1 Vanillin reinforced cationic starch/poly(vinyl alcohol) based antimicrobial

2 and antioxidant bioactive films: Sustainable food packaging materials

- 3 Lingaraj Kariyappa Kurabetta^a, Saraswati P. Masti^{a*}, Manjushree Nagaraj Gunaki^a,
- Ajitkumar Appayya Hunashyal^a, Ravindra B. Chougale^b, Nagarjuna Prakash Dalbanjan^c,
 Praveen Kumar S. K.^c
- 6 ^aDepartment of Chemistry, Karnatak Science College, Dharwad-580 001, India.
- 7 ^bP. G. Department of Studies in Chemistry, Karnatak University, Dharwad-580 003, India.
- 8 ^cDepartment of Biochemistry, Karnatak University, Dharwad-580 003, India.
- 9 *Corresponding author Email address: <u>dr.saraswatimasti@yahoo.com</u> (Saraswati P. Masti)

10

11

12 Number of Pages: 04

13

14 S.1. Characterization methods of control CPVN and bioactive films

15 S.1.1. Optical properties

16 The optical characteristics of the control CPVN and bioactive film samples were examined 17 using a UV-vis spectrophotometer (PerkinElmer LAMBDA 365). In short, $1 \times 4 \text{ mm}^2$ films were 18 exposed to UV-vis radiations (200 to 800 nm), and the obtained findings were represented as 19 a result of % transmittance. The transparency at 600nm (T₆₀₀) and opacity were calculated by 20 using the following equations ^{1,2}

21
21
22

$$T_{600} = \frac{-\log \% T}{b}$$
(1)
 $Opacity = \frac{A_{600}}{b}$ (2)

23 Where %T is the percentage of transmittance, A_{600} is the absorbance at 600 nm and b is the 24 thickness of pristine CPPA and active film samples.

25 S.1.2. Thickness and mechanical parameters

The thickness of prepared films was measured by using a digital micrometre (Mitutoyo, Japan) with a precision of 0.001 mm. In addition, the mechanical properties of control CPVN and bioactive films were analysed by the use of a Universal Testing Machine (DAK System) as per ASTM D 882-91 standard ³. Briefly, each film sample of size 2.5×10 cm² was placed between the gauges of UTM with an initial grip distance of 50 mm and stretched at a crosshead speed of 1 mm/min. The mechanical parameters such as tensile strength (TS), elastic modulus (EM) and elongation at break (EB), were evaluated by preinstalled software.

33 S.1.3. Spectroscopic analysis

The intermolecular interactions between CT/PVA and VN were analysed by ATR-FTIR spectroscopy (PerkinElmer, version 10.5.4, USA) within a range of 4000-400 cm⁻¹ with a spectral resolution of 4 cm⁻¹. Similarly, the crystalline nature of prepared active films was determined by using X-ray Diffraction studies. In short, 2×2 cm² CPVN films were subjected to X-ray Diffractometer and recorded the spectra between $2\theta = 5^{\circ}$ to 80° . The % crystallinity was calculated by using the following equation ⁴,

Crystallinity (%) =
$$\frac{A_C}{A_T} \times 100$$
(3)

40

41 Where A_C and A_T are the area within crystalline peaks and the total area of all peaks, 42 respectively.

43 S.1.4. Surface morphology

44 The surface morphology of control CPVN and bioactive films was studied by the use 45 of scanning electron microscope (SEM) (JSM-IT500) with an accelerating voltage of 10kV 46 and atomic force microscopy (AFM) (Nanosurf Easyscan 2, Switzerland) with an aluminium 47 coated cantilever, at ambient temperature.

48 S.1.5. Water contact angle (WCA) measurements

49 WCA (degree) of control CPVN and active films is measured with WCA analyser (DMs-401

50 Kyowa Interface Science Co. Ltd) via the sessile drop method.

51 S.1.6. Moisture adsorption capacity (MAC)

52 The MAC of control CPVN and bioactive films were evaluated as per ASTM standards D644– 53 94. In concisely, the film samples $(2 \times 2 \text{ cm}^2)$ were dried at $90\pm 2 \,^{0}$ C for 5h and weight was noted 54 (W_i). To determine MAC, the dried samples were kept outside for 24h and the final weight was

55 recorded as W_f .

$$P_{MAC} = \frac{W_i - W_f}{W_i} \times 100$$
(4)

56

57 where
$$W_i$$
 is the initial weight and W_f is the final weight of film samples.

58 S.1.7. Water solubility (WS)

The WS of control CPVN and bioactive films were evaluated as per ASTM standards D570-60 98 ⁵. WS is determined by transferring pre weighed control CPVN and active film samples 61 $(2\times 2 \text{ cm}^2)$ into beakers containing Millipore water (20cc) for 24 h at room temperature. After 62 24 h, the film samples were taken out and dried completely, and the final weight (W_f) was 63 noted.

