Electronic Supplementary Information

Effective Production of Liquid/Wax Fuels from Polyethylene Plastics Using Ru/Al₂O₃ Catalysts

Jueun Kim,‡^a Donghyeon Kim,‡^b Byung Gwan Park,^a Daewon Oh,^a Shinjae Lee,^a Jihun Kim,^a Eonu Nam,^a and Kwangjin An^{*a,b}

^aSchool of Energy and Chemical Engineering, and Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. a.

^bSchool of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

‡These authors contributed equally to this work.

*To whom correspondence should be addressed (E-mail: kjan@unist.ac.kr)

Fig. S1 SEM image and XRD pattern. (a) SEM image and (b) XRD pattern (JCPDS 21-1307) of as-prepared NA-AlOOH.

Fig. S2 SEM image and XRD pattern. (a) SEM image and (b) XRD pattern (JCPDS 29-0063) of $NA-Al_2O_3$.

Fig. S3 N_2 adsorption-desorption isotherms. (a) $NA-AI_2O_3$ and (b) *com*- AI_2O_3 .

Fig. S4 Particle size distributions of Ru/Al_2O_3 catalysts. (a) 0.5 $Ru/NA-Al_2O_3$, (b)1 $Ru/NA-Al_2O_3$, (c) 5 $Ru/NA-Al_2O_3$, (d) 8 $Ru/NA-Al_2O_3$, and (e) 1 $Ru/com-Al_2O_3$.

Fig. S5 XRD patterns of Ru/Al_2O_3 catalysts.

Fig. S6 HAADF-STEM images and EDS elemental mappings of Ru/Al_2O_3 catalysts. (a) 0.5 $Ru/NA-Al_2O_3$, (b) $1Ru/NA-Al_2O_3$, (c) $5Ru/NA-Al_2O_3$, (d) $8Ru/NA-Al_2O_3$, and (e) $1Ru/com-Al_2O_3$.

Fig. S7 DRIFT spectra presented using the Kubelka–Munk (K–M) function. (a) *In situ* DRIFT spectra in OH stretching regions of NA-Al₂O₃ and *com*-Al₂O₃ at 25 °C. (b) Pyridine adsorbed DRIFT of NA-Al₂O₃ and *com*-Al₂O₃ at 100 °C (Normalized with the intensity of 1613 cm⁻¹).

Fig. S8 Pyridine-adsorbed DRIFT at 1650–1560 cm⁻¹ of Ru/Al₂O₃ catalysts. (a) xRu/NA-Al₂O₃ and (b) 1Ru/com-Al₂O₃.

Fig. S9 H_2 -TPR of the as-prepared Ru catalysts.

Fig. S10 XPS profiles of Ru/Al_2O_3 catalysts. (a) 0.5 $Ru/NA-Al_2O_3$, (b) $1Ru/NA-Al_2O_3$, (c) $5Ru/NA-Al_2O_3$, (d) $8Ru/NA-Al_2O_3$. and (e) $1Ru/com-Al_2O_3$.

Fig. S11 Ru K-edge EXAFS R-space spectra and their fitting of Ru/Al_2O_3 catalysts.

Fig. S12 Ru *K*-edge EXAFS *k*-space spectra and their fitting of Ru/Al_2O_3 catalysts.

Fig. S13 Product distributions of PE hydrogenolysis over Ru/Al_2O_3 catalysts. (a) 0.5Ru/NA-Al_2O_3, (b) $1Ru/NA-Al_2O_3$, (c) $5Ru/NA-Al_2O_3$, (d) $8Ru/NA-Al_2O_3$ and (e) $1Ru/com-Al_2O_3$. Reaction conditions: 3.0 g PE, 1 mg Ru, 250 °C, 40 bar H₂, 2.5 h.

Fig. S14 (a) ¹H NMR and (d) ¹³C NMR spectra of liquid/wax products (C_5-C_{30+}). The ¹H NMR region of paraffinic (orange), CH₂Cl₂ (gray), and CDCl₃ (dark gray) is highlighted. The ¹³C NMR region of alkane C–H (orange), CH₂Cl₂ (gray), and CDCl₃ (dark gray) species is similary indicated. Reaction conditions: 3.0 g PE, 1 mg Ru, 250 °C, 40 bar H₂, 2.5 h.

