Well Exposed Supplemental Information:

Table S1: Summary table of known Aquifer information

Aquifer	
Alluvial	The Apple-Plum Alluvial aquifer, an unconsolidated sand and gravel formation in the Apple-Plum watershed primarily
	serving the Dubuque area in eastern Iowa ^{1,2} , has an alluvial composition that allows for high permeability and water
	movement, making it a significant groundwater source. With depths ranging from approximately 50 to 250 ² feet and a
	cumulative confining layer thickness of less than 25 feet ³ , the aquifer has minimal protection from surface contamination
	sources, such as agricultural runoff, chemical spills, and leaking underground storage tanks. The aquifer's vulnerability
	is managed through rigorous treatment to maintain water quality for municipal use.
Cambrian-Ordovician	The Cambrian-Ordovician aquifer is a main water source for municipalities in eastern half of Iowa ⁴ and is also
	commonly known as the Jordan Aquifer. Its bedrock is mainly comprised of sandstone with smaller portions of
	limestone and dolomite. Where the aquifer is deeper, there have been high levels of fluoride, chloride and sulfate
	dissolved minerals found along with excessive amounts of radium, but these are municipally removed in Iowa. This
	aquifer has low susceptibility to contamination due to its thick confining layers, which provide natural protection against
	surface pollutants, including contaminants from leaking underground storage tanks, chemical spills, and excessive
	fertilizer application ⁵ . Wells on the Cambrian-Ordovician aquifer can range from 300 to 2000 ft deep, with extremes
	reaching down to 3000 ft.
Silurian	The Silurian aquifer serves many public, rural, and industrial users in eastern and northern Iowa. Its bedrock consists of
	dolomite and limestone, both primarily composed of calcium carbonate, with dolomite distinguished by the addition of
	magnesium ⁶ . This aquifer reaches depths of up to 700 feet in some areas, with wells typically ranging from 100 to 700
	feet deep ⁴ . However, due to its shallow depth in certain locations and minimal protective overlying materials, the
	Silurian aquifer is highly susceptible to contamination ⁷ . This vulnerability exposes it to pollutants from surface sources,
	including leaking underground storage tanks, chemical spills, and excessive fertilizer application.

Galena	L	The Galena aquifer is one of the more restricted aquifer sources that is locally used in northeastern Iowa ⁴ . Although its
		exact depth isn't conclusive, it is known to be shallower than both the Silurian and the Cambrian-Ordovician aquifers. Its
		bedrock is a comprised of shale with some embedded dolomite and limestone8. Uniquely, contamination from bacteria
		and nitrates are a concern for the Galena aquifer because potions of its strata are exposed in its eastern region ⁴ .

Table S2: Summary table of known Municipal treatment information

Municipality	# of samples in municipality	
1. Asbury		The Asbury Municipal System in Asbury, Iowa, sources its water from the Cambrian-Ordovician
Municipal Water System		(Jordan) aquifer9 and treats it using chlorination to achieve "breakpoint" chlorination, ensuring a
	1	minimum chlorine residual of 0.3 mg/L free chlorine or 1.5 mg/L total chlorine across the distribution

