Supporting Information

biotransformation of microalgae via probiotic 2 Sustainable 3 fermentation for enhanced functional, nutritional, and sensory 4 properties Po-Hsiang Wang,^{†,*}, Zann Yi Qi Tan,[†], Choy Eng Nge, Nurhidayah Basri, Lina Xian Yu 7 Lee, Aaron Thong, Mario Wibowo, Elaine Jinfeng Chin, Sharon Crasta, Geraldine Chan, Yoganathan Kanagasundaram, and Siew Bee Ng* Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore. *Authors to whom correspondence should be addressed. 14 Po-Hsiang Wang, Email: tommy wang@a-star.edu.sg 15 Siew Bee Ng, Email: ngsb@a-star.edu.sg 16 † These authors contributed equally to this work.

36 Supporting Methods

37 Supporting Data

38 Supporting Tables

- 39 Table S1. Enzymatic activity profiles of 22 selected bacterial strains.
- 40 Table S2. Dry biomass yield (%w/v) and percentage change (%) of unfermented and fermented
- 41 microalgae biomass over 72 hours.
- 42 Table S3. List of aromatic compounds detected in unfermented microalgae and L. plantarum-
- 43 fermented microalgae over the course of fermentation.
- 44 Table S4. ASTREE E-tongue sensor summary with food applications.
- 45 Table S5. Metabolite profile of umami-related compounds detected during L. plantarum-mediated
- 46 biotransformation of microalgae.
- 47 Table S6. Metabolite profile of amino acids and their bioconversion products during L. plantarum-
- 48 mediated biotransformation of microalgae.
- 49 Table S7. Demographic and lifestyle information of the sniff test panelists (n = 10).
- 50 Table S8. Two-way ANOVA statistics for grassy odour intensity.
- 51 Table S9. Statistical summary of pairwise comparison for grassy aroma intensity between
- 52 unfermented and in *L. plantarum*-fermented microalgae.
- 53 Table S10. Two-way ANOVA statistics for sour odour intensity.
- 54 Table S11. Statistical summary of pairwise comparison for sour odour intensity between
- 55 unfermented and in *L. plantarum*-fermented microalgae.
- 56 Table S12. Two-way ANOVA statistics for fishy odour intensity.
- 57 Table S13. Statistical summary of pairwise comparison for fishy odour intensity between
- 58 unfermented and in *L. plantarum*-fermented microalgae.
- 59 Table S14. Two-way ANOVA statistics for earthy odour intensity.
- 60 Table S15. Statistical summary of pairwise comparison for earthy odour intensity between
- 61 unfermented and in L. plantarum-fermented microalgae.

53 Supporting Figures

- 64 Figure S1. LC-MS/MS fragmentation spectra at collision-induced dissociation (CID)10V of
- 65 aromatic lactic acid derivatives in *L. plantarum*-fermented microalgae.

- 66 Figure S2. Extracted ion chromatograms (EICs) from LC-MS showing the bioconversion of
- 67 precursor amino acids during L. plantarum-mediated fermentation of microalgae (MA) over
- 68 96 hours.
- 69 Figure S3. Olfactory evaluation of microalgae fermented with L. plantarum.

71 Appendix

72 Supporting Methods

- 73 Unless specified otherwise, chemicals and reagents are purchased from Sigma-Aldrich (St.
- 74 Louis, MO, USA).

75

6 Bacterial strains cultivation

- 77 Non-lactic acid bacteria (non-LAB) strains—including Bacillus spp., Cupriavidus necator,
- 78 Microbacterium imperiale, Weizmannia coagulans, and Priestia megaterium—were cultured
- 79 in Luria-Bertani (LB) broth at 37 °C with agitation at 200 rpm until mid-logarithmic phase
- 80 (OD₆₀₀ \approx 0.4). Lactic acid bacteria (LAB) strains were cultivated in De Man, Rogosa, and
- 81 Sharpe (MRS) broth under identical conditions (37 °C, 200 rpm) until OD₆₀₀ \approx 0.4.
- 82 Streptococcus thermophilus was cultured separately in M17 broth (DifcoTM, Becton, Dickinson
- 83 and Company, Sparks, MD, USA) at 42 °C, 200 rpm till a similar growth phase.