Fig. S15 2D-HSQC NMR spectra of liquid hydrocarbon products. (a) 0.5Ru/NA-Al₂O₃, (b) 1Ru/NA-Al₂O₃, (c) 5Ru/NA-Al₂O₃, (d) 8Ru/NA-Al₂O₃ and (e) 1Ru/*com*-Al₂O₃. The integrated region of *n*-paraffins CH CH groups is observed at ¹³C (1.5–1.0 ppm).¹ No characteristic peaks were detected in regions corresponding to *iso*-alkanes (¹H (1.7–1.5 ppm); ¹³C (30–27 ppm)) or aromatic compounds (¹H (1.5–1.3 ppm); ¹³C (16–13 ppm)). Reaction conditions: 3.0 g PE, 1 mg Ru, 250 °C, 40 bar H₂, 2.5 h.

Fig. S16 Performance comparison of this work with reported Ru-based catalysts in the hydrogenolysis of PE (Mw ~4,000, Mn ~1,700).²⁻¹¹

Fig. S17 (a) HAADF-STEM images of $1\text{Ru/NA-Al}_2\text{O}_3$ after PE hydrogenolysis reaction. (b) Particle size distribution of $1\text{Ru/NA-Al}_2\text{O}_3$ after PE hydrogenolysis reaction. (c) XRD pattern of $1\text{Ru/NA-Al}_2\text{O}_3$ after PE hydrogenolysis reaction. (d) XPS profiles of $1\text{Ru/NA-Al}_2\text{O}_3$ after PE hydrogenolysis reaction. (d) XPS profiles of $1\text{Ru/NA-Al}_2\text{O}_3$ after PE hydrogenolysis reaction. (e) Ru contents of $1\text{Ru/NA-Al}_2\text{O}_3$ after PE hydrogenolysis reaction (analyzed by ICP-OES). Reaction conditions: 3.0 g PE ($M_w \sim 4,000$, $M_n \sim 1,700$), 1 mg Ru, 250 °C, 40 bar H₂, 2.5 h.

Fig. S18 Reusability test of $1Ru/NA-Al_2O_3$ catalyst in PE hydrogenolysis. Reaction conditions: 3.0 g PE, 1 mg Ru, 280 °C, 40 bar H₂, 1 h.

Fig. S19 Time-dependent product distributions for (a) $1Ru/NA-Al_2O_3$ and (b) $1Ru/com-Al_2O_3$ catalysts. Reaction conditions: 3.0 g PE (Mw ~4,000, Mn ~1,700), 1 mg Ru, 250 °C, 40 bar H₂.

Fig. S20 PE C–C bond cleavage activity of catalysts. Reaction conditions: 3.0 g PE ($M_w \sim 4,000$, $M_n \sim 1,700$), 1 mg Ru, 250 °C, 40 bar H₂, and 2.5 h.

Fig. S21 C–C bond cleavage per surface Ru and methane production under same reaction conditions in $C_{18}H_{38}$ hydrogenolysis. Reaction conditions: 3.0 g $C_{18}H_{38}$, 0.5 mg Ru, 250 °C, 40 bar H_2 , 20 min.

Fig. S22 Conversion (mol%) and product selectivity (mol%) of 0.5Ru/NA-Al₂O₃, (b) 1Ru/NA-Al₂O₃, (c) 1Ru/*com*-Al₂O₃, (d) 5Ru/NA-Al₂O₃, and (e) 8Ru/NA-Al₂O₃. Reaction conditions: 3.0 g C₁₈H₃₈, 0.5 mg Ru, 250 °C, 40 bar H₂. The reaction times were 30 min for 0.5Ru/NA-Al₂O₃, 20 min for 1Ru/NA-Al₂O₃ and 1Ru/*com*-Al₂O₃, and 10 min for 5Ru/NA-Al₂O₃ and 8Ru/NA-Al₂O₃.

Catalyst	Ru (wt%) ^a	$S_{BET} (m^2 \cdot g^{-1})^{b}$	$V_{p} (cm^{3} \cdot g^{-1})^{c}$	Pore size (nm) ^c
0.5Ru/NA-Al ₂ O ₃	0.50	152.3	1.03	25.8
1Ru/NA-Al ₂ O ₃	0.99	142.6	1.00	24.3
5Ru/NA-Al ₂ O ₃	4.76	159.0	0.83	17.6
8Ru/NA-Al ₂ O ₃	8.34	160.1	0.81	17.0
1Ru/com-Al ₂ O ₃	0.88	183.8	0.45	8.2
NA-Al ₂ O ₃	-	160.0	1.07	21.6
<i>com</i> -Al ₂ O ₃	-	185.4	0.47	8.1

Table S1. Physicochemical properties of as-prepared Ru/Al₂O₃ catalysts.

^a Analyzed by ICP-OES.

^b BET specific surface area.

^c Calculated by BJH method.

