Economic evaluation of antiscalants

- Cost needed for PASP synthesis:
- 1- Electric energy (240 °C 4 h) and (80 °C for 48 h)
- 2- NaOH
- 3- Ethanol
- 4- L-aspatic acid 1 kg = 800 L.E
- \blacktriangleright <u>CMC purchased</u> 1kg = 175 L.E
- \blacktriangleright <u>CA-SC</u> composed of 1kg CA = 90 and 1kg SC = 105
- PASP purchased commercially

From the market (importing) = 2 *100/40 * 40 = **200 L.E**

Adding 200 + 200*200% = 600 L.E (200% is the expected company profit plus charging fees).

1Kg taurine = 200 L.E approx.

PASP-SEA = 1556.6+200 = 1756.6 L.E

- <u>The process of PASP lab production needs thermal energy</u>
- a- $Q = mc\Delta T = 1000*155.18*((240-25)+273) = 1000/133.1*155.18*488 = 569$ KJ

P for 4 h = 569/4*3600 = 39.5 watt assuming efficiency 90% to transfer from electric to thermal ----39.5/0.9 = 43.9 watt = 0.0439 kw

KWH = 0.0439*4 = **0.17**

Cost = (1.6 L. E /kwh)*0.17 = **28** piasters.

b- Ethanol -wet PASP (every 2 mol aspartic acid released 1 mol water)

PSI weight = 1000-67.6 g = 932.4 g

C (ethanol) = 2.46 J/g c Q = mc Δ T = 932.4*2.46*(25-60) = 80.3 KJ ----- power = 80.3/ (48*3600) =0.46 watt Cost = 160* 0.000465*48 = **3.57 piasters Electric = 28+3.57 = 31.57 L.E** 5.5 L ethanol = 150 * 5.5 = **825 L.E** 0.5 Kg NaOH = 400*0.5 = **200 LE** 1Kg aspartic acid = **600 L.E** TOTAL = 600+100+825+31.57= **1556.6 L.E** (Synthetic)

Comparison between the prices for different used antiscalants

•

Antiscalant	СМС	CA-SC	PASP (market)	PASP (Lab)	PASP-SEA (lab)
Price of 1 kg (L.E)	175	95	600	1556.6	1756.6