		system ¹⁰ . This treatment process, overseen by the Iowa Department of Natural Resources (IDNR),
		maintains water safety for public consumption.
2. Cascade		The Cascade Municipal Water Supply in Iowa sources its water from the Cambrian-Ordovician
Municipal Water Supply		aquifer ¹¹ , specifically the Jordan Sandstone and Silurian Limestone formations, which offer natural
water Suppry		protection against surface contaminants. The wells have a combined daily capacity of approximately
		1,440,000 gallons. The system includes three well houses, a 400,000-gallon water tower, and 12 miles
	1	of underground distribution lines, with an average daily consumption of about 230,000 gallons ¹²
	1	Cascade employs chlorination with a Maximum Residual Disinfectant Level (MRDL) of 4.0 ppm. In
		2023, the Running Annual Average (RAA) chlorine residual in the system is 2.3 ppm, within a range of
		1.53 to 3.1 ppm ¹³ . The Iowa Department of Natural Resources (IDNR) oversees the water quality
		ensuring it meets all state and federal safety standards.
3. Dubuque		The City of Dubuque sources its water from the Apple-Plum Alluvial aquifer and the Jordan
Water Works	6	(Cambrian-Ordovician) aquifer ^{14,15} . To ensure water safety, Dubuque employs chlorination for
		disinfection, maintaining microbiological safety by destroying pathogens, with a Maximum Residual
		Disinfectant Level (MRDL) of 4.0 ppm and a Running Annual Average (RAA) chlorine residual of
		1.1 ppm ¹⁶ . Additionally, fluoride is detected at 0.7 mg/L in the treated water – this concentration
		results from a combination of added fluoride to promote dental health, natural erosion of deposits.
		Phosphate is introduced to chemically stabilize the water, reducing lead leaching from pipes ¹⁶ . The
		Iowa Department of Natural Resources (IDNR) oversees the water quality, ensuring adherence to all
		safety standards.
4. Dyersville		The Dyersville water supply in Iowa draws from the Cambrian-Ordovician and Silurian aquifers,
Municipal Water Co	3	which consist of sandstone and dolomite rock layers ¹⁶ . To ensure safe drinking water, Dyersville uses
		chlorination for disinfection, maintaining a Maximum Residual Disinfectant Level (MRDL) of 4.0
		ppm and a Running Annual Average (RAA) chlorine residual of 1.8 ppm, with levels ranging from 1.1

		to 1.95 ppm ¹⁷ . Fluoride was detected at a level of 0.9 ppm in the water, a concentration that results
		from a combination of added fluoride to promote dental health, natural erosion of deposits, and
		possible discharge from fertilizer and aluminum factories ¹⁷ . Additionally, sodium was measured at
		26.1 ppm, originating both from the natural erosion of deposits and from additives introduced during
		the treatment process ¹⁷ . The Iowa Department of Natural Resources (IDNR) oversees the water
		quality, ensuring compliance with all required safety standards.
5. Epworth Water		The Epworth Water Supply in Iowa sources its water from the Silurian aquifer ¹⁸ , specifically from
Supply		dolomite formations7. Epworth employs chlorination for disinfection to maintain microbiological
		safety, with a Maximum Residual Disinfectant Level (MRDL) of 4.0 ppm and a Running Annual
	2	Average (RAA) chlorine residual reported to ensure consistent disinfection compliance7. The Epworth
		water system is overseen by the IDNR, which ensures adherence to water quality standards.
6. Farley Water		The Farley Water Supply in Iowa sources its water from the sandstone and dolomite of the Cambrian-
Supply		Ordovician aquifer ^{19,20} . Farley uses chlorination as its primary disinfection method to control microbes
		in the water, maintaining a Maximum Residual Disinfectant Level (MRDL) of 4.0 ppm. In 2020, the
	1	system reported a Running Annual Average (RAA) chlorine residual of 1.8 ppm, with recorded values
		ranging from 1.33 to 2.16 ppm ¹⁹ . The Iowa Department of Natural Resources (IDNR) oversees the
		water quality, ensuring adherence to safety and compliance standards.
7. Holy Cross		The Holy Cross Water Supply in Iowa sources its water from the Cambrian-Ordovician aquifer ²¹ .
Water Supply	1	
8. Luxemburg		The City of Luxemburg water supply in Iowa sources its water from the Cambrian Jordan Sandstone
Water Supply	1	aquifer ²² . This aquifer is not susceptible to contamination due to its depth and protective overlying
		materials, which prevent contaminants from easily accessing the water source. The Luxemburg water

