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Figure S1. X-ray diffraction patterns of (a) Ni and Ni-In/Al,O;. Colored vertical lines 1
ndicate the references for the corresponding phases. By using the Scherrer’s equation,
the crystallize sizes of Ni and Ni-In nanoaprticles were estimated as 6 and 16 nm, re

spectively.
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Figure S2. N, adsorption-desorption isotherms of Ni-In/Al,Os.
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Figure S3. TEM analysis of the Ni-In/AL,O; catalyst. (a) HAADF-STEM image and
corresponding elemental maps of (b) Al, (c) Ni, (d) In, and (e) an overlay of Al, Ni, and In.
The Ni/In molar ratios at the positions marked with pink circles in (¢) are summarized in the

table on the right.
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Figure S4. Schematic diagram of the detailed setup of the packed-bed DBD reactor.
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Figure SS. Lissajous figures for plasma discharges at 12 kHz and 100 kHz
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Figure S6. Schematic diagram of the in sifu TIR cell (a) and the electrode and catalyst pellet
geometry (b). The ZnSe windows were replaced with Kapton film (polymide) when in situ

XAFS was employed.



Supplementary Note 1. Kinetic analysis

Kinetic analyses were conducted under a kinetically controlled regime (the CO, conversion
was lower than 20 %) by adjusting the WHSV to 6000 cm3/g/h (Figure S7). CO reaction rate
was expressed by the power-law kinetics (Eq. (1)). Take the natural logarithm of Eq. (1) and

rewrite it into Egs. (2) - (4):
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Here, k and P expresses the reaction rate constant and the average concentration of CO, and
H,. @ and B represent the modified reaction order for CO, and H,, respectively. & and B were
unknown figures at this point: Assume arbitrary values for @ and B and performed iterative
calculations until the deviation of @ and B becomes smaller than 1% error. The feasibility of
this method had been verified by comparing with conventional approach with inert gas dilution
in our previous research on dry methane reforming.!

Reaction order was estimated from Figure S8 at fixed total flow rate while varying H,/CO,
ratio without dilution gas. Figure S9 represents the corresponding CO, and H, conversion and
CO selectivity. Experimental conditions are provided in the figure caption of Figure S9. In

Tco Tco

In
P,? Inp Poo® InP
H2 vs. “2and 2 vs. H express the linear relationship.

In

Figure S8a and S8b,




Apparent activation energy (EA) under thermal and DBD conditions was determined

according to Egs. (1) and (5):

Ey

5
k=Ae BT )

The 4, R and T represent pre-exponential factor, universal gas constant and catalyst

temperature (K), respectively.
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Figure S7. Temperature-dependent CO, conversion. Reaction conditions: Total flow rate =

800 mL/min (STP); H,/CO, = 3; WHSV 6000 mL/g/h (STP); pressure = 30 kPa; SEI =1.5

eV/molecules.
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Figure S8. Reaction orders (a) a for CO; and (b) B for H,. Conditions: see Figure S9 caption.
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Figure S9. CO; and H, conversion with respect to the CO, flow rate over Ni-In/Al,Os. (a)

Thermal, (b) 12 kHz DBD and (c) 100 kHz DBD conditions. Reaction conditions: Catalyst

temperature = 450 °C (Thermal), 380 °C (12 kHz DBD) and 410 °C (100 kHz DBD); Total

(%) Ayanoaies 00

flow rate = 800 mL/min (STP); H,/CO, = 2, 3 and 4; WHSV = 6000 mL/g/h (STP); pressure

=30 kPa; SEI =1.5 eV/molecules.
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Figure S10. /n situ TIR spectra of Ni-In/Al,O3 recorded at 350 °C under O, exposure.
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Figure S11. /n situ TIR spectra of Ni/Al,O; recorded at 350 °C during CO, exposure under

(a) thermal and (b) DBD conditions.
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Figure S12. In situ TIR spectra of CHy peak area at 3015 cm! corresponding to (a) Figure 2¢

and (b) Figure 2d in main text.
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Figure S13. /n situ Ni and In K-edge XANES spectra of Ni-In/Al,0O; collected at room

temperature after reduction.
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Figure S14. In situ Ni and In K-edge EXAFS spectra of Ni-In/Al,O3 recorded at 350 °C

under (a, b) thermal and (c, d) plasma conditions during CO, + H, and after switching to CO,.
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Figure S15. TEM analysis of the spent Ni—In/Al,O; catalyst. (a) HAADF-STEM image and
corresponding elemental maps of (b) Al, (c¢) Ni, (d) In, and (e) an overlay of Al, Ni, and In.
The Ni/In molar ratios at the positions marked with pink circles in (e) are summarized in the

table on the right.
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Fig. 2. Investigation of the reaction mechanism over Ni-In/Al,Os. In situ TIR spectra recorded at 350 °C

during CO, exposure under (a) thermal and (b) plasma conditions, and after switching from CO, to H,
under (c) thermal-to-thermal and (d) plasma-to-thermal or plasma conditions.
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