Table S2. $Ru^{4+}/(Ru^0 + Ru^{4+})$ atomic ratios of as-prepared Ru/Al_2O_3 catalysts.

Catalyst	$Ru^{4+}/(Ru^0 + Ru^{4+})$ atomic			
	ratio			
0.5Ru/NA-Al ₂ O ₃	1			
1Ru/NA-Al ₂ O ₃	0.65			
5Ru/NA-Al ₂ O ₃	0.40			
8Ru/NA-Al ₂ O ₃	0.33			
1Ru/com-Al ₂ O ₃	0.59			

^a Analyzed by XPS

Sample	Path	CN ^a	<i>R</i> (Å) ^b	σ²(Ų) ^c	ΔE_0 (eV) ^d	<i>R</i> factor ^e
RuO ₂	Ru–O	6	1.98	0.003	0.49	0.017
Ru foil	Ru–Ru	12	2.68	0.004	-4.47	0.004
	Ru–O	3.7	2.08	0.006		
1Ru/ <i>com</i> -Al ₂ O ₃	Ru–Ru	2.6	2.71	0.011	5.02	0.017
0.5Ru/NA-Al ₂ O ₃	Ru–O	2.6	2.05	0.001	E E 2	0.026
	Ru–Al	1.0	2.60	0.004	5.52	
1Ru/NA-Al ₂ O ₃	Ru–O	2.7	2.06	0.004		
	Ru–Al	1.0	2.55	0.012	3.34	0.027
	Ru–Ru	2.3	2.70	0.013		
5Ru/NA-Al ₂ O ₃	Ru–O	3.4	2.01	0.009	1.00	0.012
	Ru–Ru	3.3	2.70	0.008	1.99	0.013
8Ru/NA-Al ₂ O ₃	Ru–O	3.3	2.01	0.009	1 25	0.013
	Ru–Ru	3.3	2.70	0.007	-1.25	

Table S3. Fitting parameters of Ru *K*-edge k³-weighted EXAFS spectra of Ru/Al₂O₃ catalysts.

^a Coordination number.

^b Bond distance.

^c Debye–Waller coefficient.

^d ΔE_0 : Internal potential correction.

^e*R* factor obtained from the best fit of each catalyst.

Catalyst	Time (h)	Conversion rate	Production rate	C1–C4 yield	C5– C30	C30+ yield	Conversion (%)	C _{captured} c (%)
		(g _{converted} _{PE} ·g _{Ru} ⁻¹ ·h ⁻¹)	(g _{liquid/wax} ∙g _{Ru} ¹⋅h ⁻¹)	(%)	yield (%)	(%)		
0.5Ru/NA-Al ₂ O ₃ ^a	2.5	1.08 x 10 ³	8.76 x 10 ²	15.1	41.4	33.1	89.7	66.9
1Ru/NA-Al ₂ O ₃ ^a	1	2.08 x 10 ³	1.68 x 10 ³	12.0	30.0	27.3	69.2	72.7
1Ru/NA-Al ₂ O ₃ ^a	2	1.36 x 10 ³	1.08 x 10 ³	16.8	49.5	24.0	90.3	76.0
1Ru/NA-Al ₂ O ₃ ^a	2.5	1.15 x 10 ³	9.23 x 10 ²	17.4	64.1	14.8	96.2	85.2
1Ru/NA-Al ₂ O ₃ ^a	3	9.99 x 10 ²	7.86 x 10 ²	19.2	66.8	13.9	99.9	86.1
1Ru/NA-Al ₂ O ₃ ^a	4	7.50 x 10 ²	5.72 x 10 ²	21.6	72.8	5.6	100.0	94.4
5Ru/NA-Al ₂ O ₃ ^a	2.5	9.98 x 10 ²	7.10 x 10 ²	21.4	44.2	17.6	83.2	82.4
8Ru/NA-Al ₂ O ₃ ^a	2.5	6.60 x 10 ²	4.77 x 10 ²	13.5	23.4	18.1	55.0	81.9
1Ru/com-Al ₂ O ₃ ^a	1	1.58 x 10 ³	1.32 x 10 ³	8.0	22.4	22.3	52.7	77.7
1Ru/com-Al ₂ O ₃ ^a	2	1.10 x 10 ³	9.25 x 10 ²	10.8	43.6	19.3	73.6	80.7
1Ru/com-Al ₂ O ₃ ^a	2.5	9.87 x 10 ²	8.28 x 10 ²	11.9	53.7	16.6	82.3	83.4
1Ru/com-Al ₂ O ₃ ^a	3	9.56 x 10 ²	7.34 x 10 ²	19.8	54.7	21.1	95.6	79.0
1Ru/com-Al ₂ O ₃ ^a	4	7.50 x 10 ²	5.43 x 10 ²	25.0	63.9	11.1	100.0	88.9
1Ru/NA-Al ₂ O ₃ ^b	2	3.91 x 10 ²	2.87 x 10 ²	6.2	6.8	13.1	26.1	86.9
1Ru/NA-Al ₂ O ₃ ^b	4	4.90 x 10 ²	3.69 x 10 ²	14.6	25.4	25.3	65.3	74.7
1Ru/NA-Al ₂ O ₃ ^b	6	4.45 x 10 ²	3.56 x 10 ²	16.1	51.3	21.6	88.9	78.4
1Ru/com-Al ₂ O ₃ ^b	2	1.22 x 10 ²	55.6	4.0	2.2	1.9	8.1	98.1
1Ru/com-Al ₂ O ₃ ^b	4	2.36 x 10 ²	1.76 x 10 ²	6.8	6.3	18.4	31.5	81.6
1Ru/com-Al ₂ O ₃ ^b	6	3.73 x 10 ²	2.85 x 10 ²	15.9	35.5	23.2	74.5	76.8