84

85 Protease assay

- 86 The proteolytic activity of the bacterial strains was qualitatively evaluated using the skim milk
- 87 agar assay method. Skim milk agar was prepared with the following composition: 28 g/L skim
- 88 milk powder, 5 g/L casein, 2.5 g/L yeast extract, 1 g/L dextrose, and 15 g/L agar in 1 L of
- 89 distilled water, adjusted to a final pH of 7.0 ± 0.2 at 25 °C. 10 μ L aliquot of the bacteria culture

90 supernatant was aseptically spotted onto the surface of the agar and incubated at 37 °C.

91 Proteolytic activity, as indicated by a zone of clearance around the inoculation site, was

92 monitored across 96 hours.

93

4 Lipase assay

The lipolytic activity of the bacterial strains was qualitatively assessed using the tributyrin agar

96 assay method. Tributyrin agar was prepared by dissolving 20 g of tributyrin agar powder in 1

97 L of distilled water, followed by adding 10 mL of glyceryl tributyrate upon cooling to 80 °C

98 after autoclaving. 10 μL of the bacterial culture supernatant was spotted on the tributyrin agar

99 and incubated at 37 °C. Lipolytic activity, as indicated by a zone of clearance around the

100 inoculation site, was monitored across 96 hours.

101

102 β-glucosidase assay

 β -glucosidase activity of the bacterial strains was assessed by quantifying the hydrolysis of p-

nitrophenyl-β-D-glucopyranoside (pNPG). Bacterial culture supernatants were obtained by

105 centrifugation at $4,000 \times g$ for 20 minutes at 4 °C. For each sample, 0.5 mL of the culture

supernatant was mixed with 2 mL of 1 mM pNPG solution and incubated at 45 °C for 30

minutes. The reaction was terminated by the addition of 2.5 mL of 1 M sodium carbonate. The

108 release of p-nitrophenol was quantified by measuring absorbance at 400 nm using a

109 spectrophotometer. β-glucosidase activity was calculated based on a standard calibration curve

110 constructed using a commercial β-glucosidase enzyme, and all reactions were performed in

111 triplicates.

112 Cellulase assay

113 Cellulolytic activity of the bacterial strains was qualitatively determined using the
114 carboxymethyl cellulose (CMC) agar assay method. 0.2% CMC agar was prepared based on
115 the following composition: CMC 2 g, sodium nitrate (NaNO₃) 20 mL, dipotassium hydrogen
116 phosphate (K₂HPO₄) 1 g, potassium chloride (KCl) 1 g, magnesium sulfate (MgSO₄) 0.5 g,
117 yeast extract 0.5 g, agar 15 g, 1 L distilled water. 10 μL of the culture supernatant was spotted
118 on the 0.2% CMC agar and incubated at 37 °C. Cellulolytic activity, as indicated by a zone of
119 clearance around the inoculation site, was monitored across 96 hours.

120

21 Submerged fermentation of microalgae

Lyophilized C. vulgaris powder was reconstituted in 50 mL of sterile deionized water to a final 122 123 solids content of 5 % (w/v). The suspension was autoclaved at 121 °C for 15 min, cooled to room temperature, and inoculated with Lactiplantibacillus plantarum at an initial density of 124 106 CFU/g. Fermentation was carried out in 250 mL baffled Erlenmeyer flasks containing 50 125 126 mL working volume, leaving adequate headspace for gas exchange. Submerged fermentation was conducted at 37 °C in a thermostatically controlled shaker incubator at 200 rpm for 96 h 128 under dark, aerobic conditions. No external aeration or gas flushing was applied. As the microalgae biomass was non-viable, illumination was omitted, and no photosynthetic activity 129 was expected. Uninoculated C. vulgaris biomass flasks served as controls and were processed 130 identically. Samples were collected at 0, 24, 48, 72 h and 96 h for subsequent biochemical and 131 sensory analyses. Harvested samples were immediately frozen at -80 °C and freeze-dried for 7 132 days. The dried fermentates were then ground into a fine powder using a sterile blender and 133 stored at -20 °C until further analysis. 134

135 Biomass yield and percentage change over time

- To determine the percentage dry yield of the biomass (% weight/volume), 0.5 mL of each sample of unfermented and fermented microalgae suspensions were pipetted into pre-weighed 5 mL tubes for each sample. The samples were frozen overnight in -80 °C freezer, followed by freeze-drying until fully dried. After drying, the tubes were weighed again to obtain the weight of the dry biomass. Data were analysed using GraphPad Prism version 8.0, and the percentage dry yield of the biomass (% weight/volume) and the percentage change in biomass (%) were calculated using the following formulae:
- 143 Dry Yield (%w/v) = (Weight of dry biomass (g) / Volume of wet sample (mL)) x 100
- 144 Percentage Change in Biomass (%) = [(Fermented biomass Unfermented biomass) /
- 145 (Unfermented biomass)] x 100

