Supplementary Information (SI) for Sustainable Food Technology. This journal is © The Royal Society of Chemistry 2025

A (1	D	D C (1, 1)		T' (C 1 '		тт	
Author	By- product	Form of the by- Fproduct	Groups of meat products	List of analysis	Physiochemical results	How was sensory analysis conducted	Sensory analysis results
Carpes, 2020	Grape pomace	Grape pomace (stem, seed, skin, pulp) was dried at 35 °C for 2 days, milled, and stored at -12 °C. It was ethanol-extracted, freeze-dried, mixed with maltodextrin, and spray-dried into microparticles.	T1 was the negative control with nothing added to the base pate formulation. T2 was the positive control with sodium erythrobate. T3 was the freeze dried grape pomace added to the original recipe T4 had the microencapsulated form of the pomace added.	Lipid oxidation evaluation	TBARS was used to assess lipid peroxidation. T3 showed the lowest levels throughout storage, except on day 35. Both T3 and T4 had lower values than the positive control.	N/A	N/A
Carrapiso, 2024	White grape pomace	White grape pomace (destemmed) from a winery was blanched, treated with high hydrostatic pressure, and processed into a powder.	There were 4 groups made with the sausage. Group 1 was the control plain formulation Group 2 NITRASC is the positive control with sodium nitrate. Group 3 0.5% pomace was weight in weight Group 4 3% Pomace weight in weight	Lipid oxidation evaluation Protein oxidation Microbial counts Polyphenol measurements Color Physiochemical analysis	Water activity, pH (3% GP), and moisture content decreased significantly with GP addition. Phenol content was higher in the control and 0.5% GP. The positive control (sodium nitrate) reduced mesophilic, psychrotrophic, and LAB counts—though lower LAB counts are not always beneficial. GP showed potential to reduce lipid oxidation, but no significant differences were found between the positive control and pomace groups. GP did not improve instrumental colour over the positive control.	12 Trained panellists were used for a descriptive taste test	The positive control scored highest for lean color and juiciness, and lowest for fat color and off-odor intensity, indicating beneficial effects on dry-cured meat quality. The control group and 0.5% grape pomace (GP) treatment had similar sensory scores. Only the 3% GP inclusion negatively affected texture, leading to defective texture ratings.

Table S1: Summary of Studies on the Use of Fruit I	Pomace (Apple and Grape) in Meat Pro	ducts: By-products, Treatments, Ar	nalvses, and Sensory Outcomes
			<i>J</i>

Choi, 2016	Apple pomace fiber	Apple pomace from juicing was washed, air-dried, treated with Termamyl to remove starch, ethanol-washed, dried again, cooled, and vacuum-sealed.	Chicken breast meat- CBM, Pork back fat- PBF, Ice water- IW, Apple pomace fiber- APF. CONTROL = 50%- CBM, 30%-PBF, 20%- IW. T1 = 50%- CBM, 25%- PBF,25%- IW. T2 = 50%- CBM, 25%- PBF, 24% -IW, 1% APF. T3= 50%- CBM, 25%- PBF, 23% -IW, 2% APF T4 = 50%- CBM, 20%- PBF, 30% -IW T5 = 50%- CBM, 20%- PBF, 29% -IW, APF- 1% T6= 50%- CBM, 20%- PBF, 28% -IW, 2% APF.	Proximate analysis Caloric content Cooking loss pH color measurements TPA emulsion stability	Treated sausages had higher moisture content than controls, while protein content showed no significant changes. Fat content was highest in control sausages. Fiber inclusion reduced caloric content and cooking loss. Apple pomace fiber increased yellowness, decreased redness, and raised hardness, cohesiveness, and gumminess.	N/A	N/A
Chilli, 2019	Grape pomace flour	Frozen grape juice leftovers (skin and seeds) were air- dried at 40 °C for 72 hours, milled to 0.25 mm, irradiated, then frozen and stored in foil-wrapped amber jars to prevent light degradation.	There were 4 groups made out of the base burger recipe Control had nothing added BHT group had synthetic antioxidants added GPF 1% Had 1% added GPF 2% had 2% added	Proximate analysis instrumental color Lipid oxidation Microbiological analysis	No significant differences in protein between controls and treatments. Dietary fiber increased with higher GP concentrations. GP darkened samples progressively and delayed TBARS increase during frozen storage, matching the effectiveness of synthetic antioxidants.	110 consumers that were untrained. 10g of sample from each group based on a 9 point hedonic scale for color, odor taste texture appearance and overall quality.	The treated burgers showed significantly lower scores for liking, appearance, color, and overall quality. However, the grape pomace (GP) flour samples effectively masked the fish flavor. No significant differences were observed in odor scores between treatments.

