Supplementary Information

Leveraging Oxygen Mobility with Zirconia in Low-Temperature Plasma for Enhanced Methane

Reforming to Syngas

FNU Gorky, a Levi Pile, a Grace Jones, a Apolo Nambo, b Mourad Benamara, c and Maria L. Carreona,†

^aRalph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center Fayetteville, AR 72701-1201, USA.

^bBert Thin Films, LLC., 625 Myrtle St, Louisville, KY 40298, USA.

^cMaterials Science and Engineering Program, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, 72701 USA

Corresponding author e-mail address: mc138@uark.edu (Maria L. Carreon).

Table of Contents

Zirconia packed RF Plasma reactor Schematics	(Page S2)
Zirconia textural properties (XRD)	(Page S3)
Effect of Calcination temperature on Pore Size Distribution)	(Page S4)
Effect of cooling fan on electrode area	(Page S5)
Zirconia State of the art (Thermal Catalysis)	(Page S6)
Comparing product distribution with Silica	(Page S7)
Effect on Crystallite size after plasma exposure with different cycles	(Page S8)
OES (Gas Phase for Pure CO ₂ , DRM (CO ₂ + CH ₄), and Pure CH ₄)	(Page S9)
Zirconia XPS Literature	(Page S10)
State of the art (Plasma Catalysis)	(Page S11)

Zirconia packed RF Plasma reactor Schematics

Figure S1. RF-plasma reactor schematics.

Figure S2. XRD revealing effect of calcination temperature on ZrO₂ phases.

Effect of Calcination temperature on Pore Size Distribution

Figure S3. Effect of calcination temperature on pore-size distribution.

Effect of cooling fan on electrode area

Figure S4. Effect of Plasma Power on Methane and Carbon Dioxide Conversion, Total Flow Rate: 25 sccm, Feed Ratio: 1:1 (CH₄:CO₂), Plasma Power: Varied, Temperature: Not Applied, Results: Averaged from Triplicate Measurements, Reaction Time: 2 Hours

Zirconia State of the art (Thermal Catalysis)

Catalysis Route	Support	Impregnation	Temperature	Conversion (%)		D-f	
	Zirconia	(Metal)	° C	CH ₄	CO ₂	кет.	
Thermal	ZrO₂	Ni	750	65.0	-	1	
Thermal	ZrO₂	Ni–CeO ₂	700	59.0	-	2	
Thermal	ZrO₂	Pt	700	79.0	86.0	3	
Thermal	ZrO₂	Rh	800	65.9	74.2	4	
Thermal	ZrO₂	Pt	800	83.0	94.0	5	
Thermal	CeZr	Ni	750	41.0	-	6	
Thermal	Ce0.75Zr0.25O2	Ni	750	5.8	8.3	7	
Thermal	Ce0.75Zr0.25O2	Ni–Rh	750	6.9	11.8	7	
Thermal	$Ce_{0.8}Zr_{0.2}O_2$	Ni	800	78.0	77.0	8	
Thermal	$Ce_{0.8}Zr_{0.2}O_{2}$	Ni-MgO	800	95.0	96.0	8	
Thermal	Ce0.75Zr0.25O2	Ni	850	92.0	95.0	9	
Thermal	Al ₂ O ₃ –ZrO ₂	Ni	850	80.0	81.0	10	
Thermal	MgO−ZrO₂	Ni	750	80.0	-	11	
Thermal	MgO−ZrO₂	Ni + K (promoter)	750	88.0	-	11	
Thermal	ZrO₂	Ni (promoter: Zr)	700	73.0	76.7	12	
Thermal	ZrO₂	Pt	700	80.1	84.6	3	
Thermal	MCM-41	Ni + Zr (promoter)	600	91.0	-	13	
Thermal	ZrO ₂ –SiO ₂	Ni	750	79.0	-	14	
Thermal	MgO-ZrO ₂	Ni	750	70.0	73.0	15	
Thermal	Ce0.75Zr0.25O2	Ni	800	64.0	75.0	9	

Table S1. Zirconia performance in thermal catalysis literature.

Comparing product distribution with Silica

Figure S5. Comparing (a) Methane and (b) Carbon Dioxide conversions with Plasma only Vs. Packed bed reactor with Silica and Zirconia at a total flow rate: 25 sccm, at different feed ratios (CO₂:CH₄), Plasma Power: 50 Watts, reaction time: 2 hours.

Figure S6. Dry methane reforming product distribution: (a) Gases product distribution (*syngas, olefins, alkanes*), (b) Oxygenates product distribution (aldehydes, ketones, alcohols) at rich methane feed ratio (1:1 CO₂:CH₄); Plasma Power: Varied, Temperature: Not Applied, Results: Averaged from Triplicate Measurements, Reaction Time: 2 Hours

SEM images of Zirconia after plasma exposure

Figure S7. SEM images for (a) control, pristine zirconia (ZrO₂); (b) cycle-1 after 2 hours of plasma exposure; (c) cycle-1 after 4 hours of plasma exposure; (d) cycle-3 after 6 hours of plasma exposure, at a total flow rate: 25 sccm, Feed Ratio: 1:1 (CO₂:CH₄), Plasma Power:50 Watts, Reaction Time: 2 hours.