		supply employs chlorination as its primary disinfection method to control microbial growth,
		maintaining a Maximum Residual Disinfectant Level (MRDL) of 4.0 ppm and a Running Annual
		Average (RAA) chlorine residual of 1.66 ppm, with levels ranging between 1.00 and 2.24 ppm ²³ . The
		Iowa Department of Natural Resources (IDNR) oversees the water quality, ensuring compliance with
		all safety standards.
9. New Vienna Water Supply		The New Vienna Water Supply in Iowa sources its water from the Silurian and Cambrian-Ordovician
Water Suppry	1	aquifers ²⁴ .
10. Peosta Water		The Peosta water supply in Iowa sources its water from the Cambrian-Ordovician aquifer, specifically
Supply	2	from sandstone and dolomite formations ²⁵ . Peosta uses chlorination as a primary disinfection method,
		maintaining a Maximum Residual Disinfectant Level (MRDL) of 4.0 ppm and a Running Annual
		Average (RAA) chlorine residual of 0.8 ppm, with recorded levels ranging from 0.33 to 1.6 ppm ²⁶ .
		Fluoride was detected at 0.5 ppm, reflecting a combination of added fluoride to support dental health,
		natural erosion of deposits, and possible discharge from fertilizer and aluminum factories ²⁶ .
		Additionally, sodium levels measured at 85.8 ppm stem from both natural deposits and additives used
		during the treatment process ²⁶ . The Iowa Department of Natural Resources (IDNR) oversees the water
		quality to ensure compliance with all safety standards.
11. Worthington		The Worthington water supply in Iowa sources its water from the Cambrian-Ordovician aquifer,
Water Supply	1	specifically from sandstone and dolomite formations ²⁷ . Chlorination is used as the primary
		disinfection method, with a Maximum Residual Disinfectant Level (MRDL) of 4.0 ppm and a
		Running Annual Average (RAA) chlorine residual of 1.0 ppm, ranging from 0.4 to 2.15 ppm, to
		control microbial growth ²⁸ . Fluoride was detected at 1.6 ppm, sourced from a combination of added
		fluoride to promote dental health, natural erosion of deposits, and potential discharge from fertilizer
		and aluminum factories ²⁸ . Additionally, sodium levels were measured at 50.6 ppm, stemming from
		both the natural erosion of deposits and additives introduced during the treatment process. The Iowa

Department of Natural Resources (IDNR) oversees the water quality to ensure compliance with all
safety standards.

Table S3: List of 33 water quality indicators/ Chemical parameters, Minimum Detection level (MDL), SWDA regulatory level (if applicable)

Water Quality Indicator/ Parameter	Minimum Detection Level	Water Quality Indicator/ Parameter	Minimum Detection Level
Aluminum	2.5144 ppb	Nickel	0.0508 ppb
Antimony	0.0145 ppb	Nitrate (as N)	0.10 ppm
Arsenic	0.0067 ppb	Phosphorus	3.7141 ppb
Barium	0.0145 ppb	Potassium	0.0045 ppm
Beryllium	0.0123 ppb	Selenium	0.2816 ppb
Boron	0.7030 ppb	Sodium	0.0176 ppm
Cadmium	0.0103 ppb	Strontium	0.0777 ppb
Calcium	0.0079 ppm	Thallium	0.0036 ppb
Chromium	0.0173 ppb	Tin	0.0145 ppb
Cobalt	0.0021 ppb	Uranium	0.0006 ppb
Copper	0.2251 ppb	Vanadium	0.0039 ppb
Iron	0.2259 ppb	Zinc	0.4222 ppb

Lead	0.0106 ppb		
Lithium	0.0608 ppb	E-coli	Presence/ Absence
Magnesium	0.0016 ppm	Total Coliform	Presence/ Absence
Manganese	0.0166 ppb	Temperature	-5 °C
Molybdenum	0.0017 ppb	рН	0