Table S4. Catalytic performance of Ru/Al₂O₃ catalysts in PE hydrogenolysis.

^a Reaction conditions: 3.0 g PE (Mw ~4,000, Mn ~1,700), 1 mg Ru, 250 °C, 40 bar H₂.

 $^{\rm b}$ Reaction conditions: 3.0 g PE (Mw ~4,000, Mn ~1,700), 1 mg Ru, 220 °C, 40 bar H_2.

 $\rm C_{C1-C4} + C_{C5-C30} + C_{solid}$

 c C_{captured} (%) = $C_{initial}$ × 100, where C_{initial} is the initial substrate's amount (in C-mol) and C_{C1-C4}, C_{C5-C30}, and C_{solid} are the amount of C1–C4, C5–C30, and solid residue (in C-mol),

respectively.

Catalyst	<i>lso</i> -alkane fraction ^a		
0.5Ru/NA-Al ₂ O ₃	0.10		
1Ru/NA-Al ₂ O ₃	0.10		
5Ru/NA-Al ₂ O ₃	0.10		
8Ru/NA-Al ₂ O ₃	0.09		
1Ru/com-Al ₂ O ₃	0.10		

Table S5. *Iso*-alkane composition in the C_{10} Product (based on GC analysis). Reaction conditions: 3.0 g PE, 1 mg Ru, 250 °C, 40 bar H₂, 2.5 h.

i - C10 product (mmol)

^a *Iso*-alkane fraction = Total C10 product (mmol)

Catalyst	Temperature (°C)	Time (h)	Conversion rate (g _{converted PE} ·g _{Ru} -1·h ⁻¹)	Production rate (g _{liquid/wax} ·g _{Ru} -1·h-1) (Carbon number)	Ref
1Ru/NA-Al ₂ O ₃	250	2.5	1.15 x 10 ³	9.23 x 10 ² (C5-C30+)	This work
Ru@NTO-NH	180	8	12.5	11.0 (C6-C35)	[2]
UiO-66-RuH ₂	200	72	18.6	12.1 (C5-C35)	[3]
Ru/C	200	16	33.3	15.6 (C8-C45)	[4]
Ru/FAU	200	16	35.0	23.5 (C5-C33)	[5]
Ru/MgO	240	4	1.26 x 10 ²	85.0 (C5-C45)	
Ru/TiO ₂		·	1.24 x 10 ²	86.7 (C5-C45)	[6]
Ru/CeO_2	240	8	84.2	76.5 (C5-C45)	,
Ru/SiO ₂	240	0	60.4	46.8 (C5-C45)	
Ru/ZrO ₂	240	4	1.68 x 10 ²	1.51 x 10 ² (C5-C45)	[7]
Ru/C-EG120	240	1.5	6.09 x 10 ²	-	[8]
Ru/CeO ₂ -R-HT	250	2	1.93 x 10 ²	1.82 x 10 ² (C5-C41)	ſο]
Ru/CeO ₂ -C-HT	250	L	3.58 x 10 ²	3.11 x 10 ² (C5-C41)	[5]
Ru/TiO ₂ -R	250	3	2.07 x 10 ²	1.89 x 10 ² (C5-C40)	[10]
Ru/SBA-15 (10)	250	1.5	4.17 x 10 ²	3.84 x 10 ² (C5-C40)	[11]

Table S6. Comparison of conversion and production rates in the hydrogenolysis of PE (M_w ~4,000, M_n ~1,700) using reported Ru-based catalysts.

