## **Supplementary Information (SI)**

Mechanistic insights into paracetamol adsorption from water using ZnO nanoparticleimmobilized chitosan-inulin composites: Fractal kinetics, statistical physics, thermodynamic analysis, and application to real water samples

## **Text S1: Experimental apparatus**

During the experimental studies, the solution pH was adjusted using a digital pH meter (Cyberscan pH 2100). The PCM concentration in the solution was determined with a UV-Vis spectrophotometer (Shimadzu UV-1800, Japan). Fourier transform infrared (FT-IR) spectra were recorded using a Perkin Elmer Spectrum 2 spectrometer in the range of 4000–400 cm $^{-1}$ . Powder X-ray diffraction (XRD) analysis was performed with a Bruker AXS D8 Advance diffractometer (Germany) using Cu K $\alpha$  radiation ( $\lambda$  = 0.154 Å) to determine the XRD pattern of the material. Surface morphology and elemental composition of the adsorbent were analyzed through scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) (JEOL JSM-6510LV, Japan). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were carried out using a Shimadzu DTG-60H thermal analyzer to assess the material's thermal stability and decomposition characteristics. Additionally, the Brunauer–Emmett–Teller (BET) surface area and porosity of the material were measured using a Micromeritics ASAP 2020 surface pore analyzer with nitrogen adsorption/desorption at 77 K.

**Table S1:** Independent variables and their levels used for central composite design.

| Variables    | Unit | Factor | Range and level |        |       |       |       |
|--------------|------|--------|-----------------|--------|-------|-------|-------|
|              |      |        | - α             | -1     | 0     | +1    | +α    |
| Contact time | (-)  | K      | 12.96           | -30.00 | 55.00 | 80.00 | 97.04 |
| Dosage       | (mg) | L      | 1.59            | 5.00   | 10.00 | 15.00 | 18.41 |

| Initial concentration (mg/L) | M | 6.14 | 30.00 | 65.00 | 100.00 | 123.86 |
|------------------------------|---|------|-------|-------|--------|--------|
|------------------------------|---|------|-------|-------|--------|--------|

**Table S2:** Mathematical expressions of classical isotherm statistical physics models and its parameters

| Classical isotherm        | Non-linear equation                                                                                                                                                                     | Parameters                            |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Langmuir                  | $q_e = \frac{q_m K_L C_e}{1 + K_L C_e}$                                                                                                                                                 | $q_{m}$ , $K_{L}$ and $C_{e}$         |
| Freundlich                | $q_e = K_F C_e^{1/n}$                                                                                                                                                                   | $K_F$ and $n$                         |
| Statistical physics mod   | els                                                                                                                                                                                     |                                       |
| Model 1 (M <sub>1</sub> ) | $q_e = nN_o \frac{n.N_m}{1 + \left(\frac{C_{1/2}}{C_e}\right)^n} = \frac{Q_{sat}}{1 + \left(\frac{C_{1/2}}{C_e}\right)^n}$                                                              | $n$ , $N_o$ and $N_m$                 |
| Model 2 (M <sub>2</sub> ) | $q_e = \frac{n_1 \cdot N_{m1}}{1 + \left(\frac{C_1}{C}\right)^{n_1}} + \frac{n_2 \cdot N_{m2}}{1 + \left(\frac{C_2}{C}\right)^{n_2}}$                                                   | $n_1$ , $n_2$ , $N_{m1}$ and $N_{m2}$ |
| Model 3 (M <sub>3</sub> ) | $q_e = n.N_m \left( \frac{\left(\frac{C}{C_{1/2}}\right)^n + 2\left(\frac{C}{C_{1/2}}\right)^{2n}}{1 + \left(\frac{C}{C_{1/2}}\right)^n + \left(\frac{C}{C_{1/2}}\right)^{2n}} \right)$ | $n\ and\ N_m$                         |
| Model 4 (M <sub>4</sub> ) | $q_e = n.N_m \left( \frac{\left(\frac{C}{C_1}\right)^n + 2\left(\frac{C}{C_1}\right)^{2n}}{1 + \left(\frac{C}{C_1}\right)^n + \left(\frac{C}{C_2}\right)^{2n}} \right)$                 | $n$ and $N_m$                         |