Table S4: Descriptive statistics and detection frequencies of chemicals listed on the EPA's Primary Drinking Water Regulations list in well and municipal drinking water samples

es	Municipal Sa	Well Samples
----	--------------	--------------

Parameter	Mean	Median	Range	Detection Frequency	Mean	Median	Range	Detection Frequency	Higher Source	p_value
Antimony (ppb)	0.203	0.01	0.0145 - 0.0477	100%	0.02	0.01	0.0145 - 0.0463	100%	Municipal	0.4488
Arsenic (ppb)	0.073	0.06	0.0048 - 0.1626	100%	0.20	0.10	0.0121 - 0.8262	100%	Municipal	0.1404
Barium (ppb)	82.135	63.77	0.0463 - 233.6834	100%	27.92	15.87	0.2379 - 161.9626	100%	Well	0.1636
Beryllium (ppb)	0.017	0.02	0.0123 - 0.044	100%	0.02	0.01	0.0123 - 0.0262	100%	Well	0.7455
Cadmium (ppb)	0.015	0.01	0.0103 - 0.0814	95%	0.01	0.01	0.0103 - 0.0211	90%	Well	0.3539
Copper (ppb)	8.911	5.59	0.2 - 35.833	100%	29.52	15.19	2.002 - 117.488	100%	Municipal	0.0337*
Lead (ppb)	0.203	0.12	0.0315 - 0.7772	100%	0.18	0.08	0.013 - 1.3651	100%	Well	0.1264
Nitrate (ppm)	4.054	1.80	0.24 - 11	55%	1.46	0.64	0.54 - 4.8	50%	Well	0.3911
Selenium (ppb)	0.497	0.28	0.2816 - 1.3121	70%	0.28	0.41	0.2816 - 1.154	60%	Well	0.3674
Thallium (ppb)	0.022	0.02	0.0053 - 0.095	100%	0.01	0.01	0.0049 - 0.0251	100%	Well	0.0019***
Uranium (ppb)	0.285	0.09	0.0098 - 1.1119	100%	0.28	0.23	0.009 - 0.832	100%	Well	0.9461

 Table S5: Descriptive statistics and detection frequencies of chemicals listed on the EPA's Secondary Drinking Water Standards in well and municipal drinking water samples.

Well Samples	Municipal Samples
--------------	-------------------

Parameter	Mean	Median	Range	Detection	Mean	Median	Range	Detection	Higher	p_value
				Frequency				Frequency	Source	
Aluminum										
(ppb)	3.370	2.51	2.514 - 14.152	90%	9.88	2.64	2.514 - 82.337	95%	Municipal	0.0140*
Iron (ppb)	159.489	68.53	6.125 - 1035.82	100%	36.32	31.04	4.1273 - 89.170	100%	Well	0.0360**
Manganese										
(ppb)	10.252	2.74	0.0166 - 90.005	100%	1.00	0.68	0.187 - 4.4723	100%	Well	0.0060***
Zinc (ppb)	13.694	8.65	0.4222 - 51.847	100%	7.28	3.37	0.4222 - 49.902	100%	Well	0.0337**

Table S6: Descriptive statistics and detection frequencies of non-EPA regulated chemicals tested in well and municipal drinking water samples.