146

147 In-house olfactory evaluations

148 An in-house, untrained olfactory panel (n = 10) was recruited to perform time-course olfactory evaluations on microalgae fermentates inoculated with selected bacterial strains. Panelists 149 assessed samples at various fermentation timepoints under blinded conditions, with all samples 150 coded to eliminate bias. Aroma profiling focused on four key sensory attributes: grassy, sour, 151 fishy, and earthy. Perceived odour intensity was rated using a structured 3-point scale, where 152 1 = very weak, 2 = moderate, and 3 = very strong. All evaluations were conducted 153 anonymously. Panellists also completed a demographic and lifestyle questionnaire, which 154 captured data on age, gender, ethnicity, dietary habits, smoking status, and self-rated smell 155 sensitivity (on a 5-point scale, where 1 = very poor and 5 = very strong) (Table S7). Prior to

participation, all individuals were briefed on the study objectives and procedures and providedwritten informed consent.

159

160 Electronic tongue (E-tongue) analysis

The taste and flavour evolution of the fermented microalgae samples was analysed using the 161 ASTREE E-tongue system (Alpha MOS, Toulouse, France), a sensor-based technology 162 163 designed to mimic human taste perception. The system employs seven potentiometric sensors (AHS, ANS, CPS, CTS, NMS, PKS, SCS) alongside an Ag/AgCl reference electrode, enabling 164 the detection of key taste modalities such as bitterness, sweetness, umami, sourness, and 165 saltiness, thereby generating a comprehensive taste fingerprint of each sample. E-tongue 166 analysis was conducted following this protocol¹. Briefly, 300 mg of freeze-dried fermentate 167 was weighed into a 50 mL Falcon tube and reconstituted with 30 mL of sterile water. The 168 mixture was vortexed and shaken on a rotary shaker for 30 minutes at room temperature, 169 followed by centrifugation at 4000 × g for 30 minutes to obtain the supernatant. Between each sample run, the sensors and reference electrode were rinsed with water for 10 seconds to 171 172 prevent cross-sample interference. Each sample was analysed for 120 seconds, with measurements repeated nine times to ensure system stability. The sensor signal at the 120th 173 174 second was extracted from the last six measurements and averaged to generate the final raw data. Principal component analysis (PCA) was conducted using R software, and biplots were 175 176 generated to visualize sample clustering and taste profile evolution during fermentation.

177

178 Headspace Solid Phase Micro Extraction (HS-SPME) GC-MS Analysis

179 Headspace solid-phase microextraction (HS-SPME) was conducted using a 23-gauge, 50/30 μm DVB/CAR/PDMS fibre (Supelco, USA). A volume of 500 μL of the wet sample was 180 181 transferred into a 20 mL headspace vial and spiked with 100 µL of an internal standard solution (2,3-dimethoxytoluene at 10 ppm). The sample was incubated at 80 °C for 10 minutes, after 182 183 which the SPME fibre was exposed to the headspace for 30 minutes while agitated at 250 rpm. Volatile compounds were then thermally desorbed from the fibre in the gas chromatograph 184 (GC) injector at 250 °C for 600 seconds. Subsequent GC-MS analysis was performed using an 185 Agilent 7890B GC system coupled with a 5977B mass spectrometer and equipped with a 186 multimode inlet (Agilent Technologies, USA). Separation was achieved on a polar J&W DB-187 Wax Ultra Inert capillary column (30 m × 0.25 mm I.D., 0.25 µm film thickness; Agilent 188 Technologies). The injection was operated in split/splitless mode, with split ratios of 1:10. The 189 oven temperature was initially set to 35 °C, then ramped at 100 °C/min to 60 °C, followed by 190 8 °C/min to 190 °C, and finally increased at 20 °C/min to 250 °C, where it was held for 6.5 191 192 minutes. Helium was used as the carrier gas at a constant flow of 1.0 mL/min. The mass spectrometer operated in electron ionization mode at 70 eV, with source and transfer line 193 temperatures of 230 °C and 250 °C, respectively, and data was collected in full scan mode over 194 195 the m/z range 35–450.

