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Table S1. Parameters for logio-normal distributions of raw wastewater pathogen concentrations. All
fittings were performed in this study from data reported by Crank et al. (2025).

Pathogen R c Facility Season Unit
Adenovirus (molecular) 5.65 1.20 3 all Logio(gc/L)
Adenovirus (molecular) 7.12 0.96 2 all Logio(gc/L)
Adenovirus (molecular) 7.01 0.89 4 all Logio(ge/L)
Adenovirus (molecular) 6.84 1.07 1 all Logio(gc/L)
Enterovirus (molecular) 5.41 0.65 3 all Logio(gc/L)
Enterovirus (molecular) 5.92 1.29 2 all Logio(gc/L)
Enterovirus (molecular) 5.82 1.13 4 all Logio(gc/L)
Enterovirus (molecular) 5.76 1.41 1 all Logio(gc/L)
Norovirus (molecular) 6.50 2.13 1 all Logio(gc/L)
Norovirus (molecular) 6.10 2.27 1 fall Logio(gc/L)
Norovirus (molecular) 7.14 2.25 1 spring Logio(gc/L)
Norovirus (molecular) 5.66 2.29 1 summer Logio(gc/L)
Norovirus (molecular) 7.05 1.78 1 winter Logio(gc/L)
Norovirus (molecular) 6.97 1.64 2 all Logio(gc/L)
Norovirus (molecular) 6.98 1.58 2 fall Logio(gc/L)
Norovirus (molecular) 7.35 1.60 2 spring Logio(gc/L)
Norovirus (molecular) 592 2.06 2 summer Logio(gc/L)
Norovirus (molecular) 7.53 1.64 2 winter Logio(gc/L)
Norovirus (molecular) 6.46 1.02 3 all Logio(gc/L)
Norovirus (molecular) 6.30 1.32 3 fall Logio(gc/L)
Norovirus (molecular) 6.07 1.71 3 spring Logio(gc/L)
Norovirus (molecular) 6.19 0.90 3 summer Logio(gc/L)
Norovirus (molecular) 6.76 1.20 3 winter Logio(gc/L)
Norovirus (molecular) 6.91 1.43 4 all Logio(gc/L)
Norovirus (molecular) 6.78 1.71 4 fall Logio(gc/L)
Norovirus (molecular) 7.41 1.05 4 spring Logio(gc/L)
Norovirus (molecular) 5.86 1.60 4 summer Logio(gc/L)
Norovirus (molecular) 7.49 1.03 4 winter Logio(gc/L)
Adenovirus (culture) 3.84 0.95 1 all Logio (MPN/L)
Adenovirus (culture) 3.54 0.82 2 all Logio (MPN/L)
Adenovirus (culture) 344 0.55 3 all Logio (MPN/L)
Adenovirus (culture) 3.24 0.60 4 all Logio (MPN/L)
Enterovirus (culture) 4.08 0.45 1 all Logio (MPN/L)
Enterovirus (culture) 4.60 0.48 2 all Logio (MPN/L)
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Pathogen R c Facility Season Unit
Enterovirus (culture) 3.99 0.87 3 all Logio (MPN/L)
Enterovirus (culture) 4.02 0.44 4 all Logio (MPN/L)
Cryptosporidium 2.21 0.42 1 all Logio(oocysts/L)
Cryptosporidium 2.29 0.42 2 all Logio (oocysts/L)
Cryptosporidium 2.22 0.44 3 all Logio (oocysts/L)
Cryptosporidium 1.92 0.56 4 all Logio (oocysts/L)
Giardia 3.81 0.11 1 all Logio (cysts/L)
Giardia 3.90 0.12 2 all Logio (cysts/L)
Giardia 4.01 0.27 3 all Logio (cysts/L)
Giardia 3.58 0.14 4 all Logio (cysts/L)

Table S2. GC:IU ratios.

Pathogen Logio-Normal Distribution | Logio-Uniform Distribution Citation

n c Minimum Maximum
Enterovirus 245 0.84 NA NA Crank et al. (2025)
Adenovirus 3.67 1.12 NA NA Crank et al. (2025)
Norovirus (GI & GII)® 0.87 0.47 0 2.30 Donia et al. (2010);

Gerrity et al. (2023)

2 The norovirus dose-response relationship was developed based on gene copies (GC) in the inoculum, with an
unknown GC:IU ratio. When extrapolating to wastewater, a GC:IU ratio of 1:1 assumes that the GC:IU ratio
within the challenge inoculum from the dose-response study is equal to that of influent wastewater. However, a
recent human intestinal enteroid (HIE) cell culture study suggests that GC:1U ratios within inoculums and
wastewater may be uncorrelated (Carmona-Vicente et al., 2024), potentially justifying an additional GC:1U
adjustment to account for inactivation that occurs within a sewer collection system.
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Figure S1. Schematics of the engineered treatment trains at the wastewater treatment plants (WWTPs).