	Well Samples				Municipal Samples					
Parameter	Mean	Median	Range	Detection Frequency	Mean	Median	Range	Detection Frequency	Higher Source	p_value
Boron (ppb)	23.935	18.25	6.624 - 73.532	100%	227.12	131.56	12.177 - 911.05	100%	Municipal	0.0009***
Calcium (ppm)	47.611	58.53	0.044 - 124.695	100%	31.26	12.74	0.182 - 112.195	100%	Well	0.2503
Chromium (ppb)	0.477	0.33	0.0405 - 1.686	100%	0.39	0.35	0.0798 - 0.703	100%	Well	0.8181
Cobalt (ppb)	0.114	0.12	0.0109 - 0.2925	100%	0.08	0.06	0.0105 - 0.2574	100%	Well	0.2616
Lithium (ppb)	3.205	2.79	0.487 - 7.451	100%	30.63	18.25	0.288 - 129.604	100%	Municipal	0.0003***
Magnesium (ppm)	22.216	26.92	0.0201 - 57.669	95%	17.50	20.45	0.077 - 42.315	90%	Well	0.3104
Molybdenum (ppb)	0.425	0.28	0.0296 - 1.2182	95%	0.27	0.25	0.0155 - 0.661	100%	, Well	0.1559
Nickel (ppb)	0.871	0.87	0.1007 - 3.6901	100%	0.51	0.35	0.0768 - 1.6686	100%	Well	0.0617
Phosphorus (ppb)	11.819	6.41	3.714 - 55.762	70%	439.28	494.37	3.714 - 1555.63	60%	Municipal	0.0000***
Potassium (ppm)	1.142	1.06	0.1259- 4.877	100%	5.38	5.37	0.257 - 13.595	100%	Municipal	0.0000***
Sodium (ppm)	51.578	9.94	1.807 - 179.140	100%	67.19	43.29	12.57 - 197.249	100%	Municipal	0.0411*
Strontium (ppb)	65.763	62.42	0.2604 - 180.442	100%	383.53	54.38	0.2345 - 1371.643	100%	Municipal	0.1478
Tin (ppb)	0.024	0.01	0.0145 - 0.1	45%	0.01	0.01	0.0145	40%	Well	0.4094

	Vanadium (ppb)	0.040	0.01	0.0044 - 0.3002	100%	0.10	0.03	0.0039 - 0.3282	100%	Municipal	0.0043***
--	----------------	-------	------	-----------------	------	------	------	-----------------	------	-----------	-----------

Table S7: Module list of functional traits relating to phosphate or nitrogen metabolism.

BugBase Module ID	Module Name					
M00145	NADPH Quinone Oxidoreductase in Chloroplasts and Cyanobacteria					
M00175	Nitrogen Fixation: Nitrogen-Ammonia					
M00222	Phosphate Transport System					
M00434	PhoRB Phospate Starvation Response					
M00438	Nitrate-Nitrite Transport System					
M00443	SenX3-RegX3 Phosphate Starvation Response					
M00449	CreBC Phosphate Regulation					
M00473	UhpBA Hexose Phosphate Uptake					
M00497	GlnLG Nitrogen Regulation					
M00498	NtrYX Nitrogen Regulation					
M00524	FixLJ Nitrogen Fixation					
M00528	Ammonia-Nitrite Nitrification					
M00529	Nitrate-Nitrogen Denitrification					
M00530	Dissimilatory Nitrate Reduction: Nitrate-Ammonia					
M00531	Assimilatory Nitrate Reduction: Nitrate-Ammonia					
M00176	Sulfur-Sulfate Reduction					

Table S8: ddPCR assay thresholds, LOD, and LOQ

Target taxa (gene)	ddPCR Threshold	Limit of Detection	Limit of Quantification
Total Bacteria	12900	5.3 gene copies / 20 μ L	53 gene copies / 20 μL
L. pneumophila	8800	6.08 gene copies / $20 \ \mu L$	6.08 gene copies / $20 \ \mu L$

 $\frac{10600}{10600} = \frac{5.6 \text{ gene copies}}{20 \text{ }\mu\text{L}} = \frac{5.6 \text{ gene copies}}{20 \text{ }\mu\text{L}} = \frac{5.6 \text{ gene copies}}{20 \text{ }\mu\text{L}}$ Thresholds were determined experimentally by spiking target taxa's gblock at different concentrations into water DNA matrix and adjusting threshold until expected concentration was read out.}

Bibliography:

1 City of Dubuque Water Department, 2023 Water Quality Consumer Confidence Report, <u>https://www.cityofdubuque.org/DocumentCenter/View/54579/2023-Water-Quality-Consumer-Confidence-Report</u>, (accessed 5 November 2024)

