Supporting Information

Spontaneous Generation of Atomically Dispersed Mo and MoS₂ Coupling Catalyst by Reaction Induction Transformation for Enhancing Local Hydrogen Concentration in Hydrogenation

Guangxun Sun,^a Peng Xue,^a Changle Yue,^a Yang Li,^a Hongfu Shi,^a Xin Zhang,^a Fengyu Tian,^a Junxi Li,^a Zekun Guan,^a Bin Liu,^a Zhi Liu, ^{*a,c} Yunqi Liu,^{*a,b} Yuan Pan^{*a}

*Corresponding author: Zhi Liu, zhiliu@rcees.ac.cn; Yunqi Liu, liuyq@upc.edu.cn; Yuan Pan, panyuan@upc.edu.cn

Supplementary Text

Fig. S1. (a) N₂ adsorption/desorption isotherms, (b, c) pore size distribution of Mo SAs-Mo Cs.

Fig. S2. (a, b) SEM image of Mo SAs-Mo Cs.

Fig. S3. XRD patterns of Mo SAs-Mo Cs and Mo SAs-MoS₂ catalysts.

Fig. S4. Morphological of Mo SAs-Mo Cs (a) TEM. (b) HRTEM. (c) HAADF-STEM. (d) HAADF-STEM-EDSmapping. Morphological of Mo SAs-MoS₂ (e) TEM (f) the corresponding distribution of slab length of MoS₂ nanosheets.

Fig. S5. AC-HAADF-STEM for the transformation of Mo clusters to MoS₂. (a) Mo SAs-Mo Cs. (b) intermediates. (c) Mo SAs-MoS₂.

Fig. S6. The optimized configurations of (a) MoS₂ adsorption on C and (b) C-H substrate. The cyan, yellow, and grey spheres denote Mo, S, and C atom, respectively.

Fig. S7. Morphological of TEM images for *in situ* sulfurization of Mo species (a-c) TEM-H₂. (d-f) TEM-N₂.

Fig. S8. UPS spectra of the catalysts before and after the reaction. (a) Mo SAs-Mo Cs, (b) Mo SAs-MoS₂.

Fig. S9. EXAFS fitting curves of (a) Mo SAs-Mo Cs and (b) Mo SAs-MoS₂.

Fig. S10. WT contour plots in Mo K-edge of (a) MoO₂, (b) MoO₃ and (c) Mo foil standard.

Fig. S11. Mo K-edge of Mo SAs and corresponding samples (a) XANES and (b) EXAFS. Mo K-edge EXAFS fitting curve for Mo SAs (c) FT magnitude and (d) imaginary componebt.

Fig. S12. H₂ consumption profiles of VR using Mo SAs-MoS₂ and corresponding catalysts at 698 K.

Fig. S13. Morphological of TEM images for Mo SAs before the reaction (a-b) HRTEM. (c) Mapping.

Fig. S14. Morphological of TEM images for Mo SAs after the reaction (a-b) HRTEM. (c) HAADF-STEMmapping.

Fig. S15. Mass spectra of NH₃ in H₂ atmosphere from $100 \sim 650$ °C.

Fig. S16. Comparison of TG for Mo SAs-Mo Cs and Mo SAs-MoS₂ catalysts.

Fig. S17. Mass spectra of NH_3 in H_2 atmosphere from 100 $^{\sim}$ 650 $^{\circ}\mathrm{C}$.

Fig. S18. H₂-TPD of Mo SAs-Cs precursor and Mo SAs-MoS₂ catalyst.

Fig. S19. EPR spectra of Mo SAs-Mo Cs and Mo SAs-MoS₂.

Fig. S20. The optimized configurations of (a) C-Mo, (b) C-Mo-H $_2$ and (c) C-Mo-AH.

Fig. S21. The optimized configurations of (a) C-MoS₂, (b) C-MoS₂-H₂ and (c) C-MoS₂-AH.

Fig. S22. The optimized configurations of (a) C-Mo-MoS $_2$, (b) C-Mo-MoS $_2$ -H $_2$ and (c) C-

Mo-MoS₂-AH.

Fig. S23. Charge density of anthracene adsorption in C-Mo, C-MoS₂, C-Mo-MoS₂.

VR	Amount				
Density (20°C) (g·cm⁻³)	1.039				
S (wt.%)	5.2				
N (wt.%)	0.56				
Carbon residue (wt.%)	27.03				
Ni (µg⋅g⁻¹)	73.6				
V (μg⋅g⁻¹)	204				
Fe (µg·g ⁻¹)	74.7				
Ca (µg·g⁻¹)	88				
Resins (wt.%)	25.78				
C7-Asphaltene (wt.%)	15.19				
Saturates (wt.%)	12.18				
Aromatic (wt.%)	46.59				
H/C (atomic)	1.45				

 Table S1. The specific components of VR.

Table S2. Structural parameters of Mo SAs-Mo Cs, Mo SAs-MoS₂, and Mo SAs samples extracted from the EXAFS fitting.

Sample	Scatter- ing pair	CN R(Å) σ ² (1 ³ Å ²)		σ ² (10 ⁻ ³Å²)	ΔE₀(eV)	R
Ma SAc Ma Cc	Mo-O	3.95	1.56 (1)	0.001	10 (7)	0.01
100 SAS-100 CS	Mo-Mo	6.22	3.01 (1)	0.004		
Mo SAs-MoSa	Mo-O	4.41	1.97 (4)	0.002	73(2)	0.01
W0 3A3-10032	Mo-S	1.73	2.43 (1)	0.003	7.3 (2)	
Mo SAs	Mo-O	3.62	2.16 (3)	0.004	4.8 (2)	0.02

 S_0^2 is the amplitude reduction factor $S_0^2=1.0$; CN is the coordination number; R is interatomic distance (the bond length between central atoms and surrounding coordination atoms); σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting.

Catalyst	Quanti- ties	Temperature	Initial pres- sure	Time	Coke	TOF _T	Anthra- cene	Ref.
	ppm	Ľ	MPa	n	wt.%	S ⁻¹	Conver- sion wt.%	
Mo SAs-MoS ₂	200	425	7	1	0.6	0.39	99.4	This work
Fe-MoS ₂	2000	425	9	2	1.7	-	-	Fuel. 2024, 374, 132465
NiMo	500	425	7	1	0.9	0.36	98.8	Chem. Eng. J. 2024, 498, 155166
Fe-O-B ₂₄	30000	440	13	4	2.0	-	-	Fuel. 2023 , 332, 126063.
Mo SAs/C	200	425	7	1	0.63	0.35	-	Sci. Bull. 2023, 68, 503-515.
CoWS ₂	150	420	7	2	1.3	0.76	-	J Catal. 2023 , 421, 145-155.
Mo/ASA	-	430	11	3	0.5	-	-	Pet. Sci. 2023 , 20, 2575-2584.

Table S3. Comparison of hydrogenation performance of Mo SAs-MoS₂ catalysts with various reported catalysts.

Mo-A/R	150	430	7	1	0.5	1.15	-	Chem. Eng. Res. Des. 2022 , 321, 124029.
FeNiS _x	500	430	7	1	1.4	-	-	Fuel. 2022 , 321, 124029.
[N _x] ₂ MoO ₄	-	430	12.3	3	1.1	0.21	-	Chem. Eng. Sci. 2022 , 253, 117516.
MoS ₂ -ES	360	400	5	4	3.2	0.089	-	J. Catal. 2019 , 369, 111-121.
MoS ₂	2000	410	8	1	1.84	-		