.

Text S3. Instrumental Analysis.

Seven elements and their corresponding MNPs (including Ti NPs, Al NPs, Cu
NPs, La NPs, Ag NPs, Au NPs, and Ce NPs) were analyzed using both the standard
mode and the single-particle (SP) mode of ICP-MS (NexION 2000, PerkinElmer,
Waltham, USA) equipped with a MicroMist nebulizer (PerkinElmer, Waltham, USA).
Argon 4.8 was used as the plasma gas. For the determination of the concentrations of
Ti, Al, Cu, La, Ag, Au, and Ce in the samples, the integration time was sett0 0.1 s, and
03Rh was employed as the internal standard. For MNPs analysis, including
concentration and size, the dwell time was set to 100 ps, and scan time was set to 100
s to generate 1.00%108 data points for each injection. The sample flow rate was 0.125
mL/min by gravimetrically calculation and 47Ti, 27Al, 63Cu, '*°La, 07Ag, '7Au, and *°Ce
were selected as target masses. Transport efficiency was calculated using the AuNPs
dispersion (100 nm, number concentration = 5.71x10° particles per mL). Calibration
was performed with a dissolved multi-element standard solution (10.0 mg/L in 5%
HNO;), which was used to determine elemental intensity. Additional instrumental

settings are provided in Table S12.



According to the principle of transforming raw pulse intensity into particle size
proposed by Pace et al.,” we can figure out that when the particle size is too small, the
pulse signal generated by the particle cannot be distinguished from the background
signal, and the size of NPs cannot be quantified correctly. This phenomenon defines
the size limit of detection (LODgy) in the application of SP-ICP-MS. MNPs are
assumed to be spherical in uniform density. The calculation for the LODyg,. is as

follows:

6n X I,
(1) D = ( By

kxf,Xpxm

where 77 (%) is the transmission efficiency, IThre is the intensity threshold that can

distinguish particle signal from background signal,? k (CPS/ug) is the slope of the

calibration curve for ion standard solution, fa is the mass fraction of the analyzed
element in the MNPs, P (g/cm?3) is the density of the MNPs. When calculating LODg;e
using the formular, a 50 (o being the standard deviation of the entire dataset

corresponding to one sample) iterative algorithm criterion was applied to the parameter

I7hye to distinguish true particle events from background signal.?

According to the formular (1), it could be known that the LODy;,, varies among
different MNPs. In this study, the LODyg;,, of Ti NPs, Al NPs, Cu NPs, La NPs, Ag NPs,
Au NPs, and Ce NPs were 9, 16, 12, 12, 15, 12 and 25 nm, respectively. MNPs smaller
than the corresponding LOD;,, cannot be reliably identified as NPs. In such cases,
their concentrations were reported as “Not detected” (ND).

SP-ICP-MS cannot definitively distinguish or quantify between natural and
anthropogenic nanoparticles. Achieving more precise source tracking will require
advanced multi-dimensional fingerprinting techniques in future research, such as

stable isotope analysis.*

Text S4. Culture of Chlorella sp.

Under sterile conditions, 50 mL of algal suspension was inoculated into a 250 mL
conical flask sterilized by high temperature and pressure, and then mixed with an equal
volume of autoclaved BG11 medium. Cultures were maintained in a light incubator at
a light intensity of 22000 Lx and relative humidity of 80%. A light-to-dark cycle of 14
h/10 h was applied, and the position of the flasks in the incubator was randomly

changed and gently shaken twice daily.

Text S5. Exposure Experiment.



This experiment was designed as a conservative, baseline hazard assessment of
MNPs for freshwater phototrophs. Exposure parameters were grounded in environmental
measurements. Exposure concentrations of MNPs were set at 1%, 100x, 10000%, and
1000000x% the lowest detected concentrations. Generally, smaller MNPs of the same
composition exhibit greater toxicity than larger ones.? 8 Therefore, exposure sizes were
chosen to not exceed the actual average sizes of MNPs in glaciers. Specifically, 10 nm for
Ag NPs, 20 nm for Au NPs, 30 nm for Cu NPs, and 40 nm for TiO, NPs. Additionally,
because MNPs in glaciers coexist in specific proportional relationships, we conducted a
composite exposure experiment based on the actual composition of MNPs measured in

glaciers.

Chlorella sp. was employed under its optimal growth conditions during exposure. This
approach serves two purposes: it addresses the difficulty of replicating the extreme
supraglacial environment,”'0 while establishing a precautionary effect baseline by
minimizing confounding abiotic stress.!! Specifically, Chlorella sp. was handled on a sterile
workbench, and an initial concentration of 1x10° cells/mL'? was transferred into six-well
plates, with 5 mL of algal suspension per well. MNPs were centrifuged at 14,000 rpm,
resuspended in BG11 medium, and subjected to 3 min of ultrasonication before addition to
the wells, either individually or as a mixture. Each treatment group included 4 replicates.
Following exposure, plates were maintained in a light incubator for 72 h. The algal
suspension in each well was gently mixed twice daily using a pipette. Additional

experimental details are provided in Table S2.

Text S6. Data Analysis.