		1	1	Ι	1	1	1
Egea, 2020	grape skin (Inulin and beta glucan)	No information provided on the source or preparation of the grape extract.	Three groups were created for two different types of sausage Group 1 had a base recipe of 25% fat for frankfurter and 30% fat for the spainish sausage with the rest made up by lean ham Group 2 for the frankfurter fat was reduced to 12.5% and 6% inulin, with 0.5% beta glucan, The spainish sausage was 20% fat with 3% inulin, 0.5% Beta glucan. Group 3 was for the frankfurter 3% inulin, 1% beta glucan, 0.5% GPE. The spainish sausage was 6% inulin, 1% Beta glucan and 0.5% GPE.	Instrumental color covered TPA	Both sausage types showed reduced lightness with fiber addition, likely due to fat reduction. No significant differences were found between control and fiber-added frankfurters. Spanish sausages showed significant changes in chewiness, extensibility, and cohesiveness, with decreases in hardness and gumminess after grape pomace addition. Differences may be due to smaller meat batter size in frankfurters.	8 assessors were trained on how to analyse meat. A quatitative descriptive analysis was used as a scale. Each participant tasted three samples per treatment and replicate. Areas assessed were the color, intensity of different odors, taste, flavors. overall rating was also assessed.	Color changes were noted by assessors only in sausages with added grape extract. Odor scores decreased as fiber content increased. Texture remained largely unchanged, except in frankfurters with grape pomace, which showed increased hardness and chewiness. The treatment groups also reduced boar taint in both odor and flavor.
Garrido, 2011	red grape pomace	Industrial grape pomace was extracted using two methods: (1) high–low instantaneous pressure followed by methanolic extraction, and (2) methanolic extraction only.	120 burgers were split into three groups. Control had no extracts, and the other two groups had the two different type extracts GP1 nad GP2 added as 0.06g/100g of meat.	Raw samples had pH, color, microbiological analysis, TBARS test,	No significant pH differences between storage times or treatments. Spoilage was unaffected by either grape pomace extract. GP1 (pressure- extracted) most effectively reduced lipid oxidation after 3 days. GP1 patties were darker than controls, likely due to natural colorants; redness decreased over time in all	N/A	N/A

					groups. GP1 burgers showed lower yellowness scores.		
Grispoldi, 2022	Apple pomace	Apple pomace was prepared using a domestic juicer, dried at 55 °C until constant weight, milled with a blender, and stored in amber glass at room temperature.	There were three groups that were used with a control as a standard and then there was 7% added apple pomace group and a 14% addition group. Sampling was done at day 0 of ripening and days, 5,11,19, 25	There was pH, water activity and hardness analysed Color analysed using an app and CIELAB. Microbiological analysis of 8 bacterial populations.	pH decreased over 5 days of ripening; apple pomace (AP) had no significant effect. Water activity slightly decreased with higher AP levels after day 5. Hardness was not correlated with AP, but 14% AP salami was harder than 7% and control. Redness was higher in controls except at T19; redness was similar at T25 between control and 7% AP. Fat, energy, and protein decreased with AP, while ash, carbohydrates, moisture, total polyphenols, and antioxidant capacity (ABTS, DPPH, FRAP) increased. Fermentation-related bacteria were higher with AP; spoilage bacteria levels remained comparable, indicating similar safety and hygiene.	Panel of 16 trained assessors with a seven point scale for characteristics that were measured.	The control salami scored highest for color intensity, uniformity, and fat-lean distribution, followed by 7% and then 14% apple pomace (AP) inclusion. Odor and moldy odor scores were similar across all groups. Flavor intensity, salty, acidic, moldy, and spicy flavors showed no significant differences, but the AP salamis had higher rancid and bitter flavor scores. Texture-wise, the 14% AP salami had lower juiciness and chewiness but higher hardness. Overall acceptability ranked highest for the control, then 7% AP, and lowest for 14% AP salami.

