
Supporting Information:

Vibrational Excitation in Plasma

Catalysis:

How Important are Dynamical Effects?

Floris van den Bosch∗ Nick Gerrits† Jörg Meyer‡

Leiden Institute of Chemistry, Gorlaeus Laboratories,

Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

∗f.van.den.bosch@lic.leidenuniv.nl
†n.gerrits@chem.leidenuniv.nl
‡j.meyer@chem.leidenuniv.nl

S1

Supplementary Information (SI) for EES Catalysis.
This journal is © The Royal Society of Chemistry 2025

mailto:f.van.den.bosch@lic.leidenuniv.nl
mailto:n.gerrits@chem.leidenuniv.nl
mailto:j.meyer@chem.leidenuniv.nl


Contents

S1 Uncertainties of reaction probabilities S3

S2 Reaction probabilities under thermal conditions S4
S2.1 Methods relying on normal energy scaling . . . . . . . . . . . . . . . . . . . . S4
S2.2 Direct sampling of Maxwell-Boltzmann distributions . . . . . . . . . . . . . . . S7

S3 Vibrational contributions S10

S4 Mean vibrational efficacies S12

S5 Dynamical effects S14

S6 Barrier recrossing S17

S2



S1 Uncertainties of reaction probabilities

Figure S1 shows the dissociation probability curves obtained from our MD simulations together
with the 95% confidence intervals due to extrapolation uncertainties in our high-dimensional
neural network potential as described in Section 2.3.4 of the main article. These reaction curves
are used for computing thermally-averaged reaction rate coefficients according to Eq. (6), mean
vibrational efficacy as shown in Section S4, and energy-dependent vibrational efficacy curves
shown in Fig. 3.
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Figure S1: Dissociation probability curve dependent on incidence energy Einc per vibrational
quantum number ν. 95% confidence are indicated by the red shaded areas.
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S2 Reaction probabilities under thermal conditions

S2.1 Methods relying on normal energy scaling

In Fig. 2, we show thermally-averaged reaction probabilities of N2 DC on Ru(0001) based
on our MD simulations. Taking the thermal average of the reaction probability curves re-
quires computing the semi-infinite integral in Eq. (7) and requires reaction probability curves
Pν(Einc) computed from MD (see Section S1). However, the numerical integration of the re-
action probability poses some problems: The reaction probability Pν(Einc) quickly approaches
0 for Einc → 0, while distribution (8) is heavily weighted towards Einc → 0. This means that
Monte Carlo sampling according to the Maxwell-Boltzmann distribution would require com-
puting an intractable amount of trajectories (≫ 106). Instead, we compute the reaction curve
Pν(Einc) at discrete values of Einc = 0.25–10 eV in steps of ∆Einc = 0.25 eV. Choosing initial
conditions as detailed in Section 2.3.2, we assume that Pν(Einc) does not (significantly) depend
on velocity components parallel to the surface, which is justified by normal energy scaling of
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Figure S2: Comparison of methods for computing thermally averaged reaction probabilities as
shown in Fig. 2 of the main article at Tgas = 673K.
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N2 dissociation probabilities on Ru(0001).1 We use these reaction curves to approximate the
integral given by Eq. (7). For this approximation, we used three methods:

1. Computing the expectation value with the sum

⟨Pν⟩ ≈
∑
Einc

(∫ Einc+∆Einc/2

Einc−∆Einc/2

finc(ϵ) dϵ

)
Pν(Einc) . (S1)

2. Computing the integral with a linearly interpolated reaction curves g1ν(Einc) of the dis-
crete reaction probabilities Pν(Einc) as

⟨Pν⟩ =
∫ ∞

0

finc(Einc) g
1
ν(Einc) dEinc . (S2)

3. Using a carefully constructed fitting function as given by Eq. (10), namely:

Sν(E) = γν exp
[
−βνE

−αν
]
, (S3)

and computing the integral

⟨Pν⟩ =
∫ ∞

0

finc(Einc)Sν(Einc) dEinc . (S4)

Here Sν is the function S(E) with optimal parameters αν , βν , γν obtained with a least-
squares fit to Pν(Einc). These optimal parameters are reported in Section S2.1.