Figure S8. Zirconia stability test with Methane and Carbon Dioxide conversion (%).

Figure S9. (a) Pure Carbon Dioxide OES (12.5 sccm); (b) Pure Carbon Dioxide OES (12.5 sccm) important plasma species;(c) Methane + Carbon Dioxide OES (25 sccm) DMR important plasma species with Feed Ratio: 1:1 ($CO_2:CH_4$),; (d) Methane + Carbon Dioxide OES (25 sccm) DMR; (e) Pure Methane OES (12.5 sccm);(f) Pure Methane OES (12.5 sccm); Plasma Power:50 Watts, Reaction Time: 2 Hours

Zirconia XPS Literature

		Binding					
Species	Location	Energy Range (eV)	Bumajdad, A. <i>et al.</i> (2018) ²⁶	Gu, H. <i>et al.</i> (2019) ²⁷	Teeparthi, S. R. et al. (2018) ²⁸	This work	
Ols							
Zr–O (lattice oxygen)	Oxygen atoms in the ZrO ₂ lattice (bulk oxide)	529.7 - 530.0	529.7 - 530.0	529.6	529.7 – 529.9	529.11-529.39	
Zr–OH (surface hydroxyls)	Hydroxyl groups bonded to zirconium	531.5 - 532.0	531.3 - 531.5	Oxygen vacancies assigned at 531.2 eV, not explicitly for OH	531.7 - 531.9	530.51-530.93	
С-О	carbon–oxygen	-	assigned together with OH/H2O/COx	532.4 chemically adsorbed oxygen species, OC	534.2 - 535.8	532.65	
Zr3d							
Zr3d _{5/2}	Zirconium 3d5/2 core level for Zr ⁴⁺ sites	182.0 eV	181.7 –182.0	-	182.0	181.39-181.59	
Zr3d _{3/2}	Zirconium 3d3/2 core level for Zr ⁴⁺ sites	184.4 eV	184.3–184.4	-	184.0	183.74-183.92	

 Table S2. Binding energy (eV) for zirconia based on literature.

State of the art (Plasma Catalysis)

Plasma Route	Catalyst -	Power	External Heating	CH₄	CO2	Def	
		Watts	°C	Conversion (%)	Conversio n (%)	Ket	
DBD	No Catalyst	10	30	18	15.4	16	
DBD	No Catalyst	9.45	60	44	29	17	
DBD	No Catalyst	7	60	1.1	0.3	18	
DBD	No Catalyst	10	20	24	22	19	
DBD	No Catalyst	40	20	42	35	19	
MW	No Catalyst	1000	-	67	49	20	
MW	No Catalyst	1000	-	63	49	20	
MW	No Catalyst	1000	-	58	46	20	
MW	No Catalyst	1000	-	55	46	20	
MW	No Catalyst	3000	-	44	33	21	
GA	No Catalyst	165	-	13.1	8.4	22	
DC Corona	No Catalyst	45	-	80	70	23	
RF	No Catalyst	25	-	34	-	24	
RF	No Catalyst	50	-	45	-	24	
RF	No Catalyst	75	-	50	-	24	
RF	No Catalyst	100	-	55	-	24	
RF	No Catalyst	150	-	60	-	24	
RF	No Catalyst	50	-	16.5	11.9	This work	
DBD	γ-Al ₂ O ₃	10	30	15.5	10.5	16	
DBD	Cu/γ-Al ₂ O ₃	10	30	16	7.5	16	
DBD	Au/γ-Al ₂ O ₃	10	30	16.5	15	16	
DBD	Pt/γ-Al ₂ O ₃	10	30	17.2	12.5	16	
DBD	SiO ₂	9.45	60	47	31	17	
DBD	Co/SiO ₂	9.45	60	50	38	17	
DBD	Fe/SiO ₂	9.45	60	46	41	17	
DBD	Al ₂ O ₃	20	240	37.1	20.2	25	
DBD	Fe/Al ₂ O ₃	20	240	33.9	17.5	25	
DBD	NaY	20	240	31.2	13.2	25	
DBD	Na-ZSM-5	20	240	47.5	26.8	25	
DBD	MOF-177	7	-	18.4	14.7	18	
MW	CaAl ₄ O ₇	3,000	-	81	69	21	
RF	Fumed SiO ₂	50	-	38.4	23.4	This work	
RF	Commercial ZrO ₂	50	-	63.7	57.1	This work	
DBD = Dielectric Barrier Discharge Plasma; MW = Microwave Plasma; GA = Gliding Arc; DC = Direct Current Corona							
Plasma; RF = Radiofrequency Plasma.							