	1	1	1	1	1	I	
Kumar, 2024	Apple pomace powder	No source information provided. Apple pomace was dried at 60 °C and stored at –18 °C.	The control had a mixture of multiple ingredients and then groups T4, T5, T6 had 2%, 4% and 6% inclusion of the apple pomace powder respectively.	Ph, emulsion activity, water holding capacity as well as cooking yield. Proximate composition Salt soluble proteins TPC Color analysis Texture analysis	pH decreased with apple pomace powder (APP) addition. Water holding capacity and emulsion stability improved significantly in APP treatments, reflected in better cooking yields. Moisture content was lower than control; protein and fat remained unchanged. Ash content was higher in the 6% APP batch (T6), and crude fiber improved significantly. Salt- soluble proteins were lower in T5 and T6. Total phenolic content (TPC) increased with APP, highest in T6. Lightness decreased, redness and yellowness (b) increased in T6. Hardness rose with higher APP (T5 and T6), while springiness and cohesiveness decreased in T6 compared to control.	Experienced assessors used 8 points scales on basic sensory attributes	All apple pomace (AP) meat inclusion batches scored above 7 out of 8 for flavor. However, the 6% AP meat emulsion had significantly lower texture scores and overall acceptability compared to the control batches.

	1	1		1		1	1
Palanisamy,	Apple	No details	There were three	Water holding	Phosphorus increase raised ash	N/A	N/A
2022	pomace	provided on the	different meat blocks	capacity and	content as expected. Fiber		
		source or form of	and 6 treatment runs per	cook loss	content increased with apple		
		apple pomace	block so 18 treatment	lipid oxidation	pomace (AP) addition. Water		
		used.	runs all together.	Texture analysis	holding capacity (WHC) was		
			The most inclusion was	color	highest with STPP above 0.5%,		
			1% and this was split	measurement	indicating good interaction with		
			between one two or	Nuclear magnetic	fiber. Lower STPP levels led to		
			three inclusions of either	resonance	higher cooking loss. AP		
			Sodium Triphosphate,	compositional	addition increased water bound		
			apple pomace or coffee	analysis	to proteins. AP combined with		
			silver skin.		STPP raised lightness scores		
					and lowered redness, with		
					minimal differences between		
					trials. AP affected hardness,		
					chewiness, gumminess, and		
					springiness compared to the		
					STPP control. Lipid oxidation		
					slightly increased with AP		
					addition.		
Pollini,	Apple	Apple pomace was	The groups of burgers	pH and water	No significant pH differences	Triangle test	The triangle test indicated
2022	pomace	prepared by the	had 0%, 4%, and 8%	activity	between storage and treatment	was completed	perceptible differences in texture
		authors as fresh	apple pomace included.	color analysis	groups. Water activity	with 20	and flavor among all groups. Color
		and freeze-dried		microbiological	decreased over time in AP-	previously	uniformity was better in the
		forms, milled to a		analysis	fortified burgers. After 96	trained	control, while color intensity was
		fine powder.			hours, AP-fortified burgers	assessors. The	highest in the 8% AP burger. The
		Ultrasound-			showed lower lightness (L) and	same 20	8% AP burger scored higher for
		assisted extraction			redness scores compared to	assessors were	acidic and sweet flavors but lower
		was applied, but			controls. Lactic acid bacteria	asked about	for elasticity and cohesiveness.
		only freeze-dried			counts were higher in AP	sensory	Additionally, fattiness and
		pomace was used			burgers, while coliform levels	attributes of the	juiciness were reduced in the 8%
		to fortify the beef			were lower.	three burgers.	inclusion, which also had lower
		burgers.					overall acceptability compared to
							the other two groups.
L	1	L	1	1	1	1	Storps.