For statistical comparison between two groups (e.g., exposure and control groups),
data following a normal distribution pattern were analyzed using the two-sided t-test, while
the Wilcoxon-Mann-Whitney nonparametric test was applied for non-normally distributed
datasets. For comparisons involving more than two groups, One-Way ANOVA was used
for normally distributed data and the Kruskal-Wallis test for non-normally distributed data.
All statistical analyses were carried out using GraphPad Prism (v9.0, GraphPad Software

Inc.), and in all tests, p < 0.05 was considered statistically significant.



Table S1 Water quality parameters of runoffs and altitude of snowpacks.

Sample Altitude (m) pH Tenz_;l?’eorca)ture Flow Rate (m%/h)  TOC (mg/L) C(()g,d;s/tr':)'ty DO (mg/L)
Snowpack 4791 - - - - - -
Parlung No. 4 (PL) Upstream 4720 8.59 1.2 4234 7.45 - 4.00
glacier Midstream 4688 8.67 0.3 4460 6.79 10.0 5.30
Downstream 4620 8.60 - - 6.02 - -
Snowpack 5666 - - - - - -
Korchung Gangri (KG) Upstream 5500 8.59 3.1 6977 7.69 - 13.70
glacier Midstream 5503 8.67 1.7 7985 7.08 - 14.30
Downstream 5567 8.54 2.5 3082 5.42 - 14.00
Snowpack 5191 - - - - - -
Qiangyong (QY) Upstream 4895 8.10 34 6887 5.84 - -
glacier Midstream - 8.09 3.9 5990 6.20 - 7.00
Downstream - 8.07 3.2 - 5.95 160.0 7.70
Snowpack - - - - - - -
. Upstream 5171 8.60 2.3 4246 5.39 99.3 5.66
Rongbuk (RB) glacier ,
Midstream 5154 8.64 3.8 2987 5.46 89.7 5.34
Downstream 5145 8.47 5.6 3278 4.82 101.6 5.54
Snowpack 4918 - - - - - -
. ) Upstream 5300 8.45 0.2 6444 6.23 180.0 12.70
Rijie Cojia (RC) glacier ,
Midstream - 8.34 2.6 3571 4.34 150.0 11.90
Downstream - 8.40 1.8 2088 4.24 160.0 11.90




Table S2 Chlorella sp. exposure experiment.

Diameter(nm) Concentration (ng/L)
Ag NPs 10.0 1 100 10000 1000000
Au NPs 20.0 1 100 10000 1000000
Cu NPs 30.0 1 100 10000 1000000
TiO, NPs 40.0 10 10000 100000 10000000

Combined exposure of MNPs

Ag NPs 10.0 1 100 10000 1000000
Au NPs 20.0 1 100 10000 1000000
Cu NPs 30.0 1 100 10000 1000000

TiO, NPs 40.0 10 10000 100000 10000000




Table S3 Average concentrations and diameters of 7 metal nanoparticles (MNPs) in 4 glacial snowpacks.

Glaciers

Conc. (ng/L)

Ag NPs

Diameter (nm)

Conc. (ng/L)

Al NPs

Diameter (nm)

Au NPs

Conc. (ng/L)

Diameter (nm)

Ce NPs

Conc. (ng/L)

Diameter (nm)

KG 0.90 £ 0.45 11.99+£1.70 7.17 £ 0.68 101.31+17.86 0.79+0.01 15.90 £ 0.83 0.86 + 0.31 18.07 £ 0.14
Qy 2.95+0.06 17.33 £ 1.51 10.02+5.68 108.93+5.68 04210.26 28.96 + 0.83 2.05+0.18 17.15+0.14
RC 0.29 £ 0.07 10.97+0.08 12.06 £3.17 86.18 £2.88 1.00 £ 0.47 37.68+0.76 1.69 £ 0.01 17.06 £ 0.07
PL 1.16 £ 0.82 12.68 £ 2.55 5.89+£2.79 104.19+15.31 1.66 +0.08 15.24 £ 0.60 - -

Cu NPs La NPs Ti NPs

nalyte
Glaciers

Conc. (ng/L)

Diameter (nm)

Conc. (ng/L)

Diameter (nm)

Conc. (ng/L)

Diameter (nm)

KG

Qy

RC

PL

0.62 + 0.21

8.89+1.10

2.76 £ 0.94

3.95+0.88

71.00 £ 5.58

19.24 + 8.89

23.80 £ 0.44

27.83 +3.95

1.55+£0.79

6.04 £ 0.19

11.00 £ 0.40

20.09 £ 0.11

20.25+0.03

20.13+0.40

9.30+0.18

39.08 + 20.47

333.34£0.78

32.72+7.12

81.35+1.28

60.53 + 12.30

75.77 £0.13

84.22+7.12




Table S4 The result of significant difference analysis in concentration of MNPs between
snowpacks.

Ti NPs AINPs CuNPs LaNPs AgNPs AuNPs CeNPs

KGvs. QY <0.0001 0.7265 0.0165 0.3617 0.8774 0.9991 0.9725
KGvs.RC <0.0001 0.2864 0.8631 0.0044 0.9961 0.9998 0.9903
KGvs.PL <0.0001 0.9661 0.6188 0.9421 0.9997 0.9889 0.9892
QY vs.RC <0.0001 0.8789 0.1198 0.2743 0.7665 0.9966 0.9992
QYvs.PL  0.0995 0.4369 0.2777 0.1286 0.9143 0.9690 0.8774
RCvs.PL <0.0001  0.1161 0.9725 0.0006 0.9889 0.9951 0.9266

Table S5 The result of significant difference analysis in mean size of MNPs between
snowpacks.