Catalyst	Temperatur	Time	Conversion	Gas (%)	Liquid/Wax	Ref
	e (°C)	(h)	(%)	(Carbon	(%)	
				number)	(Carbon number)	
1Ru/NA-Al ₂ O ₃	250	2.5	96.2	19.3 (C1-C4)	76.9 (C5-C30+)	This work
Ru@NTO-NH	180	8	100	12 (C1-C5)	88 (C6-C35)	[2]
UiO-66-RuH ₂	200	72	90	32 (C1-C4)	58 (C5-C35)	[3]
Ru/C	200	16	95	45 (C1-C7)	50 (C8-C45)	[4]
Ru/FAU	200	16	100	33 (C1-C5)	67 (C5-C33)	[5]
Ru/MgO	240	Λ	74	24 (C1-C4)	50 (C5-C45)	
Ru/TiO ₂	240	4	73	22 (C1-C4)	51 (C5-C45)	[6]
Ru/CeO ₂			99	10 (C1-C4)	90 (C5-C45)	_ [0]
Ru/SiO ₂	240	8	71	15 (C1-C4)	55 (C5-C45)	
Ru/ZrO ₂	240	4	99	11 (C1-C4)	89 (C5-C45)	[7]
Ru/C-EG120	240	1.5	95	-	-	[8]
Ru/CeO ₂ -R-HT	250	2	53	3 (C1-C4)	50 (C5-C41)	[0]
Ru/CeO ₂ -C-HT	230	2	93	13 (C1-C4)	81 (C5-C41)	[9]
Ru/TiO ₂ -R	250	3	91	8 (C1-C4)	84 (C5-C40)	[10]
Ru/SBA-15 (10)	250	1.5	92	7 (C1-C4)	85 (C5-C40)	[11]

Table S7. Comparison of conversion and product yield in the hydrogenolysis of PE ($M_w \sim 4,000$, $M_n \sim 1,700$) using reported Ru-based catalysts.

References

- 1. H. Lee, C. Hur, Y. H. Lee, J. W. Moon, H. Lee, T. H. Kim, D. Oh, J.-S. Bae, W.-H. Kim and K. An, *ACS Catal.*, 2024, **14**, 12744-12756.
- 2. X. Zhang, Q. Gan, P. Zhou, Z. Chen, Z. Zhang and G.-P. Lu, *Appl. Catal., B*, 2024, **344**, 123626.
- 3. M. Chauhan, N. Antil, B. Rana, N. Akhtar, C. Thadhani, W. Begum and K. Manna, *JACS Au*, 2023, **3**, 3473-3484.
- 4. J. E. Rorrer, G. T. Beckham and Y. Román-Leshkov, *Jacs Au*, 2020, **1**, 8-12.
- J. E. Rorrer, A. M. Ebrahim, Y. Questell-Santiago, J. Zhu, C. Troyano-Valls, A. S. Asundi, A. E. Brenner, S. R. Bare, C. J. Tassone, G. T. Beckham, and Y. Román-Leshkov, *ACS Catal.*, 2022, 12, 13969-13979.
- 6. Y. Nakaji, M. Tamura, S. Miyaoka, S. Kumagai, M. Tanji, Y. Nakagawa, T. Yoshioka and K. Tomishige, *Appl. Catal., B*, 2021, **285**, 119805.
- 7. M. Tamura, S. Miyaoka, Y. Nakaji, M. Tanji, S. Kumagai, Y. Nakagawa, T. Yoshioka and K. Tomishige, *Appl. Catal., B*, 2022, **318**, 121870.
- P. Hu, C. Zhang, M. Chu, X. Wang, L. Wang, Y. Li, T. Yan, L. Zhang, Z. Ding, M. Cao, P. Xu,
 Y. Li, Y. Cui, Q. Zhang, J. Chen and L. Chi, *J. Am. Chem. Soc.*, 2024, **146**, 7076-7087.
- 9. A. Buhori, J.-W. Choi, H. Lee, C. S. Kim, K. H. Kim, K. Kim, W. Yang, J.-M. Ha and C.-J. Yoo, *Chem. Eng. J.*, 2024, **499**, 156097.
- 10. T. Kim, H. Nguyen-Phu, T. Kwon, K. H. Kang and I. Ro, *Environ. Pollut.*, 2023, **331**, 121876.
- 11. H. Nguyen-Phu, T. Kwon, T. Kim, L. T. Do, K. H. Kang and I. Ro, *Chem. Eng. J.*, 2023, **475**, 146076.