Table S3. Plasma catalysis state of the art for Dry Methane Reforming (DRM) at equimolar feed

CH₄: CO₂ (1:1).

References:

- 1. J.-S. Chang, D.-Y. Hong, X. Li and S.-E. Park, *Catalysis today*, 2006, **115**, 186-190.
- 2. M. Rezaei, S. M. Alavi, S. Sahebdelfar and Z.-F. Yan, *Scripta Materialia*, 2009, **61**, 173-176.
- 3. Ş. Özkara-Aydınoğlu, E. Özensoy and A. E. Aksoylu, *international journal of hydrogen energy*, 2009, **34**, 9711-9722.
- 4. H. Y. Wang and E. Ruckenstein, *Applied Catalysis A: General*, 2000, **204**, 143-152.
- 5. A. D. Ballarini, S. R. de Miguel, E. L. Jablonski, O. A. Scelza and A. A. Castro, *Catalysis Today*, 2005, **107**, 481-486.
- 6. A. Pietraszek, B. Koubaissy, A.-C. Roger and A. Kiennemann, *Catalysis Today*, 2011, **176**, 267-271.
- 7. Y. Makhum, 2006.
- 8. W.-J. Jang, D.-W. Jeong, J.-O. Shim, H.-S. Roh, I. H. Son and S. J. Lee, *International journal of hydrogen energy*, 2013, **38**, 4508-4512.
- 9. J. Chen, Q. Wu, J. Zhang and J. Zhang, *Fuel*, 2008, **87**, 2901-2907.
- 10. N. Rahemi, M. Haghighi, A. A. Babaluo, M. F. Jafari and P. Estifaee, *Journal of Industrial and Engineering Chemistry*, 2013, **19**, 1566-1576.
- 11. B. M. Nagaraja, D. A. Bulushev, S. Beloshapkin and J. R. H. Ross, *Catalysis today*, 2011, **178**, 132-136.
- 12. A. S. A. Al-Fatesh, A. H. Fakeeha and A. E. Abasaeed, *Chinese Journal of Catalysis*, 2011, **32**, 1604-1609.
- 13. D. Liu, X. Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna and Y. Yang, *Journal of Catalysis*, 2009, **266**, 380-390.
- 14. D. Liu, Y. Wang, D. Shi, X. Jia, X. Wang, A. Borgna, R. Lau and Y. Yang, *international journal of hydrogen energy*, 2012, **37**, 10135-10144.
- 15. M.-S. Fan, A. Z. Abdullah and S. Bhatia, *Applied Catalysis B: Environmental*, 2010, **100**, 365-377.
- 16. L. Wang, Y. Yi, C. Wu, H. Guo and X. Tu, *Angew. Chem. Int. Ed.*, 2017, **56**, 13679-13683.
- 17. D. Li, V. Rohani, F. Fabry, A. P. Ramaswamy, M. Sennour and L. Fulcheri, *Appl. Catal. B*, 2020, **261**, 118228.
- 18. F. Gorky, A. Nambo and M. L. Carreon, *Journal of CO2 Utilization*, 2021, **51**, 101642.
- 19. Y. Wang, Y. Chen, J. Harding, H. He, A. Bogaerts and X. Tu, *Chemical Engineering Journal*, 2022, **450**, 137860.
- 20. S. Kelly, E. Mercer, R. De Meyer, R.-G. Ciocarlan, S. Bals and A. Bogaerts, *Journal of CO2 Utilization*, 2023, **75**, 102564.
- 21. S. M. Chun, D. H. Shin, S. H. Ma, G. W. Yang and Y. C. Hong, *Catalysts*, 2019, **9**, 292.
- 22. X. Tu and J. C. Whitehead, *International journal of hydrogen energy*, 2014, **39**, 9658-9669.
- 23. M.-w. Li, G.-h. Xu, Y.-l. Tian, L. Chen and H.-f. Fu, *The Journal of Physical Chemistry A*, 2004, **108**, 1687-1693.
- 24. E. Devid, D. Zhang, D. Wang, M. Ronda-Lloret, Q. Huang, G. Rothenberg, N. R. Shiju and A. W. Kleyn, *Energy Technology*, 2020, **8**, 1900886.

- 25. K. Krawczyk, M. Młotek, B. Ulejczyk and K. Schmidt-Szałowski, *Fuel*, 2014, **117**, 608-617.
- 26. A. Bumajdad, A. A. Nazeer, F. Al Sagheer, S. Nahar and M. I. Zaki, *Scientific reports*, 2018, **8**, 3695.
- 27. H. Gu, J. Ding, Q. Zhong, Y. Zeng and F. Song, *international journal of hydrogen energy*, 2019, **44**, 11808-11816.
- 28. S. R. Teeparthi, E. W. Awin and R. Kumar, *Scientific reports*, 2018, **8**, 5541.
- 29. X. Chen, X. Wang and D. Fang, *Fullerenes, Nanotubes and Carbon Nanostructures*, 2020, **28**, 1048-1058.