Ti NPs AINPs CuNPs LaNPs AgNPs AuNPs CeNPs

KGvs. QY <0.0001 0.1347 <0.0001 >0.9999 0.4243 0.0017 0.9937
KGvs.RC 0.3853 0.0002 <0.0001 >0.9999 0.9912 <0.0001 0.9917
KGvs.PL 0.8435 0.8428 <0.0001 <0.0001 0.9973 0.9976 <0.0001
QY vs.RC 0.0002 <0.0001 0.5611 >0.9999 0.2691 0.0660 >0.9999
QYvs.PL <0.0001 0.5288 0.0721 <0.0001 0.5456 0.0009 <0.0001

RCvs.PL  0.0794 <0.0001 0.6572 <0.0001 0.9612 <0.0001 <0.0001




Table S6 Average concentrations and diameters of 7 metal nanoparticles (MNPs) in 5 glacial runoffs.

Runoffs Direction Ti NPs Al NPs Cu NPs Ag NPs
Conc.(ng/L) Diameter(nm) Conc.(ng/L) Diameter(nm) Conc.(ng/L) Diameter(nm) Conc.(ng/L) Diameter(nm)

U: upstream 3304.8+84.6 131.7£0.45 4.92+1.28 119.0412.8 4.91+1.76 56.35+1.43 0.63+0.08 10.9+0.22

M: midstream 4177.1+£39.28 143.15+0.08 5.67+2.14 118.96+0.04 0.410.17 43.84+0.11 1.1310.65 9.65+0.48

e D: downstream  6947.15+35.95 149.3840.0195 14.37+4.69  138.79+1.08  2.71+0.55 63.81+0.13 1.6+0.07 8.31+0.2
Average 4809.68+1552.8  141.41+7.32 8.32+4.29 125.6+9.33 2.67+1.84 54.65+8.26 1.12+0.4 9.62+1.06
U: upstream 353.3310.1 74.97+0.1 9.940.26 106.54+4.32 5.840.01 42.91+5.8 6.18+0.4 12.79+0.38
M: midstream 173.57+0.35 78.63+0.35 17.06£2.09  137.2416.58 1.1+£0.23 57.18+1.1 4.27+0.08 13.58+1.07
i D: downstream 463.48+0.02 80.85+0.34 5.22+2.78 105.1415.42 1.840.22 57+0.06 3.68+0.07 12.78+0.16
Average 330.13+119.49 78.15+2.42 10.72+4.87 116.31£14.81  2.9+2.07 52.36+6.68 4.71£1.07 13.05+0.38
U: upstream 72.6413.76 74.311£5.56 13.15¢5.08  80.67+4.18 0.27+0.23 36.63+3.83 1.07+0.16 13.21£0.62

M: midstream 98.61+£3.72 74.6614.22 12494526  83.43+0.36 0.37+0.06 42.36+0.49 1.44+0.27 12.7+0.05

“e D: downstream 282.16+2.4 77.51+0.02  82.87+22.54 109.53+0.75  0.53+0.06 60.14+4.91 1.79+0.93 15.1+3.16
Average 151.13+93.25 75.49+1.44 36.17+33.02 91.21+13 0.39+0.11  46.38+10.01 1.4310.29 13.67+1.03
U: upstream 58.44+1.51 48.35+0.36 53.11+1.6 71.83+1.6 4.75+0.06 43.51+4.75 2.57+0.47 17.3311.42
Qy M: midstream 32.92+0.46 49.86+0.35 103.86+7.63  53.44+7.63 10.65+1.8 41.2410.65 2.2240.33 13.27+0.06
D: downstream 24.640.55 59.73+0.46 99.72+8.46  78.8118.46 8.53+1.1 45.88+8.53 3.56+0.98 15.58+0.81

Average 38.65+14.4 52.65+5.05 85.56+23.01  68.03+10.7 7.98+2.44 43.53+1.91 2.78+0.57 15.39+1.66




U: upstream 51.55+5.38 74.3746.6 9.1842.14  125.52+14.88 0.7210.44 51.67+4.91 0.65+0.32 9.18+1.39
M: midstream - - - - - - -
RC
D: downstream 439.81+0.75 88.19+0.21 8.59+1.43 84.25+3.74 0.55+0.14 37.57+1.06 0.77+0.43 10.45+3.19
Average 245.68+194.13 81.28+6.91 8.88+0.3 104.89420.63  0.64+0.08 44.62+7.05 0.71+0.06 9.82+0.64
Table S6 continued
Au NPs Ce NPs La NPs

Runoffs Direction Conc.(ng/L) Diameter(nm) Conc.(ng/L) Diameter(nm) Conc.(ng/L) Diameter(nm)

U: upstream 0.47+0.06 42.5+0.31 0.14+0.04 18.05+2.31 0.2+0.05 20.1+0.31

M: midstream 0.16+0.1 37.5+2.06 0.5+0.04 18.4110.14 0.36+0.14 20.22+0.01

Re D: downstream 1.1610.06 40.65+0.37 1.96+0.03 29.96+0.25 4.44+0.35 20.15+0.2
Average 0.6+0.42 40.22+2.06 0.87+0.78 22.14+5.53 1.67+1.96 20.16+0.05