196

197 Untargeted metabolite analysis by LC-MS

Freeze-dried biomass (100 mg) was extracted with 20 mL of 50% aqueous MeOH. The mixture was vortexed briefly and sonicated for 10 min at room temperature. After sonication, the samples were centrifuged at 14,000 rpm for 5 min to separate the supernatant and solid biomass. The supernatant was transferred into LCMS glass vial for LCMS analysis (injection

volume: 5 uL). Supernatant which exhibited turbidity were further filtered using 0.45 μm
Claristep hydrophilic filter (Sartorius, Goettingen, Germany) prior to LCMS analysis.

HPLC-MS analyses were conducted using Agilent UHPLC 1290 Infinity coupled to Agilent 6540 accurate-mass quadrupole time-of-flight (QTOF) mass spectrometer and an ESI source. Gradient elution that starts from 98% water with 0.1% formic acid to 100% acetonitrile in 0.1% formic acid over 8.6 min along with an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column at a flow rate of 0.5 mL/min was used. The operating parameters for QTOF were the same as previously reported ².

The HRMS data were processed and analyzed using Agilent MassHunter Qualitative Analysis version 10.0 software; The untargeted metabolites analysis and annotation was performed using MZmine 3.9.0 ³; Compounds annotation in MZmine was performed by matching experimental MS/MS spectra against library MS/MS spectra. The actual identity of indole lactic acid, phenyl lactic acid, and hydroxyphenyl lactic acid was validated by comparing MS/MS spectra and retention time with analytical standards. Metaboanalyst 6.0 was used for heatmap data visualization ⁴.

217

218

Statistical analysis

Olfactory evaluation data were analysed using GraphPad Prism version 8.0. For each aroma attribute, mean intensity scores were subjected to two-way repeated measures ANOVA, with treatment (unfermented vs. *Lactiplantibacillus plantarum*-fermented) and fermentation time-point (0, 24, 48, 72 and 96 hours) specified as within-subject factors. Panellist variation was included as a blocking factor to account for individual differences. The assumption of

- 224 sphericity was not made, and Geisser-Greenhouse correction was applied where necessary.
- 225 Statistical significance was determined at an alpha level of 0.05.

227 Figures preparation

- 228 BioRender (BioRender.com) was used to generate schematic figures for visualising
- 229 experimental workflows and processes.

230 Supporting Data

231 Supporting Tables

232 Table S1. Enzymatic Activity Profiles of 22 Selected Bacterial Strains

Strains	Protease Activity	Lipase Activity	Cellulase Activity	β-Glucosidase Activity (mU/mL)
Cupriavidus necator	-	+	+	0.05
Microbacterium imperiale	-	-	+	0
Bacillus pumilus	+++	++	-	0
Bacillus subtilis	++	++	+++	0.07
Bacillus amyloliquefaciens	++	+++	++	0.73
Bacillus licheniformis	+	++	++	0.14
Weizmannia coagulans	-	+++	-	0.14
Priestia megaterium	+++	++	+	0

Lacticaseibacillus paracasei	+++	-	-	0.40
Lacticaseibacillus paracasei ATCC 11578	++	-	-	0
Lactiplantibacillus plantarum	-	-	-	0
Lactiplantibacillus plantarum	-	+	+	0.48
Lactiplantibacillus plantarum ATCC 14917	+++	-	-	0
Lacticaseibacillus rhamnosus	++	-	-	0.54
Limosilacobacillus fermentum	++	-	-	0
Streptococcus thermophilus	++	-	-	0
Liquorilactobacillus nagelii	++	-	-	0
Ligilactobacillus salivarius	++	-	-	0
Pediococcus pentosaceus	++	-	-	0.22
Pediococcus pentosaceus	++	-	-	0
Leuconostoc mesenteroides	++	-	-	0
Leuconostoc citreum	++	-	-	0

²³³ Agar assays were used to assess protease, lipase, and cellulase activity and are scored

²³⁴ qualitatively. Symbols represent relative activity levels: – (no activity), + (low), ++ (moderate),

^{235 +++ (}high). β-glucosidase activity was quantified from culture supernatants and expressed in

236 milliunits per milliliter (mU/mL). Strains exhibiting \geq 0.20mU/mL of β -glucosidase activity 237 are classified as positive (values highlighted in red).