Table S3. Percent contributions to Las Vegas Wash (LVW) flow from each wastewater treatment plant
(WWTP). The percent contributions were converted to pathogen log reduction values (LRVs) to account
for dilution by the other WWTP discharges and the base flow of LVW.

Discharge Flow Rate (m%/day) Percent Contribution Dilution LRV
WWTP 1 64,0007 9% 1.06
WWTP 2 150,000° 21% 0.69
WWTP 3 360,000? 49% 0.31
WWTP 4 83,000* 11% 0.94
Subtotal 657,000 90%" --
LVW Base Flow 73,000 10% -
Total 730,000 100% --

*Thompson et al. (2024)
Treated wastewater effluent was assumed to comprise 90% of the total flow in LVW (Gerrity et al., 2022)
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Table S4. Las Vegas Wash travel times determined from rhodamine tracer study data (Blasius et al.,

2016).

WWTP Time (hours)
1 15.48
2 13.48
3 11.98
4 7.48

Table S5. First order decay rate constants (d™'). All pathogens had logjo-normal fits for base e k values.

Pathogen Base e k (d) Citation N Method
Logio p Logi o
Enterovirus -0.07 0.57 Boehm et al. (2019) 250 Cell culture
Adenovirus -0.44 0.97 Boehm et al. (2019); this study 20 Cell culture
Norovirus (GI & GII) -0.87 0.47 Boehm et al. (2019); this study 5 Cell culture?
Giardia -1.36 0.96 Boehm et al. (2018) 14 Microscopy
Cryptosporidium -1.38 0.86 Boehm et al. (2018); this study 15 Microscopy
*Murine norovirus
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Figure S2. Deterministic log reduction values (LRVs) illustrating decay/inactivation in the environmental
buffers as a function of hypothetical travel time: (left) one day, (middle) two months, (right) one year.
LRVs were calculated using the mean first order decay rate constants in Table S5. The LRV relationships
shown here are only for illustrative purposes; actual simulated LR Vs incorporated stochastic first order
decay rate constants and Lake Mead travel times. LRVs associated with decay/inactivation were not

capped at any value.
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Table S6. Uniform distributions of percent de facto reuse (DFR) at the drinking water treatment plants
(DWTPs), as reported by van der Nagel et al. (2025). Fall = September, October, November; winter =
December, January, February; spring = March, April, May; and summer = June, July, August.

Lake Level (m) Season Minimum % DFR Maximum % DFR
329 all 1.9 5.4
312 all 2.8 6.9
297 all 2.6 53
329 fall 43 5.4
312 fall 44 5.4
297 fall 3.5 3.6
329 winter 34 3.6
312 winter 3.0 3.6
297 winter 2.6 33
329 spring 1.9 24
312 spring 2.8 32
297 spring 4.1 4.7
329 summer 3.5 4.8
312 summer 53 6.9
297 summer 4.5 5.3
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Table S7. Dose-response parameters.

Pathogen Model Parameters Citation
Enterovirus Beta-Poisson 0=0.253; =0.426 Ward et al. (1986)
Adenovirus Exact Beta-Poisson | a=5.11;3=2.8 Teunis et al. (2016)

Norovirus (GI & GII)

Hypergeometric 1F1

o =0.04; p=0.055

Teunis et al. (2008)*

Giardia

Exponential

r=0.0199

Regli et al. (1991); Teunis et al. (1997)

Cryptosporidium

Beta-Poisson

a=0.116; =0.121

Messner and Berger (2016)

2 Norovirus dose-response model
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Figure S3. Regression on Order Statistics (ROS) determination of normal quantiles of censored recovery-
corrected Cryptosporidium concentrations in the Las Vegas Wash.
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Figure S4. Histogram of travel times in Lake Mead from the Las Vegas Wash discharge point to the
drinking water intake for lake elevations of (a) 329 m, (b) 312 m, and (c) 297 m.
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Table S8. Daily logio probabilities of infection and the percentile at which the probability of infection
exceeds the daily risk threshold of 2.7x107 (or -6.57 logio). Values are shown for individual pathogens at
various lake levels (m) and with/without ozone treatment at the drinking water treatment plants.