U: upstream 0.7240.01 15.34+1.66 1.3410.2 17.09+1.34 0.9+0.38 20.06+6.18

M: midstream 0.6£0.17 13.5+0.72 1.32+0.07 17.1+£1.32 1.1£0.07 20.14+4.27

i D: downstream 0.87+0.27 15.24+0.6 2.03+0.25 17.1£2.03 1.42+0.1 20.13+3.68

Average 0.73+0.11 14.7+0.85 1.57+0.33 17.1+0.01 1.14+0.21 20.11+0.04

U: upstream 1.05+0.03 15.48+0.12 3.88+0.29 21.94+0.25 1.66+0.11 20.02+0.03

M: midstream 1.6+0.12 15.19+£1.73 1.21£0.37 17.0940.11 4.16+1.13 20.1110.2

e D: downstream 1.060.03 15.28+2.71 3.13+0.95 17.16+0.01 4.39+1.26 20.1240.02

Average 1.23+0.26 15.32+0.12 2.74+1.12 18.73+2.27 3.4+1.24 20.08+0.04




U: upstream 4.55+0.31 38.68+0.12 1.28+0.22 17.17+0.5 1.13+0.19 20.3+0.2
M: midstream 0.88+0.37 27.65+1.73 0.37+0.11 18.4411.96 0.79+0.37 20.13+0.36
a D: downstream 3.96+0.06 36.26+2.71 1.8910.28 17.14+0.61 1.3610.35 27.98+0.35
Average 3.13+1.61 34.2+4.74 1.18+0.62 17.59+0.61 1.09+0.23 22.81+3.66
U: upstream 0.28+0.15 36+1.01 010 010 8.13+0.4 20.25+0.52
M: midstream - - - - - -
RC
D: downstream 0.53+0.48 44.63+7.2 2.02+0.11 17.13£0.07 0.47+0.35 20.07+0.31
Average 0.41+0.13 40.31+4.31 2.02+0 17.13£0 4.3+3.83 20.16+0.09




Table S7 The result of significant difference analysis in concentration of MNPs between
runoffs.

Ti NPs Al NPs CuNPs LaNPs AgNPs AuNPs CeNPs

PLvs.KG <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.6744 0.0210
PLvs. QY <0.0001 <0.0001 <0.0001 >0.9999 <0.0001 0.9170 0.8491
PLvs.RC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.7579
PLvs.RB <0.0001 <0.0001 0.9752 0.6422 <0.0001  0.9969 0.3630
KGvs. QY <0.0001 <0.0001 <0.0001 <0.0001 0.0050 0.1973 0.0007
KGvs.RC <0.0001 <0.0001 0.9678 0.1359 0.3236  <0.0001  0.3295
KGvs.RB <0.0001 <0.0001 <0.0001 0.0001 0.9255 0.4537  <0.0001
QY vs.RC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1853
QY vs.RB <0.0001 <0.0001 <0.0001 0.5655 0.0003 0.9876 0.9263

RCvs.RB <0.0001 0.5841 <0.0001 <0.0001 0.8156 <0.0001 0.0251

Table S8 The result of significant difference analysis in mean size of MNPs between
runoffs.

Ti NPs AINPs CuNPs LaNPs AgNPs AuNPs CeNPs

PLvs. KG <0.0001 0.1746 0.9818 >0.9999 0.9233 <0.0001 0.7448
PLvs.QY <0.0001 <0.0001 0.2774 >0.9999 0.8677 <0.0001 0.9243
PLvs.RC <0.0001 <0.0001 0.0636 0.9689 0.6382 0.5995 0.8095
PLvs.RB <0.0001 <0.0001 0.1187 >0.9999 >0.9999 >0.9999 0.7503
KGvs. QY 0.9685 <0.0001 0.6044 >0.9999 0.9999 0.9999 0.9950
KGvs.RC <0.0001 <0.0001 0.2174 0.9669 0.9802 <0.0001 >0.9999
KGvs.RB  0.9440 0.0530 0.3439 >0.9999 0.9371 <0.0001 >0.9999
QY vs.RC <0.0001 <0.0001 0.9600 0.9657 0.9938 0.0001 0.9987
QY vs.RB  0.6357 0.0112 0.9933 >0.9999 0.8868 <0.0001 0.9954
RCvs.RB <0.0001 <0.0001 0.9990 0.9690 0.6675 0.5847  >0.9999




Table S9-1 The result of significant difference analysis in concentration of MNPs between
snowpacks and runoffs.

Al NPs Ti NPs CuNPs  AgNPs La NPs CeNPs  AuNPs
PL 0.3143 0.0445 0.5613 0.8471 - - 0.0022
KG 0.1143 0.1340 0.1904 0.1979 0.1655 0.1149 0.1041
QY 0.0381 0.9792 0.6654 0.7156 - 0.1629 0.1099
RC 0.8000 0.5885 0.0860 0.0223 0.1330 - 0.2262

Table S9-2 The result of significant difference analysis in diameter of MNPs between

snowpacks and runoffs.

Al NPs Ti NPs CuNPs  AgNPs La NPs CeNPs  AuNPs
PL 0.8381 0.0257 0.0667 0.8471 - - 0.6667
KG 0.4762 0.0681 0.3143 0.4884 0.8175 0.3635 0.0667
QY 0.0095 0.1251 0.0084 0.1143 - 0.0584 0.0667
RC 0.2 0.05 0.0667 0.8286 0.0667 0.6667 0.4667




Table S10 Average concentrations 7 metal elements in 4 glacial snowpacks.