- 2 City of Dubuque Water Department, 2024 Water Quality Consumer Confidence Report, <u>https://www.cityofdubuque.org/DocumentCenter/View/57044/2024-Water-Quality-Consumer-Confidence-Report</u>, (accessed 5 November 2024).
- 3 City of Dubuque Water Department, Source Water Assessment for Dubuque, <u>https://www.cityofdubuque.org/DocumentCenter/View/17944/Source-Water-Assessment-for-Dubuque</u>, (accessed 5 November 2024).
- 4 J. C. Prior et al, *Iowa's Groundwater Basics*, 1st edition., 2003.
- 5 Scientific Investigations Report, 2012.
- 6 C. M. Sperber, B. H. Wilkinson and D. R. Peacor, Rock Composition, Dolomite Stoichiometry, and Rock/Water Reactions in Dolomitic Carbonate Rocks, *The Journal of Geology*, 1984, **92**, 609–622.
- 7 U.S. Geological Survey, *Hydrology of the Cambrian-Ordovician Aquifer System in the Northern Midwest, United States*, <u>https://pubs.usgs.gov/ha/ha730/ch_j/J-text6.html</u>, (accessed 5 November 2024).
- 8 R. D. Rowden and R. D. Libra, A Report of The Big Spring Basin Demonstration Project.
- 9 Source Water Protection Tracker Asbury, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3102001, (accessed 5 November 2024).
- 10 Water System User Information, https://www.cityofasbury.com/departments/water/water_system_user_information, (accessed 5 November 2024).
- 11 Source Water Protection Tracker Cascade, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3118080, (accessed 5 November 2024).
- 12 City of Cascade Water, https://www.cityofcascade.org/vnews/display.v/SEC/Municipal%20Utilities%7CWater, (accessed 5 November 2024).
- 13 City of Cascade Water Department, *Cascade Water Quality Report*, https://www.cityofcascade.org/vimages/shared/vnews/stories/5eeb92cca75d4/Cascade%20Water%20Quality%20Report.pdf, (accessed 5 November 2024).
- 14City of Dubuque Water Department, 2019 Water Quality Consumer Confidence Report, https://www.cityofdubuque.org/2019waterquality, (accessed 5 November 2024).
- 15 Source Water Protection Tracker Dubuque, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3126052, (accessed 5 November 2024).
- 16 Treatment Process | Dubuque, IA Official Website, https://www.cityofdubuque.org/522/Treatment-Process, (accessed 5 November 2024).
- 17City of Dyersville Water Department, 2024 Consumer Confidence Report, https://iowaccr.org/reports/report_pdfs/Dyersville/2024%20CCR%20Report.pdf, (accessed 5 November 2024).

- 18 Source Water Protection Tracker Epworth, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3133033, (accessed 5 November 2024).
- 19City of Farley Water Department, 2020 Water Quality Report, <u>https://cdnsm5-hosted.civiclive.com/UserFiles/Server_15455573/File/Farley%202020%20water%20quality%20report.pdf</u>, (accessed 5 November 2024).
- 20 Source Water Protection Tracker Farley, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3135018, (accessed 5 November 2024).
- 21 Source Water Protection Tracker Holy Cross, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3146055, (accessed 5 November 2024).
- 22 Source Water Protection Tracker Luxemburg, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3158001, (accessed 5 November 2024).
- 23 WATER QUALITY REPORT.
- 24Source Water Protection Tracker New Vienna, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3165014, (accessed 5 November 2024).
- 25 Source Water Protection Tracker Peosta, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3170001, (accessed 5 November 2024).
- 26A. [DNR] Lynam, WATER QUALITY REPORT.
- 27 Source Water Protection Tracker Worthington, https://programs.iowadnr.gov/sourcewater/SystemDetail?pwsid=3189001, (accessed 5 November 2024).
- 28 Worthington Water Supply, 2024 Consumer Confidence Report, https://nebula.wsimg.com/d38f339998385bd03489127abd6eb6de?AccessKeyId=A636D15CD5651EA6DDE0&disposition=0&allo worigin=1, (accessed 5 November 2024).