All three methods result in the same trend over the vibrational levels and are within 3 orders
of magnitude of each other, as can be seen in Fig. S2. The results of the expectation value
and the linear interpolation show consistent large upper bounds for ν < 6. This upper bound
is entirely determined by the number of trajectories and represents the maximum possible
reaction probability when none of the trajectories have reacted, resulting in a roughly constant
value. This observation led us to believe that it overestimates the true uncertainty. Therefore,
we consider method 3 to be the best choice, as it provides a more consistent confidence interval
across different vibrational levels.
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Table S1: Best fit parameters obtained for Sν(E) (see Eq. (10) and also Eq. (S3) above) using
the MD data for the reaction probability curves show in Fig. S1. We report fit
parameters for the estimators as well as the 95% confidence interval upper and
lower bounds.
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S2.2 Direct sampling of Maxwell-Boltzmann distributions

Kedalo et al. 2 have tried to sample the thermal distribution for the impinging N2 molecules
directly. In Fig. S3 we compare their thermally averaged reaction probabilities for Tgas =

1000K with results from our MD simulations as a function of vibrational state ν. Thanks
to our fitting function we could simply re-evaluate Eq. (S4) without having to run additional
MD simulations — which is another advantage of our method.

Figure S3 illustrates that the two sets of results for ⟨Pν⟩ differ greatly from each other.
Unfortunately, Kedalo et al. 2 do not report statistical errors. They indicate to rely on an as-
sumption for the initial velocities, namely that the “z component (perpendicular to the surface)
of the velocity was a minimum 80% of the total velocity”.2 In the following we demonstrate
that if statistical convergence has been achieved in their work, then it has been aided by this
unphysical assumption. To do so, we first provide a rather general derivation of the skewed en-
ergy (Ez) and velocity (vz) distributions fskew used (according to our understanding) by Kedalo
et al. 2 for sampling of initial velocities perpendicular to the surface at a given gas temperature
Tgas. After that we compare it to the conventional Maxwell-Boltzmann distribution Eq. (8)
used in our work.
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Figure S3: Comparison between thermal sticking probabilities of N2 on Ru(0001) at Tgas =

1000K computed in this work (blue circles) and Ref.2 (black crosses).
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Assuming that vz is at least a fraction 0 < ξ < 1 of the total velocity yields the following
conditions:

ξvtot < vz (S5)

ξ2 1
2
mv2tot <

1
2
mv2z (S6)

ξ2Etot < Ez (S7)

ξ2(Ex + Ey + Ez) < Ez (S8)

ξ2(Ex + Ey) < (1− ξ2)Ez (S9)

E∥ ≡ Ex + Ey <
1− ξ2

ξ2
Ez (S10)

The kinetic energy contributions resulting from velocity components perpendicular and parallel
to the surface are given by

Ez ∼ Γ

(
1

2
, kBTgas

)
(S11)

and

E∥ ∼ Γ (1, kBTgas) = Exp

(
1

kBTgas

)
, (S12)

respectively. Up to a normalisation constant, the skewed energy distribution for the normal
component is given by:

fskew(E;Tgas) ∝ P (Ez = E)P (E∥ < sE) (S13)

∝ fMB−1D(E;Tgas) FMB−2D(sE;Tgas) (S14)

∝

√
1

πkBTgasE
exp

[
−E

kBTgas

] (
1− exp

[
−s

E

kBTgas

])
, (S15)

where s = 1−ξ2

ξ2
. fMB−1D denotes the probability distribution function of Ez, and FMB−2D

denotes the cumulative distribution function of E∥. Normalization yields

fskew(E;Tgas) =
1

1−
√

1
1+s

√
1

πkBTgasE
exp

[
−E

kBTgas

](
1− exp

[
−s

E

kBTgas

])
. (S16)

Note that in the limit that ξ → 0 (and thus s → ∞) we recover Eq. (8) from Eq. (S16). The
corresponding velocity distribution f̃skew is given by

f̃skew(v;Tgas) =
1

2
mv fskew

(
1

2
mv2

)
(S17)

=
1

1−
√

1
1+s

√
m

2πkBTgas

exp

[
−mv2

2kBTgas

](
1− exp

[
−s

mv2

2kBTgas

])
(S18)