Ag Al Au Ce Cu La Ti
Conc.(ng/L) Conc.(ng/L) Conc.(ng/L) Conc.(ng/L) Conc.(ng/L) Conc.(ng/L) Conc.(ng/L)
KG 3.64+0.12 4235.334+955.1 0.79+0.06 2.37+0.37 240.18+44.07 2.28+0.11 779.26+1.34
QY 15.27+1.71 10921.11+£372.72 0.42+0.26 6.43+0.5 246.52+24.13 10.5110.2 877.835.05
RC 2.72+0.61 7035.24214.31 1+0.47 5.27+2.31 438.41+2.76 14.4+0.35 2030.18+1.31
PL 4.15+1.22 8190.73+51.81 1.66+0.47 - 190.95+3.95 - 817.858.72




Table S11-1 Correlation analyses between the concentration and size of MNPs and water chemical parameters or element concentration.

r pH T (°C) Flow Rate TOC o DO Ti-N Ti-D Al -N Al -D
pH 1.000 -0.371 -0.329 0.279 -0.713 0.021 0.361 0.252 -0.069 0.251

T (°C) -0.371 1.000 0.190 -0.343 0.021 -0.218 -0.552 -0.616 0.646 -0.656
Flow Rate -0.329 0.190 1.000 0.232 0.723 0.615 -0.823 -0.649 -0.097 -0.187
TOC 0.279 -0.343 0.232 1.000 -0.428 -0.011 0.270 0.383 -0.421 0.583
o -0.713 0.021 0.723 -0.428 1.000 0.786 -0.751 -0.459 -0.029 0.134

DO 0.021 -0.218 0.615 -0.011 0.786 1.000 -0.418 -0.168 -0.476 0.448
Ti -N 0.361 -0.552 -0.823 0.270 -0.751 -0.418 1.000 0.920 -0.326 0.560
Ti-D 0.252 -0.616 -0.649 0.383 -0.459 -0.168 0.920 1.000 -0.538 0.677
Al -N -0.069 0.646 -0.097 -0.421 -0.029 -0.476 -0.326 -0.538 1.000 -0.558
Al -D 0.251 -0.656 -0.187 0.583 0.134 0.448 0.560 0.677 -0.558 1.000
Cu-N 0.449 0.503 -0.141 -0.091 -0.257 -0.399 -0.104 -0.337 0.661 -0.488
Cu-D 0.180 -0.252 -0.285 0.294 0.389 0.205 0.458 0.426 -0.066 0.741
Ag -N 0.339 0.370 0.388 0.256 -0.264 0.462 -0.294 -0.363 0.138 0.018
Ag-D -0.198 0.670 0.311 -0.231 -0.024 -0.224 -0.648 -0.749 0.622 -0.562
Au -N -0.023 0.548 -0.186 -0.433 -0.104 -0.395 -0.244 -0.477 0.530 -0.493
Au -D 0.413 -0.356 -0.724 -0.283 -0.164 -0.458 0.479 0.396 0.000 0.017
Ce-N -0.628 0.469 0.189 -0.360 0.335 0.226 -0.155 -0.153 0.101 -0.145
Ce-D 0.049 0.446 -0.495 -0.040 -0.553 -0.353 0.551 0.401 0.040 -0.028
La-N -0.395 -0.145 0.101 -0.002 0.658 0.217 0.013 -0.023 -0.058 0.330
La-D 0.024 0.588 -0.144 -0.363 -0.104 -0.273 -0.153 -0.237 0.536 -0.241
T-Ti 0.398 -0.588 -0.741 0.319 -0.731 -0.407 0.981 0.939 -0.349 0.557
T-Al 0.311 -0.621 -0.675 0.116 0.038 0.232 0.912 0.873 -0.473 0.774
T-Cu -0.452 0.136 0.206 -0.120 0.398 -0.070 -0.227 -0.206 -0.127 -0.263
T-Ag 0.085 0.478 -0.220 0.077 -0.477 -0.672 0.042 -0.106 0.587 -0.246
T-Au 0.197 0.162 -0.430 -0.127 -0.659 -0.515 0.098 -0.133 0.353 -0.282

T-Ce -0.103 0.266 -0.366 -0.151 0.728 0.442 0.502 0.328 -0.008 0.427




Table S11-1 Continued

r Cu-N Cu-D Ag -N Ag-D Au -N Au -D Ce-N Ce-D La-N La-D

pH 0.449 0.180 0.339 -0.198 -0.023 0.413 -0.628 0.049 -0.395 0.024

T (°C) 0.503 -0.252 0.370 0.670 0.548 -0.356 0.469 0.446 -0.145 0.588
Flow Rate -0.141 -0.285 0.388 0.311 -0.186 -0.724 0.189 -0.495 0.101 -0.144
TOC -0.091 0.294 0.256 -0.231 -0.433 -0.283 -0.360 -0.040 -0.002 -0.363
o -0.257 0.389 -0.264 -0.024 -0.104 -0.164 0.335 -0.553 0.658 -0.104