64
$$\%WS = \frac{W_i - W_f}{W_i} \times 100 \quad \dots \dots (5)$$

65 where W_i is the initial weight and W_f is the final weight of film samples.

66 S.1.8. Water vapour barrier properties

67 The water vapour barrier properties were measured in terms of water vapour transmission rate

- 68 (WVTR) as per previous reports ⁶. In concise, 4×4 cm² film samples were sealed around a vial
- 69 containing 20cc milli-Q water and initial weight (Wi) is recorded. The vial is then kept in a hot

70 air oven at 40°C for 24 h, and the final weight (W_f) is recorded. WVTR of film samples was 71 determined by using the following equation,

72
$$WVTR(\%) = \frac{W_i - W_f}{A \times T} \dots \dots (6)$$

73 where T is the time period (24 h) and A is area of the mouth of the vial

74 S.1.9. Soil burial test (SBT)

The biodegradability of control CPVN and bioactive films was studied using a soil burial approach ⁷. The film samples ($2 \times 2 \text{ cm}^2$) were dried and initial weight was recorded (W_i) before being buried 50 mm beneath the surface of soil. The soil was kept moistened by sprinkling water every day. After 30 days, the film samples were taken out from the soil, washed with deionized water, dried in an oven at 90±2 °C, and the final weight (W_f) was recorded. The % weight loss was calculated using the equation below,

% Weight loss =
$$\frac{W_i - W_f}{W_i} \times 100$$
(7)

81

82 Where W_i and W_f are the initial and final weights of the film sample.

83 S.1.10. Antimicrobial activity

The antimicrobial effectiveness of control CPVN and bioactive films was tested against foodborne microbes like *Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans).* The 0.1mL film solutions (1mg/mL) was dispersed into agar medium plates containing microorganism cultures. Finally the plates were incubated at 37 °C for 24h. The inhibitory zone (mm) values were measured by using ImageJ software ⁸.

90 S.1.11. Antioxidant assay

The antioxidant potentiality of control CPVN and bioactive films was evaluated by DPPH (2,2diphenyl-1-picrylhydrazyl) radical scavenging method. In brief, all the film solutions were prepared in 1.5 mL ethanolic extract and DPPH in 0.5mL ethanol (0.5mM) were mixed thoroughly and incubated for 30 min. Further, the absorbance was measured at 517nm by using UV–Vis spectrophotometer (LMSP UV-1200, Labman). Further, % of free radical scavenging activity of composite films was calculated by using the following formula ⁹,

% Free radical scavenging activity =
$$\frac{AC - AS}{AC} \times 100$$
(8)

98 where A_c and A_s are the absorbances of the control and sample respectively.

99 S.1.12. Statistical analysis

- 100 OriginPro 9.0 software was implemented to perform statistical analysis through ANOVA One
- 101 Way Analysis of Variance. All the experiments were carried out in triplicates. The results were 102 expressed as mean \pm SD.

103

104 **References**

- 105 1 C.-K. Chen and S.-C. Huang, *Mol Pharm*, 2016, **13**, 4152–4167.
- S. S. Narasagoudr, V. G. Hegde, V. N. Vanjeri, R. B. Chougale and S. P. Masti,
 Carbohydr Polym, DOI:10.1016/j.carbpol.2020.116049.
- L. K. Kurabetta, S. P. Masti, M. P. Eelager, M. N. Gunaki, S. Madihalli, A. A.
 Hunashyal, R. B. Chougale, P. Kumar S.K. and A. J. Kadapure, *Int J Biol Macromol*,
 2023, 253, 127552.
- M. N. Gunaki, S. P. Masti, O. J. D'souza, M. P. Eelager, L. K. Kurabetta, R. B.
 Chougale, A. J. Kadapure and S. K. Praveen Kumar, *Food Hydrocoll*, 2024, 152, 109937.
- L. K. Kurabetta, S. P. Masti, M. N. Gunaki, A. A. Hunashyal, M. P. Eelager, R. B.
 Chougale, N. P. Dalbanjan and S. K. Praveen Kumar, *Int J Biol Macromol*, 2024, 134191.
- T. Gasti, S. Dixit, V. D. Hiremani, R. B. Chougale, S. P. Masti, S. K. Vootla and B. S.
 Mudigoudra, *Carbohydr Polym*, DOI:10.1016/j.carbpol.2021.118866.
- V. D. Hiremani, T. Gasti, S. P. Masti, R. B. Malabadi and R. B. Chougale, *Iranian Polymer Journal (English Edition)*, 2022, **31**, 503–518.
- M. P. Eelager, S. P. Masti, R. B. Chougale, N. P. Dalbanjan and S. K. Praveen Kumar, *Int J Biol Macromol*, 2024, 269, 132270.
- M. P. Eelager, S. P. Masti, R. B. Chougale, V. D. Hiremani, S. S. Narasgoudar, N. P.
 Dalbanjan and P. K. Praveen, *Int J Biol Macromol*,
 DOI:10.1016/j.ijbiomac.2023.123499.

126

97