Ozone Included
II::‘II(; Pathogen Mean Median 95th 99t Max E;:::girillze
297 NoV (molecular, GC:IU corrected) -8.83 -12.68 -9.42 -8.40 -4.91 0.999817
312 | NoV (molecular, GC:IU corrected) -8.74 -13.39 -9.56 -8.42 -4.80 0.999726
329 | NoV (molecular, GC:IU corrected) -9.57 -14.16 -9.79 -8.65 -6.21 0.999817
297 AdV (molecular, GC:IU corrected) -12.69 -19.74 -13.26 -11.82 -9.37 1.000000
312 AdV (molecular, GC:IU corrected) -12.74 -21.70 -13.40 -11.96 -9.11 1.000000
329 | AdV (molecular, GC:IU corrected) -12.95 -23.69 -13.62 -12.06 -9.64 1.000000
297 | AdV (culture) -13.77 -18.93 -13.27 -12.48 -10.94 1.000000
312 | AdV (culture) -13.81 -20.95 -13.35 -12.53 -11.15 1.000000
329 | AdV (culture) -13.96 -23.06 -13.54 -12.72 -11.15 1.000000
297 EnV (molecular, GC:IU corrected) -11.36 -25.12 -13.77 -12.40 -7.33 1.000000
312 EnV (molecular, GC:IU corrected) -13.14 -30.86 -14.01 -12.54 -9.61 1.000000
329 EnV (molecular, GC:IU corrected) -11.75 -35.04 -14.32 -12.84 -7.72 1.000000
297 | EnV (culture) -12.97 -24.37 -13.06 -11.86 -9.92 1.000000
312 | EnV (culture) -13.03 -29.99 -13.37 -12.00 -9.88 1.000000
329 | EnV (culture) -13.29 -34.18 -13.60 -12.21 -10.40 1.000000
297 | Cryptosporidium -7.01 -7.42 -6.41 -6.11 -5.61 0.908219
312 | Cryptosporidium -6.99 -1.57 -6.36 -6.04 -5.52 0.896256
329 | Cryptosporidium -7.15 -7.88 -6.52 -6.16 -5.63 0.940365
297 | Giardia -16.48 -16.72 -15.99 -15.87 -15.72 1.000000
312 | Giardia -16.46 -16.91 -15.91 -15.79 -15.59 1.000000
329 | Giardia -16.61 -17.19 -16.03 -15.90 -15.69 1.000000
Ozone Omitted
II::‘II(; Pathogen Mean Median 95th 99t Max E;:::girillze
297 NoV (molecular, GC:IU corrected) -3.47 -6.68 -3.42 -2.40 -0.30 0.515434
312 | NoV (molecular, GC:IU corrected) -3.43 -7.39 -3.56 242 -0.29 0.593151
329 NoV (molecular, GC:IU corrected) -3.65 -8.16 -3.79 -2.65 -0.47 0.652877
297 AdV (molecular, GC:IU corrected) -6.69 -13.74 -7.26 -5.82 -3.37 0.976438
312 AdV (molecular, GC:IU corrected) -6.74 -15.70 -7.40 -5.96 -3.11 0.977808
329 AdV (molecular, GC:IU corrected) -6.95 -17.69 -7.62 -6.06 -3.64 0.981370
297 | AdV (culture) =177 -12.93 -7.27 -6.48 -4.94 0.988402
312 | AdV (culture) -7.81 -14.95 -7.35 -6.53 -5.15 0.988767
329 | AdV (culture) -7.96 -17.06 -7.54 -6.72 -5.15 0.992329
297 EnV (molecular, GC:IU corrected) -5.41 -19.12 -7.77 -6.40 -1.37 0.986575
312 EnV (molecular, GC:IU corrected) -7.14 -24.86 -8.01 -6.54 -3.61 0.989772
329 | EnV (molecular, GC:IU corrected) -5.77 -29.04 -8.32 -6.84 -1.74 0.992785
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Ozone Omitted
II::‘II(; Pathogen Mean Median 95th 99th Max E];(:::e(:latlillze
297 EnV (culture) -6.97 -18.37 -7.06 -5.86 -3.92 0.972968
312 EnV (culture) -7.03 -23.99 -7.37 -6.00 -3.88 0.978539
329 EnV (culture) -7.29 -28.18 -7.60 -6.21 -4.40 0.983562
297 Cryptosporidium -6.54 -6.95 -5.94 -5.64 -5.14 0.678995
312 Cryptosporidium -6.52 -7.10 -5.89 -5.57 -5.05 0.687032
329 Cryptosporidium -6.68 -7.41 -6.05 -5.69 -5.16 0.763288
297 Giardia -10.71 -10.95 -10.22 -10.10 -9.95 1.000000
312 Giardia -10.69 -11.14 -10.14 -10.02 -9.82 1.000000
329 Giardia -10.84 -11.42 -10.26 -10.13 -9.92 1.000000
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