DO -0.399 0.205 0.462 -0.224 -0.395 -0.458 0.226 -0.353 0.217 -0.273
Ti-N -0.104 0.458 -0.294 -0.648 -0.244 0.479 -0.155 0.551 0.013 -0.153
Ti-D -0.337 0.426 -0.363 -0.749 -0.477 0.396 -0.153 0.401 -0.023 -0.237
Al-N 0.661 -0.066 0.138 0.622 0.530 0.000 0.101 0.040 -0.058 0.536
Al-D -0.488 0.741 0.018 -0.562 -0.493 0.017 -0.145 -0.028 0.330 -0.241
Cu-N 1.000 -0.153 0.375 0.348 0.408 0.200 -0.319 0.114 -0.363 0.467
Cu-D -0.153 1.000 0.054 -0.197 -0.173 -0.035 -0.037 0.109 0.358 -0.081
Ag-N 0.375 0.054 1.000 0.439 0.210 -0.500 0.067 0.079 -0.309 0.225
Ag-D 0.348 -0.197 0.439 1.000 0.725 -0.374 0.328 0.013 -0.291 0.349
Au -N 0.408 -0.173 0.210 0.725 1.000 0.172 0.161 0.114 -0.112 0.597
Au -D 0.200 -0.035 -0.500 -0.374 0.172 1.000 -0.419 -0.009 -0.058 0.203
Ce-N -0.319 -0.037 0.067 0.328 0.161 -0.419 1.000 0.447 -0.031 0.082
Ce-D 0.114 0.109 0.079 0.013 0.114 -0.009 0.447 1.000 -0.452 -0.026
La-N -0.363 0.358 -0.309 -0.291 -0.112 -0.058 -0.031 -0.452 1.000 -0.093
La-D 0.467 -0.081 0.225 0.349 0.597 0.203 0.082 -0.026 -0.093 1.000
T-Ti -0.150 0.369 -0.337 -0.678 -0.288 0.517 -0.220 0.471 -0.021 -0.154
T-Al -0.234 0.661 -0.176 -0.676 -0.329 0.396 -0.108 0.400 0.139 -0.223
T-Cu -0.309 -0.304 -0.252 -0.013 0.082 -0.165 -0.101 -0.148 0.348 -0.172
T-Ag 0.460 0.036 0.137 0.587 0.733 0.133 0.154 0.301 -0.286 0.723
T-Au 0.185 -0.266 0.044 0.450 0.754 0.342 -0.051 0.088 -0.120 0.510
T-Ce -0.208 0.544 -0.021 -0.248 0.057 0.086 0.435 0.458 0.437 0.040




Table S11-1 Continued

r T-Ti T-Al T-Cu T-Ag T-Au T-Ce T-La
pH 0.398 0.311 -0.452 0.085 0.197 -0.103 -0.088

T (°C) -0.588 -0.621 0.136 0.478 0.162 0.266 0.252
Flow Rate -0.741 -0.675 0.206 -0.220 -0.430 -0.366 -0.089
TOC 0.319 0.116 -0.120 0.077 -0.127 -0.151 -0.432
c -0.731 0.038 0.398 -0.477 -0.659 0.728 0.398

DO -0.407 0.232 -0.070 -0.672 -0.515 0.442 0.381
Ti-N 0.981 0.912 -0.227 0.042 0.098 0.502 -0.238
Ti-D 0.939 0.873 -0.206 -0.106 -0.133 0.328 -0.387
Al -N -0.349 -0.473 -0.127 0.587 0.353 -0.008 0.243
Al -D 0.557 0.774 -0.263 -0.246 -0.282 0.427 0.110
Cu-N -0.150 -0.234 -0.309 0.460 0.185 -0.208 0.071
Cu-D 0.369 0.661 -0.304 0.036 -0.266 0.544 0.353
Ag -N -0.337 -0.176 -0.252 0.137 0.044 -0.021 0.469
Ag-D -0.678 -0.676 -0.013 0.587 0.450 -0.248 0.431
Au -N -0.288 -0.329 0.082 0.733 0.754 0.057 0.585
Au -D 0.517 0.396 -0.165 0.133 0.342 0.086 -0.171
Ce-N -0.220 -0.108 -0.101 0.154 -0.051 0.435 0.265
Ce-D 0.471 0.400 -0.148 0.301 0.088 0.458 -0.165
La-N -0.021 0.139 0.348 -0.286 -0.120 0.437 0.344
La-D -0.154 -0.223 -0.172 0.723 0.510 0.040 0.492
T-Ti 1.000 0.750 -0.204 0.080 0.196 0.391 -0.334
T-Al 0.750 1.000 -0.336 -0.245 -0.320 0.570 0.195
T-Cu -0.204 -0.336 1.000 -0.226 0.070 -0.067 -0.156
T-Ag 0.080 -0.245 -0.226 1.000 0.695 -0.006 0.010
T-Au 0.196 -0.320 0.070 0.695 1.000 -0.074 0.120
T-Ce 0.391 0.570 -0.067 -0.006 -0.074 1.000 0.304




Table S11-2 Correlation analyses between the concentration and size of MNPs and water chemical parameters or element concentration.

p pH T (°C) Flow Rate TOC o DO Ti-N Ti-D Al-N Al-D
pH 0.000 0.191 0.231 0.314 0.047 0.945 0.205 0.385 0.814 0.388

T (°C) 0.191 0.000 0.516 0.230 0.961 0.474 0.050 0.025 0.017 0.015
Flow Rate 0.231 0.516 0.000 0.405 0.043 0.025 0.000 0.012 0.740 0.523
TOC 0.314 0.230 0.405 0.000 0.290 0.972 0.351 0.177 0.134 0.029
o 0.047 0.961 0.043 0.290 0.000 0.021 0.052 0.301 0.950 0.774