In Fig. S4 we have plotted f̃skew(v;Tgas = 1000K) for ξ = 80% (i.e., s = 0.5625) together
with the conventional (one-dimensional) Maxwell-Boltzmann velocity distribution. At this
temperature, the severity of the skewness becomes very obvious.
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Figure S4: Comparison of velocity distributions at Tgas = 1000K: Conventional one-
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ponent (perpendicular to the surface) of the velocity was a minimum 80% of the
total velocity” 2 (orange).
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S3 Vibrational contributions

The turnover frequencies (TOFs) and reaction probabilities of Fig. 1 and Fig. 2 were computed
using the rate coefficients (Eq. (6)). However, from these quantities, one cannot discern which
vibrational states ν and incidence energies Einc are the most relevant for the eventual rate of
DC. The contribution pν(Einc) of vibrational level ν at incidence energy Einc is given by

pν(Einc) = fvib(ν) finc(Einc)Pν(Einc) . (S19)

Here, fvib is the vibrational distribution given by a Boltzmann distribution (thermal) or by the
Treanor distribution (Eq. (1)) (plasma); finc(Einc) is the incidence energy distribution given
by a 1D Maxwell-Boltzmann distribution; and Pν(Einc) is the DC probability computed from
MD (see Section S1).

In Fig. S5a,b we see that for a thermal gas the most contributing vibrational states are
ν = 3–6 , whereas for a plasma the highest vibrational states contribute the most to the
total reaction probability. Supposedly, vibrational states higher than ν = 10 are still relevant
in a plasma, although the employed Treanor distribution model breaks down for ν > 10,
predicting increasingly higher occupations. In the future, a vibrational distribution function
suitable for plasmas and even higher vibrational quantum numbers is required to investigate
this. Furthermore, the relevant incidence energy range shifts downwards with each higher
vibrational state. In contrast, with respect to the total energy (Einc+Eν−EZPE) in Fig. S5c,d,
we see that the energy range shifts upwards with ν.

Unfortunately, for the thermal distribution in Fig. S5b, most of the contributions are at a
lower total energy than the minimum barrier height Eb = 1.83 eV (average of1.6 eV), which
likely indicates artificial zero-point energy (ZPE) leakage, a well-known issue for the quasi-
classical trajectory (QCT) approach that requires inclusion of nuclear quantum effects to
remedy.3 However, leakage of the ZPE (0.15 eV) alone is not enough to explain the discrepancy
of∼0.2 eV. A part of this discrepancy is also likely caused by the effective lowering of the local
barrier height due to thermal surface atom motion. Contrary to under thermal conditions, we
see under plasma conditions in Fig. S5d that the reactivity is determined mostly by collisions
with a total energy larger than the minimum energy barrier. Nevertheless, this does mean
that the reactivity of the lowest vibrational states is overestimated due to ZPE violation.
This in turn affects the reaction rate of the vibrational ground state the most, followed by
the thermal distribution, whereas the plasma distribution is hardly affected. Therefore, we
predict that if the ZPE violation is solved in the molecular dynamics (MD) simulations (e.g.,
employing ring polymer MD simulations3), the differences between the computed TOFs of the
three vibrational distributions are to become even larger, especially compared to the plasma
distribution.
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Figure S5: Relative contributions to the reaction probabilities of N2 molecules pre-populated
in different initial vibrational states ν according to a Boltzmann distribution
(Tgas = 683K) for thermal catalysis (a and b) and Treanor distribution (Tgas =

683K, Tvib = 3000K) for plasma catalysis (c and d). a and c are plotted as a func-
tion of incidence energy Einc, whereas b and d are as a function of total energy.
The dashed lines indicate the minimum energy barrier Eb = 1.83 eV.
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S4 Mean vibrational efficacies