Riazi, 2016	Crono	Grape juice by-	Control with beef	aa1a#	Increased around marries	2 sessions of 20	In this account and a second
Riazi, 2010	Grape			color	Increased grape pomace		In this case, grape pomace
	Pomace	products (skin,	sausage formulation and	measurements	addition darkened the sausages.	trained assessors	enhanced the flavor profile and
		seeds, stems) were	sodium nitrate 120mg/kg	lipid oxidation	T2 and T4, with less sodium	with 5 point	improved the texture of the beef
		dried at 55 °C for	T1 had 60mg/kg of	antioxidant	nitrate, showed lower color	hedonic scales	sausages. However, overall
		12 hours, milled	sodium nitrate and then	activity	intensity. The 2% grape pomace	with properties	acceptability was negatively
		into a powder,	1% grape pomace	Total phenol	samples had significantly	assessed by	affected when grape pomace
		irradiated, and	T2 had 30mg/kg sodium	content	different overall color	appearance,	exceeded 1%.
		stored in bags at	nitrate and then 1%	microbiological	compared to 1% samples. No	color odor taste,	
		4 °C.	grape pomace	analysis	significant differences in	texture and	
			T3 had 60mg/kg sodium	5	TBARS lipid oxidation between	overall	
			nitrate and 2% grape		batches, though grape pomace	acceptability	
			pomace		reduced oxidation during		
			T4 had 30mg/kg sodium		storage. Total phenolic content		
			nitrate and 2% grape		(TPC) showed no significant		
			pomace		differences with pomace		
			-		addition, but blanks and		
					controls differed positively.		
					Antioxidant activity was		
					highest in T3 and T4 during the		
					first 10 days, declining over the		
					next 20 days. Microbial growth		
					was reduced in higher sodium		
					nitrate groups; grape pomace		
					effects were similar to controls		
					and lower than blanks.		

-			1				
Solari-	Grape	Grape pomace	The groups were split as	Polyphenol	The 3% grape pomace inclusion	10 Trained	No changes in color or off-flavors
Godino,	pomace	from the Pisco	0, 2, 3, and 4% w/w.	determination	had the highest polyphenol	panellists	were detected in any of the
2017		process was dried		Antioxidant	levels among groups, with	assessed the	fortified samples. The control had
		at 18–30 °C for 36		capacity	significant increases in FRAP	general	the lowest overall acceptability
		hours, milled, and		measurements	and ABTS antioxidant	acceptance of	score compared to the fortified
		treated with		WHC	measures compared to control.	the samples. The	groups.
		ethanol and water		Cooking loss	Water holding capacity	anchovy mince	
		to remove sugars.		shear strength	improved with higher dietary	was cut into	
		The residue was		TPA	fiber in raw samples, and fiber-	1cm thick pieces	
		then cool-dried		Color	added samples showed reduced	and grilled. The	
		again.		Bioavailability	cooking loss. Shear strength	characteristics	
					increased with grape pomace in	were measured	
					both raw and cooked samples.	on a 10 point	
					Texture Profile Analysis (TPA)	hedonic scale.	
					indicated that grape pomace		
					above 2% significantly affected		
					hardness, springiness, and		
					chewiness in raw and cooked		
					samples. Lightness decreased		
					significantly at 3% and 4%		
					inclusion, while redness and		
					yellowness remained		
					unchanged. In vitro tests		
					showed increased		
					bioavailability with higher		
					grape pomace addition.		