DO 0.945 0.474 0.025 0.972 0.021 0.000 0.176 0.601 0.117 0.144
Ti-N 0.205 0.050 0.000 0.351 0.052 0.176 0.000 0.000 0.255 0.037
Ti-D 0.385 0.025 0.012 0.177 0.301 0.601 0.000 0.000 0.047 0.008
Al -N 0.814 0.017 0.740 0.134 0.950 0.117 0.255 0.047 0.000 0.038
Al -D 0.388 0.015 0.523 0.029 0.774 0.144 0.037 0.008 0.038 0.000
Cu-N 0.108 0.080 0.630 0.758 0.578 0.199 0.723 0.239 0.010 0.076
Cu-D 0.539 0.407 0.323 0.308 0.388 0.522 0.100 0.129 0.824 0.002
Ag -N 0.236 0.213 0.170 0.376 0.568 0.130 0.307 0.202 0.637 0.951
Ag-D 0.496 0.012 0.280 0.426 0.960 0.485 0.012 0.002 0.017 0.036
Au -N 0.937 0.053 0.524 0.122 0.824 0.204 0.400 0.085 0.051 0.073
Au -D 0.142 0.232 0.003 0.328 0.726 0.134 0.083 0.161 1.000 0.953
Ce-N 0.016 0.106 0.518 0.206 0.462 0.480 0.597 0.601 0.731 0.622
Ce-D 0.869 0.127 0.072 0.891 0.198 0.260 0.041 0.156 0.892 0.925
La-N 0.162 0.635 0.732 0.996 0.108 0.499 0.966 0.937 0.844 0.250
La-D 0.935 0.034 0.623 0.203 0.824 0.391 0.601 0.415 0.048 0.406
T-Ti 0.142 0.027 0.002 0.247 0.039 0.168 0.000 0.000 0.221 0.039
T-Al 0.260 0.018 0.006 0.681 0.929 0.445 0.000 0.000 0.087 0.001
T-Cu 0.090 0.643 0.461 0.669 0.329 0.819 0.436 0.480 0.665 0.363
T-Ag 0.763 0.084 0.431 0.785 0.232 0.012 0.887 0.719 0.027 0.396
T-Au 0.500 0.579 0.125 0.666 0.076 0.072 0.750 0.664 0.237 0.350
T-Ce 0.714 0.358 0.180 0.591 0.041 0.130 0.067 0.252 0.980 0.127




Table S$11-2 Continued

p Cu-N Cu-D Ag -N Ag-D Au -N Au -D Ce-N Ce-D La-N La-D
pH 0.108 0.539 0.236 0.496 0.937 0.142 0.016 0.869 0.162 0.935

T (°C) 0.080 0.407 0.213 0.012 0.053 0.232 0.106 0.127 0.635 0.034
Flow Rate 0.630 0.323 0.170 0.280 0.524 0.003 0.518 0.072 0.732 0.623
TOC 0.758 0.308 0.376 0.426 0.122 0.328 0.206 0.891 0.996 0.203
o 0.578 0.388 0.568 0.960 0.824 0.726 0.462 0.198 0.108 0.824

DO 0.199 0.522 0.130 0.485 0.204 0.134 0.480 0.260 0.499 0.391
Ti-N 0.723 0.100 0.307 0.012 0.400 0.083 0.597 0.041 0.966 0.601
Ti-D 0.239 0.129 0.202 0.002 0.085 0.161 0.601 0.156 0.937 0.415
Al-N 0.010 0.824 0.637 0.017 0.051 1.000 0.731 0.892 0.844 0.048
Al-D 0.076 0.002 0.951 0.036 0.073 0.953 0.622 0.925 0.250 0.406
Cu-N 0.000 0.602 0.187 0.222 0.148 0.493 0.267 0.697 0.203 0.092
Cu-D 0.602 0.000 0.854 0.499 0.554 0.905 0.900 0.712 0.209 0.784
Ag-N 0.187 0.854 0.000 0.116 0.472 0.068 0.820 0.789 0.282 0.439
Ag-D 0.222 0.499 0.116 0.000 0.003 0.188 0.252 0.964 0.313 0.221
Au -N 0.148 0.554 0.472 0.003 0.000 0.557 0.582 0.697 0.704 0.024
Au -D 0.493 0.905 0.068 0.188 0.557 0.000 0.136 0.977 0.844 0.486
Ce-N 0.267 0.900 0.820 0.252 0.582 0.136 0.000 0.109 0.917 0.780
Ce-D 0.697 0.712 0.789 0.964 0.697 0.977 0.109 0.000 0.104 0.928
La-N 0.203 0.209 0.282 0.313 0.704 0.844 0.917 0.104 0.000 0.751
La-D 0.092 0.784 0.439 0.221 0.024 0.486 0.780 0.928 0.751 0.000
T-Ti 0.609 0.194 0.238 0.008 0.318 0.058 0.450 0.089 0.943 0.598
T-Al 0.420 0.010 0.548 0.008 0.251 0.161 0.713 0.157 0.636 0.443
T-Cu 0.283 0.290 0.384 0.964 0.781 0.572 0.732 0.613 0.223 0.557
T-Ag 0.098 0.903 0.641 0.027 0.003 0.651 0.599 0.296 0.322 0.003
T-Au 0.544 0.379 0.886 0.123 0.003 0.253 0.869 0.775 0.697 0.075
T-Ce 0.475 0.044 0.944 0.393 0.846 0.769 0.120 0.099 0.119 0.892