238 Table S2: Dry biomass yield (%w/v) and percentage change (%) of unfermented and fermented microalgae biomass over 72 hours

Sample	D	ery Yield (% w/	(v)	Mean (n =3)	Standard deviation	0	change in ferme to unfermented		Mean (n=3)	Standard deviation
	Replicate 1	Replicate 2	Replicate 3			Replicate 1	Replicate 2	Replicate 3		
Microalgae_0h (unfermented)	9.18	9.22	8.7	9.03	0.29	-	-	-	-	-
Microalgae_24h (unfermented)	8.92	9.16	9.24	9.11	0.17	-	-	-	-	-
Microalgae_48h (unfermented)	9.14	8.94	9.26	9.11	0.16	-	-	_	-	-
Microalgae_72h (unfermented)	9.4	9.1	9.08	9.19	0.18	-	-	-	1	-
B. amyloliquefaciens_MA_0h	9.2	9.26	8.72	9.06	0.30	0.22	0.43	0.23	0.29	0.12
B. amyloliquefaciens_MA_24h	7.94	8.16	8.16	8.09	0.13	-10.99	-10.92	-11.69	-11.20	0.43
B. amyloliquefaciens_MA_48h	8.38	7.72	8.26	8.12	0.35	-8.32	-13.65	-10.80	-10.92	2.67
B. amyloliquefaciens_MA_72h	6.22	5.46	6.04	5.91	0.40	-33.83	-40.00	-33.48	-35.77	3.67
B. subtilis_MA_0h	9.2	9.24	8.7	9.05	0.30	0.22	0.22	0.00	0.14	0.13
B. subtilis_MA_24h	8.18	8.32	8.14	8.21	0.09	-8.30	-9.17	-11.90	-9.79	1.88
B. subtilis MA_48h	7.94	7.68	7.76	7.79	0.13	-13.13	-14.09	-16.20	-14.47	1.57
B. subtilis_MA_72h	7.7	7.42	7.14	7.42	0.28	-18.09	-18.46	-21.37	-19.30	1.80
L. plantarum_MA_0h	9.18	9.26	8.8	9.08	0.25	0.00	0.43	1.15	0.53	0.58

L. plantarum_MA_24h	9.2	9.46	8.98	9.21	0.24	3.14	3.28	3.22	3.21	0.07
L. plantarum_MA_48h	9.46	9.28	9.6	9.45	0.16	3.50	3.80	3.90	3.73	0.21
L. plantarum_MA_72h	9.82	9.5	9.68	9.67	0.16	4.47	4.40	4.54	4.47	0.07

Dry biomass yield (% w/v) and percentage change in microalgae biomass (%) during 72-hour fermentation with selected microbial strains. *B. amyloliquefaciens*, *B. subtilis*, *L. plantarum* are labelled as "*B. amyloliquefaciens*_MA", "*B. subtilis*_MA" and "*L. plantarum*_MA" respectively; unfermented samples are labelled as Microalgae. Fermentation timepoints are expressed as 0h, 24h, 48h, and 72h, corresponding to 0, 24, 48, and 72 hours of fermentation, respectively. Dry biomass yield was quantified as dry weight (% w/v) and percentage change was calculated relative to unfermented controls at corresponding time points. Data represent mean ± standard deviation (n = 3 biological replicates). Notably, biomass decreased progressively during *Bacillus spp.* fermentations, with *B. amyloliquefaciens* showing the highest reduction (~36% at 72 h), while *L. plantarum* showed a modest increase in biomass over time (~+5%).

246 Table S3: List of volatiles detected in unfermented microalgae and *L. plantarum*-fermented microalgae throughout fermentation

									Microalga	ae only (un	fermented)		L. pla	antarum-	ferment	ed micro	algae
No	Name	CAS	Formula	Retention	Retention	Compound	Odour Description	0h	24h	48h	72h	96h	0h	24h	48h	72h	96h
		No		Time	Index (RI)	class											
				(min)													
1	Acetic acid	64-19-	C2H4O2	11.2	1462	Acid	Sharp, sour,	0.0003	5.59499	0.00010	7.71635	0.00011	8.448	0.000	2.854	1.423	0
		7					vinegar	73829	E-05	2105	E-05	7517	34E-	2303	98E-	39E-	
													05	27	05	05	
2	Butanoic acid	107-	C4H8O2	13.9	1640	Acid	Sharp, acetic,	0.0002	7.06529	8.0395	0.000100	9.52012	7.073	0.000	0	0	0
		92-6					cheese, dairy	24656	E-05	E-05	432	E-05	7E-	2923			
													05				
3	Hexanoic acid	142-	С6Н12О	17.0	1860	Acid	Sour, fatty, sweaty,	1.7299	1.32659	2.2313	1.95154	2.3045	2.021	2.658	4.024	5.369	0
		62-1	2				cheesy	1E-05	E-05	E-05	E-05	E-05	86E-	36E-	18E-	98E-	
													05	05	06	06	
4	Octanoic acid	124-	C8H16O	19.5	2077	Acid	Fatty, waxy, rancid,	1.7310	4.65514	3.47141	2.71749	5.11016	4.195	2.476	0	0	0
		07-2	2				cheesy	4E-05	E-05	E-05	E-05	E-05	97E-	45E-			
													05	05			
5	Propanoic	79-09-	С3Н6О2	12.6	1549	Acid	Pungent, acidic,	0	0	0	1.44669	1.71544	0	1.334	0	0	0
	acid	4					cheesy, vinegar				E-05	E-05		69E-			