As described in Section 3.3, we compute a mean vibrational efficacy η from relative shifts
δEν

inc between fitted reaction probability curves, that combine into total shifts w.r.t the ground
state ∆Eν

inc. Here we detail on the error estimation of the mean vibrational efficacy η and
the goodness of this fit. For the practical implementation of the minimisation of Eq. (13),
we interpolate the reaction curve integrals using a cubic spline. We evaluate the residuals
between the two curves at 1024 points only on the overlap of the two data ranges after shifting
to avoid extrapolation. The standard errors on the total shifts ∆Eν

inc are given by the root
cumulative quadratic sum

σν =

√√√√ ν∑
i

Cii , (S20)

where Cii is the variance of δEinc as given by the estimated covariance matrix C from the least-
squares procedure. Note that the least-squares procedure is not weighted with the uncertainties
of the reaction probability curves. These uncertainties are used in the weighted least-squares
fit for η. In the weighted least-squares, we fit the slope between the energy shifts ∆Eν

inc and
corresponding vibrational excitation energies ∆Eν

vib. We only fit the slope, enforcing that the
linear fit goes through the reference point (∆Eν=0

inc ,∆Eν=0
vib ) = (0, 0). The estimate for the

mean vibrational efficacy follows from the least-squares procedure:

η =

∑
ν

∆Eν
vib∆Eν

inc

σ2
ν∑

ν

(
∆Eν

vib

σν

)2 , (S21)

and the uncertainty η is estimated as

ση =
1√∑

ν

(
∆Eν

vib

σν

)2 . (S22)

In Fig. S6, we give a visual representation of this procedure. Fig. S6a shows the reaction
probability curves and indicates the total energy shift ∆Eν

inc between the first excited state
and the ground state. In Fig. S6b, we have plotted the total energy shift versus the excitation
energies and find that the relation is almost perfectly linear. More precisely, the reduced chi-
square statistic of the linear fit is χ2

red = 0.022, indicating very low residuals and most likely an
overestimation of the uncertainties σν . This overestimation is probably due to the assumption
that the individual shifts δEν

inc are independent, allowing the formulation of Eq. (S20).
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Figure S6: a) Reaction probability curves as function of incidence energy. b) Linear fit through
the energy shifts ∆Eν

inc and excitation energies ∆Eν
vib. The dashed line shows

the linear fit corresponding to the mean vibrational efficacy η as used in the
TST+η@TS level of theory in the main article. The dotted line indicates the
slope from FM α model (see Eq. (4)).
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S5 Dynamical effects

As described in the main paper, we have computed the effect of the full-dimensional MD
simulation on the DC probability on N2 on Ru(0001). In (Section 3.4), we have also seen that
the difference in reactivity of the MD simulations and TST-based methods can be explained by
dynamical effects. We have shown the effects of the three most significant degrees of freedom
(θ, x, y) in Fig. 4. The reduction in reactivity was computed by comparing the distribution of
the initial coordinates for reacted trajectories and the thermal distributions of the N2 molecule
in the gas-phase. We will briefly describe these distributions here:

For the θ-angle, the thermal distribution is a sine distribution, given by the probability
density function

fthermal(θ) =
1
2
sin(θ) . (S23)

For the reacted trajectory distribution we slightly modified this distribution by multiplying it
with a Gaussian centred around θ = π

2
such that its probability density function is given by

freacted(θ) =
1

N
sin(θ) exp

[
−
(
θ − π

2

σ

)2
]
, (S24)

where σ is the standard deviation of the Gaussian and N is the normalisation constant, which
is given by

N =

√
π

2
σ exp

[
−σ2

4

]
ℜ
(
erf

[
π − iσ2

2σ

]
+ erf

[
π + iσ2

2σ

])
, (S25)

where ℜ denote the real part and erf the error function.
For the ϕ-angle, the thermal distribution is just a uniform distribution over the interval

[0, 2π). The distribution for the reacted trajectory was modelled by a uniform distribution
mixed with a cosine distribution with probability density distribution

freacted(ϕ) =
1

2π
[1 + cos(kϕ)] . (S26)

Here k denotes the number of maxima of the function, where we have chosen k = 6, because
of the 3-fold and 2-fold symmetries of Ru(0001) and N2, respectively. A similar distribution
has been used in the work of Shakouri et al. 4 .