Table S$11-2 Continued

P T-Ti T-Al T-Cu T-Ag T-Au T-Ce T-La
pH 0.142 0.260 0.090 0.763 0.500 0.714 0.756

T (°C) 0.027 0.018 0.643 0.084 0.579 0.358 0.384
Flow Rate 0.002 0.006 0.461 0.431 0.125 0.180 0.751
TOC 0.247 0.681 0.669 0.785 0.666 0.591 0.108
c 0.039 0.929 0.329 0.232 0.076 0.041 0.329

DO 0.168 0.445 0.819 0.012 0.072 0.130 0.198
Ti-N 0.000 0.000 0.436 0.887 0.750 0.067 0.412
Ti-D 0.000 0.000 0.480 0.719 0.664 0.252 0.172
Al -N 0.221 0.087 0.665 0.027 0.237 0.980 0.402
Al -D 0.039 0.001 0.363 0.396 0.350 0.127 0.708
Cu-N 0.609 0.420 0.283 0.098 0.544 0.475 0.810
Cu-D 0.194 0.010 0.290 0.903 0.379 0.044 0.215
Ag -N 0.238 0.548 0.384 0.641 0.886 0.944 0.091
Ag-D 0.008 0.008 0.964 0.027 0.123 0.393 0.124
Au -N 0.318 0.251 0.781 0.003 0.003 0.846 0.028
Au -D 0.058 0.161 0.572 0.651 0.253 0.769 0.559
Ce-N 0.450 0.713 0.732 0.599 0.869 0.120 0.359
Ce-D 0.089 0.157 0.613 0.296 0.775 0.099 0.573
La-N 0.943 0.636 0.223 0.322 0.697 0.119 0.229
La-D 0.598 0.443 0.557 0.003 0.075 0.892 0.074
T-Ti 0.000 0.001 0.466 0.777 0.501 0.150 0.224
T-Al 0.001 0.000 0.221 0.378 0.265 0.027 0.487
T-Cu 0.466 0.221 0.000 0.418 0.813 0.813 0.580
T-Ag 0.777 0.378 0.418 0.000 0.006 0.983 0.973
T-Au 0.501 0.265 0.813 0.006 0.000 0.801 0.682
T-Ce 0.150 0.027 0.813 0.983 0.801 0.000 0.270

Note: N- represents the concentration, D- represents the mean size, T- represents the concentration of elements.



Table S12 Operating parameters of SP-ICP-MS for measurement of MNPs.

Parameter Operation Setting
Cell Standard/ Ammonia DRC
Reference 100 nm,5.71E5parts/mL,AuNPs
ICP RF Power 1.60E3
Nebulizer Gas Flow 1.08
Sample Flow Rate 0.125 mL/min
Dwell Time 100 ps
Scan Time 100 s
Transport Efficiency 6.50~8.50 %

Mass Monitored
Density of nPb

RPq

197AU, 107Ag’ 63CU, 47Ti’ 27A|’ 14OCe and 139La
11.3 g/cm?3

0.500
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Figure S1. (A) Study area and sampling sites. Red dots represent the locations of
sampling glaciers on the Qinghai-Tibetan Plateau (QTP), including the Rongbuk (RB),
Qiangyong (QY), Rijie Cojia (RC), Korchung Gangri (KG) and Parlung No. 4 (PL)
glacier. (B) Sampling sites in runoff from five glaciers. The three red dots on each local
map represent the up-, mid-, and downstream of runoffs, and the arrows represent the
direction of runoffs.
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2.05% Ti
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0.28% Au
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93.54% Ti
3.38% Al
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0.24% Cu
0.15% Au

PL Snowpacks

PL Runoff

Figure S3. Compositions of 7 MNPs in glacial showpacks and runoffs.

70.32% Ti
12.66% Al
8.48% Cu
3.56% Au
2.49% Ag
249% La
0.01% Ce

86.07% Ti
8.46% Al
2.34% Ag
1.44% Cu
0.78% Ce
0.57% La
0.36% Au
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and downstream

sampling sites, respectively. Low case letters above the bars denote statistically
significant differences between groups (one-way ANOVA, p < 0.05). Groups sharing

Figure S4. (A) Concentrations and (B) sizes of MNPs in glacial runoffs from upstream

to downstream sites. U, M, and D represent the upstream, midstream

the same letter are not significantly different.
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Figure S5. Single-particle size distribution histograms and fitting log-normal

distribution curve of Al-, Cu-, La-, Ag-, Au- and Ce-based NPs in glacial runoffs. Blue,

green, and orange represent upstream, midstream and downstream sampling points.

The left axis represents the normalized frequency, ranging from 0 to 100. The right

axis represents the fitting log-normal frequency (%), ranging from 0 to 150.
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Figure S6. Correlation of 7 MNPs with hydrologic parameters and other MNPs and
elements. D- represents the mean size of MNPs, T- represents the concentration of

element. (p < 0.05, Kruskal-Wallis test)
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Figure S7. Images of Ti NPs using FETEM and EDXS.
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