Supplementary Material

Additional effect of coagulation process on removal of tetracycline in

characteristically simulated livestock and poultry wastewater

Wei Congjian^{a,*}, Zu Yilin^{b,*}, Hao Yang^c, Han Zhang^{a,**}

^a Key Laboratory for Water Quality and Conservation of the Pearl River Delta,

Ministry of Education, Institute of Environmental Research at Greater Bay,

Guangzhou University, Guangzhou 510006, China

^b School of Chemical Engineering, The University of Queensland, St. Lucia, QLD,

4072, Australia

^c Key Lab of Groundwater Resources and Environment (Ministry of Education),

College of New energy and Environment, Jilin University, Changchun 130021, China

*These authors contributed equally: Wei Congjian and Zu Yilin (co-first authors)

** Corresponding author: Zhang Han

Email: zhanghan@gzhu.edu.cn

• Supplementary Figures

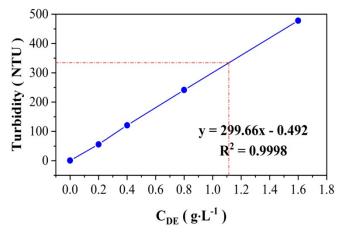


Figure S1 Relationship between diatomite concentration and turbidity.



Figure S2 Experimental instrument- sequencing batch coagulation instrument

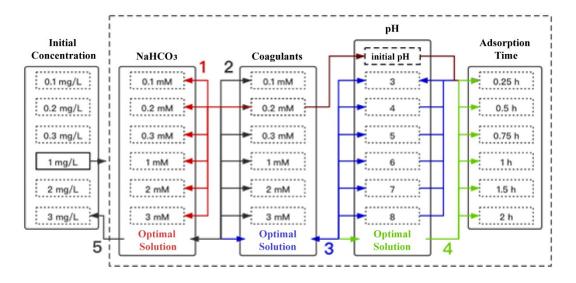
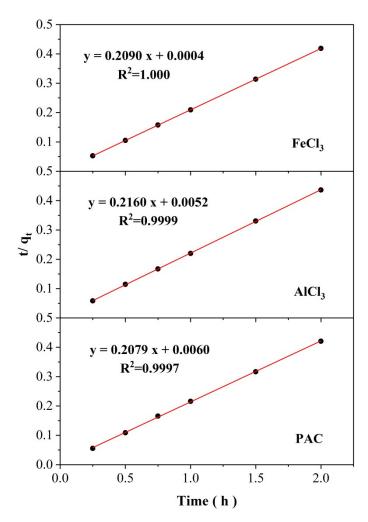



Figure S3 Specific experimental scheme

Figure S4 Quasi-second order kinetics model fitting of three coagulants for tetracycline adsorption

• Supplementary Tables

Table S1 Setup of coagulation process steps

Stage	Time (min)	Rotation rate (rpm)	Agentia	G (s ⁻¹)
Blending	0.5	250		349.5
Drugging	1	0	\checkmark	
Mixed rapidly	2	200		250
Flocculation slowly	15	40		22.3
Sedimentation	30	0		

Table S2 The mineral crystals and content of pure flocs of different coagulants produce

Coagulant	Mineral crystal content (%)				
	Allophane	Opal	Tridymite	Hematite	
FeCl ₃	2.6	89.4	7.0	1.0	
AlCl ₃	2.7	90.3	7.0	/	
PAC	2.9	90.1	7.0	/	