For the xy-positions, the thermal distribution is again a uniform distribution, but now over
the irreducible wedge of the Ru(0001) surface, as depicted in Fig. 4b. The reacted distribution
is modelled by a bimodal normal distribution as the sum of two 2D Gaussians: The first is
centred at µ1 = (3

4
a,
√

3
16
a), which is the bridge site, and has inverse covariance matrix

Σ−1
1 =

1

4

(
3a2 + b2

√
3(a2 − b2)

√
3(a2 − b2) a2 + 3b2

)
= R(30°)

(
a2 0

0 b2

)
R−1(30°) . (S27)
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This means that the inverse principal variances a2, b2 are directed along the 30° symmetry axis
of the reduced wedge. The second Gaussian is centred at µ2 = (a, 0) with covariance, where
the principal variances are in the same direction as Eq. (S27), but with independent inverse
variance magnitudes c2, d2. The full probability density function is then given by

freacted(x, y) = e g1(x, y) + (1− e)g2(x, y) , (S28)

g1(x, y) =
ab

π
exp
[
−1

2
dT1Σ

−1
1 d1

]
, (S29)

g2(x, y) =
cd

arctan
√
3d
c

exp
[
−1

2
dT2Σ

−1
2 d2

]
, (S30)

di =

(
x

y

)
− µi . (S31)

In these equations, e is the mixture parameter between the two normal distribution, a2, b2

(c2, d2) are the inverse principal variances of the first (second) normal distribution. Note
that this distribution is not exactly normalized when the distributions are very broad, as we
approximated the distribution to vanish at opposite boundaries of the reduced wedge.

In Fig. S7 we show the reduction in reactivity from the MEP deviations beyond the example
at an incidence energy of Einc = 3.25 eV presented in Fig. 4. From this figure, we can recover
the ranges of reduction reported in the main paper and see that the reduction from the angular
degrees of freedom stays approximately constant as a function of incidence energy, while
the reduction associated with the translational degrees of freedom decreases with incidence
energy. Assuming that these degrees of freedom are completely independent is not realistic.
For example, we know that the optimal azimuthal angle ϕ is sensitive to the position x, y.4

Regardless, even if the degrees of freedom are perfectly correlated, the minimal reduction
would be due to corrugation in x, y, which still accounts for a reduction in reactivity of almost
two-orders-of-magnitude. Furthermore, from the trend we believe that this reduction becomes
even larger for incidence energies Einc < 1.75 eV, which are beyond our statistics for this
particular analysis and are required to determine both thermal and plasma catalysis reaction
rates (see Fig. S5a,c).
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Figure S7: Reactivity reduction of MD with respect to TST-based methods obtained from
difference in distributions described in Section S5 and shown in Fig. 4.
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S6 Barrier recrossing

As mentioned in Section 3.4, in MD there is a possibility for a single N2 molecule to cross
the reaction barrier multiple times, which is erroneously counted multiple times towards the
reaction rate in TST. We quantify this recrossing rate by performing an additional 5000 QCTs
and counted how often the bond length of N2 crossed its transition state value r‡ = 1.738Å.
As the barrier for the DC of N2 on Ru(0001) is a late barrier, crossing r‡ closely coincides with
the actual transition state plane. In Fig. S8, we can see that the probability of crossing the
transition state decreases exponentially with the number of crossings. Only a small amount of
trajectories actually recross the barrier (∼5% at Einc = 5.0 eV and ν = 0). The overestimation
of the dissociation rate in TST due to recrossing is usually accounted for by a transmission
coefficient κ that quantifies how often a crossing of the transition state leads to dissociation.
This transmission coefficient is given by the ratio between the number of dissociations and
transition state crossings as

κ =
Ndiss

Ncross

. (S32)

Here Ncross is the total number of crossing (forward and backward) over all trajectories and
Ndiss is the number of trajectories that ended in dissociation. The overestimation coefficient
κ is thus dependent on the incidence energy Einc and vibrational state ν. In Fig. S9 we show
the that the overestimation of the reaction probability for ν = 0 is10–20%. However, for
realistic catalytic conditions, the relevant incidence energies are lower than2 eV, where we do
not observe recrossing. Thus, recrossing can be neglected for computing the reaction rate of
N2 + Ru(0001) with TST models.
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Figure S8: Distribution of the number of crossings of the molecule over the transition plane for
scattered (blue), dissociated (orange) and trapped trajectories (green). The plot
is for an incidence energy of Einc = 5.0 eV in the vibrational ground state ν = 0

using the technical parameters for recrossing defined in Section S6.
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Figure S9: Transmission coefficient of DC derived from barrier recrossings. The transmission
coefficients κ shown here are computed from QCTs in vibrational state ν = 0.
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