where  $q_e$ : experimental adsorption capacity(mg/g),  $q_m$ : calculated adsorption capacity (mg/g),  $C_e$ : concentration of cloxacillin in the solution phase at equilibrium(mg/L),  $k_L$ : Langmuir

isotherm constant (L/mg),  $k_F \& \overline{n}$  are Freundlich isotherm constants.  $N_m$  and n are the density of adsorption sites, occupied by adsorbate (mg/g) and number species which are adsorbed, respectively.  $C_{1/2}$  and C are the concentration of acetaminophen (mg/L) at half saturation and

equilibrium concentration (mg/L), respectively.  $^{C_1}$  and  $^{C_2}$  suggested the concentration (mg/L) at half saturation of first and second adsorption sites, respectively.  $^{N_{m1}}$  and  $^{N_{m2}}$  are the density of first and second adsorption sites, respectively.  $^{n_1}$  and  $^{n_2}$  indicate the number of adsorbed species at first and second adsorption sites, respectively.

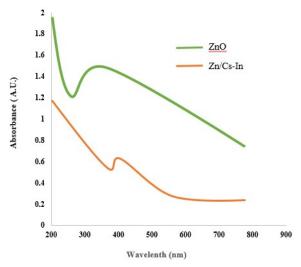
Table S3

| Surface based kinetic studies (fractal-like kinetic models) | Mathematical expression                                                      |
|-------------------------------------------------------------|------------------------------------------------------------------------------|
| F-L PFO                                                     | $q_t = q_e \left[ 1 - \exp\left(-k_{1,0}^{\prime} t^{\alpha}\right) \right]$ |
| F-LPSO                                                      | $q_{t} = \frac{k_{2,0} q_{e}^{2} t^{\alpha}}{1 + k_{2,0} q_{e} t^{\alpha}}$  |
| Diffusion based kinetic model                               |                                                                              |
| Intraparticle diffusion model                               | $q_t = k_{id}t^{1/2} + C_{id}$                                               |

In these equations  $k_{1,0}$   $(1/min^{\alpha})$  and  $k_{2,0}$   $(mg/g/min^{\alpha})$  express the rate coefficients of Fractal-like-PFO, Fractal-like-PSO, respectively.  $\alpha$  denotes fractional time index which is defined as  $\alpha = (1 - h)$ .  $k_{id}$   $(mg/g min^{-0.5})$  and  $C_{id}$  (mg/g) denotes the intraparticle diffusion rate constant and the boundary layer effect, respectively.

**Table S4:** Nonlinear Langmuir and Freundlich isotherm parameters and error values

| Isotherm   | Temp. | Parameters (Linear) |                |                |                |                 |          |  |
|------------|-------|---------------------|----------------|----------------|----------------|-----------------|----------|--|
|            | (K)   | $q_{m^*}$           | $_{n^*}$ $K_L$ |                |                | Error Functions |          |  |
|            |       | (mg/g)              | (L/mg          | )              | $\mathbb{R}^2$ | RMSD            | $\chi^2$ |  |
|            | 298   | 287.538             | 1.627          |                | 0.9996         | 6.149           | 0.004    |  |
| Langmuir   | 308   | 282.189             | 2.248          |                | 0.9997         | 6.147           | 0.003    |  |
|            | 318   | 279.171             | 3.753          |                | 0.9996         | 6.083           | 0.002    |  |
|            |       | q <sub>m*</sub>     | n              | K <sub>F</sub> |                |                 |          |  |
|            |       | (mg/g)              |                |                |                |                 |          |  |
|            | 298   | 269.54              | 2.525          | 53.92          | 0.9268         | 16.425          | 3.065    |  |
| Freundlich | 308   | 265.48              | 2.023          | 49.59          | 0.9528         | 13.293          | 1.939    |  |
|            | 318   | 262.89              | 1.955          | 46.28          | 0.9922         | 9.399           | 0.949    |  |


<sup>\*</sup> The experimental values of adsorption capacity (q<sub>e</sub>) for acetaminophen are 287.15 mg/g, 281.98 and 280.078 mg/g at 298, 308 and 318 K, respectively.