T 1 1 1	T T1.		—	MARC		37/4	
Thankgavel	Ultrasou	Apple pomace	The main comparison is	WHC	No significant differences in	N/A	N/A
u, 2022	nd-	from a Spanish	between US and non US	Cooking loss	proximate composition between		
	treated	company was	treated samples.	Emulsion	treated and untreated samples.		
	Apple	oven-dried to	Formulation 1: 0.2%	stability	Emulsion stability, measured by		
	pomace	constant weight,	STPP+ 0.22% AP +	Proximate	total expressible fluid (TEF),		
		powdered,	0.58% CSS	content	improved with ultrasound (US)		
		rehydrated, treated	Formulation 2: 0.2%	lipid oxidation	processing; formulations 1 and		
		with ultrasound,	STPP + 0.00% AP +	color	3 showed reduced TEF,		
		freeze-dried, and	0.80% CSS	textural	indicating increased water and		
		stored at 4 °C.	Formulation 3: 0.06%	parameters	oil absorption capacity. Water		
			STPP + 0.94% AP +		holding capacity (WHC)		
			0.0% CSS		increased when apple pomace		
					(AP) was removed from US-		
					treated formulations and		
					decreased when AP was		
					reintroduced in formulation 3.		
					Water mobility improved in		
					formulations 1 and 2 despite		
					reduced phosphate levels. WHC		
					was lowest in non-US-treated		
					formulations with the highest		
					AP content. Cook loss was		
					lower in US-treated sausages.		
					US treatment minimized color		
					changes; formulation 2 without		
					AP had increased redness. No		
					significant texture differences		
					were observed, although AP		
					and CSS reduced hardness and		
					chewiness. Lipid oxidation		
					remained similar across		
					formulations until day 9, when		
					formulation 3 showed higher		
					TBARS in US-treated samples.		
L	1	1	1	1	A care a samples.	1	1

	1	1			1	1	
Tournour, 2017	Grape extract	Skin and seeds were oven-dried, ground, and extracted.	There were 10 different formulations designed. 0 g/100 g, 120mg/kg 15 g/100 g, 60mg/kg 4 g/100 g, 162mg/kg 26 g/100 g, 78mg/kg 15 g/100 g, 120 mg/kg 26 g/100 g, 120 mg/kg 30 g/100 g, 120 mg/kg 15 g/100 g, 180 mg/kg 15 g/100 g, 120 mg/kg	Color	Color was influenced by the interaction between mechanically deboned meat (MDM) and grape pomace extract (GPE); whiteness decreased as both increased. Redness was unaffected by GPE at low MDM levels. The b* (yellowness) value decreased with grape pomace addition.	79 untrained assessors were used. Acceptance was assessed on a nine point scale.	The formulation with 15g MDM and 60mg AP received the highest ratings, representing the lowest amount of grape pomace extract (GPE) among the groups. Higher inclusions of MDM and GPE resulted in nuggets that were described as dark and off-colored.
Younis, 2018	Apple pomace powder	The only detail provided is that the apple pomace was ground.	Meat was replaced in 0,2,,4,6,8%.	Physiochemical Textural analysis color analysis	Fat content increased with apple pomace (AP) incorporation, while pH decreased as AP levels rose. Moisture and fiber content significantly increased in AP- enriched patties. Water activity and water holding capacity also improved, alongside enhanced cooking yield and emulsion stability. Textural properties— firmness, toughness, hardness, gumminess, and chewiness— increased significantly with higher AP inclusion. Color- wise, AP reduced lightness and yellowness but increased redness in the patties.	Conducted with 5 trained panellists with a 9 point hedonic scale.	An 8% incorporation level of apple pomace negatively affected the color of the patties. Significant differences in flavor acceptance were observed between the 6% and 8% apple pomace patties compared to the control. The sweetness imparted by the apple pomace was disliked by the panelists. Juiciness scores increased with higher apple pomace inclusion. Overall acceptance was highest for the 6% apple pomace patties, with acceptance declining beyond this level.