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Table S1. Detailed overview of models and algorithms used in hyacinth bean identification 

Models and algorithms Sub-models Working principle Key features Advantages Limitations

Linear regression
Model’s linear relationships between 
spectral features and chemical 
properties.

Simple and 
interpretable

Computationally efficient, 
works well with small 
datasets

Poor performance 
on non-linear data

Decision tree regression Splits the dataset into branches using 
decision rules.

Handles non-linearity 
well

Easy to interpret, non-
parametric Prone to overfitting

Random forest 
regression

Uses multiple decision trees and 
averages their outputs.

Reduces variance 
compared to single 
trees

Handles large datasets 
well

Computationally 
expensive

Support vector 
regression 

Uses kernels to map data into higher 
dimensions for better separation.

Effective on small 
datasets with non-
linear trends

Works well for complex 
relationships

Slow for large 
datasets

Gaussian process 
regression 

Models the distribution over 
functions using a probability 
approach.

Provides uncertainty 
estimation

Works well with small 
data

Computationally 
intensive

Neural network 
regression

Uses layers of neurons to model 
non-linear relationships in spectral 
data.

High accuracy with 
large datasets

Capable of handling 
complex patterns

Requires large 
computational 
power

Kernel ridge regression Uses kernel methods to model non-
linear relationships.

Effective for complex 
patterns

Provides better 
regularization

Computationally 
expensive

Regression models

Gradient boosting 
regression 

Uses boosting technique to combine 
weak learners into a strong predictor. Improves accuracy Reduces bias and variance Requires careful 

tuning

K-Nearest Neighbors Assigns class based on the majority 
vote of k-nearest neighbors.

Non-parametric, 
simple to implement

Effective for small 
datasets

Sensitive to noisy 
and irrelevant 
features

Support vector machine Finds an optimal hyperplane that 
maximizes class separation.

Works well with high-
dimensional data Robust to overfitting Slow with large 

datasets

Naïve Bayes Uses Bayes' theorem assuming 
feature independence. Fast and efficient Works well with small 

data

Assumes 
independence, 
which is rarely true

Decision trees Splits data based on feature 
thresholds. Easy to interpret Handles categorical & 

numerical data Overfits easily

Random forest Uses multiple decision trees for 
voting. Reduces overfitting More accurate than single 

trees
High computational 
cost

Ensemble learning 
(Bagging, Boosting, 
Adaboost, Xgboost)

Combines multiple weak models to 
form a strong classifier. Improves performance Reduces variance and bias

Requires careful 
hyperparameter 
tuning

Classification models

Neural networks Uses deep learning architectures to Highly flexible and Can learn complex Computationally 



identify complex patterns. accurate relationships expensive

EfficientNet_B3 Optimized CNN architecture for 
feature extraction and scalability.

Pretrained on 
ImageNet High accuracy High computational 

cost

EfficientNet_V2_S Optimized CNN architecture for 
scalability and efficiency.

Uses squeeze-and-
excitation blocks Highly parameter-efficient High computational 

cost

ConvNeXt_Tiny Modernized CNN with optimized 
convolution layers. Improved efficiency Works well on large-scale 

data

Limited 
transformer-like 
properties

MaxVit_T Hybrid model combining CNN and 
Vision Transformers.

Captures long-range 
dependencies High accuracy Computationally 

expensive

RegNet_Y_1_6GF Scalable CNN model for improved 
accuracy. Adaptive model size Balances speed and 

accuracy

Requires high 
computational 
resources

RegNet_Y_3_2GF Enhanced version of RegNet 
optimized for efficiency. Reduced latency High accuracy Requires tuning

DenseNet169 Uses dense connections between 
layers for improved gradient flow.

Reduces vanishing 
gradient issues Improves feature reuse Requires large 

memory

ShuffleNet_V2_X2_0 Lightweight CNN with efficient 
group convolutions. Fast inference speed Low computational cost

Lower accuracy 
compared to larger 
models

MobileNet_V3_Large Lightweight CNN optimized for 
mobile applications.

Depth wise Separable 
Convolutions for 
efficiency

Fast inference speed Lower accuracy 
than larger models

Deep learning models 
for image-based 
classification

RegNet_X_3_2GF Bottleneck CNN architecture with 
grouped convolutions.

Efficient feature 
extraction Optimized accuracy Computationally 

expensive

ReliefF Algorithm Identifies the most relevant features 
in spectral data.

Enhances model 
interpretability Improves accuracy May not capture 

deep relationships

Savitzky-Golay Filter Smooths FTIR spectral data to 
remove noise.

Retains essential signal 
details Improves feature clarity Requires parameter 

tuningFeature selection & 
optimization Grid Search, Random 

Search, Bayesian 
Optimization

Finds the best hyperparameters for 
models.

Enhances model 
accuracy Automates tuning process Computationally 

expensive
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Figure S1. Actual versus predicted value plot for 25 regression models (a-y); SVM- support vector machines; GPR- Gaussian process regression; LS-least 
square
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Figure S2. Optimization graphs for neural network model (regression) (a) predicted versus true responses, (b) 
residuals plot for predicted responses, (c) residuals plot for observations (records), (d) residuals plot for true 
responses and (e) responses versus observations (records).
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Figure S3. Optimization of classification models; for KNN (a) minimum error classification plot, (b) 
validation ROC curve, (c) validation precision-recall curve; for NN (d) minimum error classification plot, (e) 
validation ROC curve, (f) validation precision-recall curve
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Figure S4. Confusion matrix for selected 10 pre-trained models