**Table S5:** Mathematical expressions of statistical physics models with  $R^2$  and SSE for fitting of experimental date for the adsorption of acetaminophen onto

| 1                         | <u> </u> | 1              |          |        |
|---------------------------|----------|----------------|----------|--------|
|                           | Temp (K) |                |          |        |
| Models                    |          | R <sup>2</sup> | $\chi^2$ | RMSD   |
|                           | 298      | 0.9897         | 2.197    | 14.132 |
| Model 1 (M <sub>1</sub> ) | 308      | 0.9908         | 1.7635   | 16.332 |
|                           | 318      | 0.9946         | 1.141    | 13.328 |
|                           | 298      | 0.9998         | 0.066    | 1.905  |
|                           | 308      | 0.9997         | 0.037    | 1.587  |
| Model 2 (M <sub>2</sub> ) | 318      | 0.9999         | 0.031    | 1.721  |
|                           | 298      | 0.9925         | 6.764    | 26.656 |
| Model 3 (M <sub>3</sub> ) | 308      | 0.9698         | 5.675    | 26.282 |
|                           | 318      | 0.9809         | 3.371    | 21.436 |
|                           | 298      | 0.9895         | 18.635   | 38.783 |
| Model 4 (M <sub>4</sub> ) | 308      | 0.9498         | 12.966   | 33.335 |
|                           | 318      | 0.9299         | 7.2337   | 9.399  |

**Table S6.** Diffusion based kinetic parameters and regression coefficients obtained by linear regression analysis for the adsorption of PCM onto ZnO/Cs-In.

| Kinetic model   |    | Parameters                          | Concentration (mg/L) |         |         |  |
|-----------------|----|-------------------------------------|----------------------|---------|---------|--|
|                 |    | 1 at ameters                        | 95                   | 115     | 195     |  |
|                 |    | $C_{id}$                            | -167.47              | -199.21 | -202.73 |  |
|                 | I  | $K_{id}$ (mg/g.min <sup>1/2</sup> ) | 57.813               | 71.119  | 74.703  |  |
| Intra-particle  |    | $\mathbb{R}^2$                      | 0.9992               | 0.9995  | 0.9999  |  |
| diffusion model |    |                                     |                      |         |         |  |
|                 |    | $C_{id}$                            | 94.546               | 150.39  | 170.54  |  |
|                 | II | $K_{id}$ (mg/g.min <sup>1/2</sup> ) | 16.729               | 15.659  | 15.603  |  |
|                 |    | $\mathbb{R}^2$                      | 0.9998               | 0.9996  | 0.9994  |  |



**Fig. S1**: Uv-visible absorption spectra of ZnO nanoparticles and the ZnO/CS-In nanocomposite

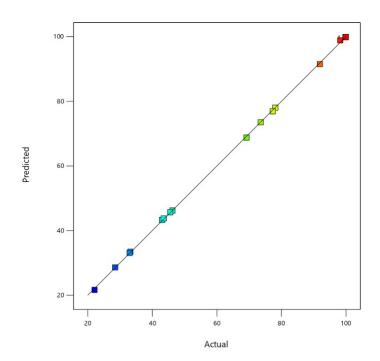
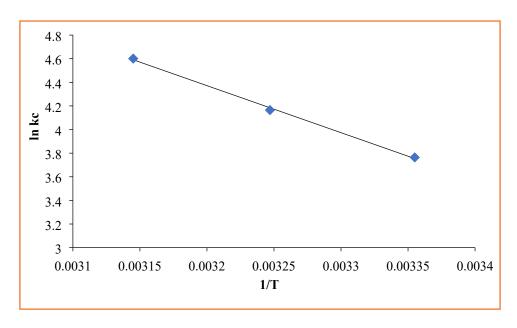




Fig S2: Predicted versus actual plot.



**Fig. S3**: Van't Hoff plot for determining thermodynamic parameters of PCM adsorption onto ZnO/Cs-In

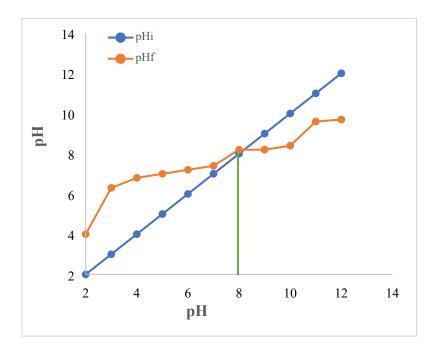



Fig. S4: Point of zero charge  $pH_{pzc}$  of the ZnO/Cs-In, determined by the pH drift method