														05			
6	1-Hexanol	111- 27-3	С6Н14О	9.6	1358	Alcohol	Green, fruity, sweet	1.1306 1E-05	7.48597 E-06	6.23502 E-06	6.79656 E-06	5.62038 E-06	7.581 96E-	8.148 62E-	0	0	0
		21-3						1L-03	L-00	L-00	L-00	L-00	06	05			
7	1-Octanol	111-	C8H18O	12.6	1548	Alcohol	Mushroom, green,	0	0	0	0	0	0	0	0	0	4.317
		87-5					waxy										49E-
																	06
8	1-Octen-3-ol	3391-	C8H16O	11.1	1453	Alcohol	Mushroom	0.0001	7.89387	0.00011	0.000122	0.00012	0.000	0.000	5.945	4.576	4.489
		86-4						08602	E-05	246	192	6945	1171	1129	33E-	77E-	33E-
													02	86	05	05	05
9	1-Pentanol	71-41-	C5H12O	8.0	1256	Alcohol	Fresh, bready,	3.4081	0.00010	0.00011	0.000106	0.00011	6.817	0.000	5.756	9.027	9.838
		0					winey	5E-05	8101	1004	372	0896	37E-	1628	53E-	69E-	97E-
													05	8	06	06	06
10	1-Penten-3-ol	616-	C5H10O	6.6	1163	Alcohol	Pungent, green,	0.0001	0.00013	8.80199	0.000114	0.00013	9.508	7.846	0	0	0
		25-1					horseradish, green	30451	3269	E-05	489	0628	3E-	61E-			
							vegetable, tropical,						05	05			
							fruity										
11	Isobutanol	78-83-	C4H10O	5.7	1098	Alcohol	Ethereal, winey	0	0	0	0	0	0	0	6.837	0	0
		1													8E-		

															06		
12	Isopentyl	123-	C5H12O	7.4	1215	Alcohol	Fusel, alcoholic,	3.8701	1.64211	3.58926	4.64628	5.24433	2.801	1.336	6.884	7.679	4.841
	alcohol	51-3					fruity, banana	3E-06	E-05	E-06	E-06	E-07	9E-	8E-	74E-	48E-	16E-
													06	05	05	05	05
13	Isophytol	505-	C20H40	21.1	2290	Alcohol	Floral, herbal,	0.0002	0.00024	0.00030	0.000257	0.00021	0.000	0.000	0.000	0.000	0.000
		32-8	О				green	83568	7227	138	763	8515	2522	2987	3068	2925	3684
													64	84	44	7	16
14	2-Heptenal,	57266	C7H12O	9.2	1334	Aldehyde	Green, fatty, sweet	3.5713	4.22325	2.06006	3.77043	3.64459	6.316	3.863	5.355	1.195	1.841
	(Z)-	-86-						3E-05	E-05	E-05	E-05	E-05	58E-	03E-	39E-	44E-	86E-
													05	05	06	05	05
15	2-Hexenal,	6728-	С6Н10О	7.6	1229	Aldehyde	Green, banana,	4.1539	2.95631	4.40041	3.84183	4.39E-	4.755	3.496	1.343	1.367	7.358
	(E)-	26-3					aldehydic, fresh,	9E-05	E-05	E-05	E-05	05	77E-	7E-	8E-	17E-	64E-
							herbal						05	05	05	05	06
16	2-Nonenal,	18829	С9Н16О	12.6	1550	Aldehyde	Cucumber, fatty,	1.3641	1.93503	6.58394	1.08327	1.23925	7.660	4.314	5.837	2.550	0
	(E)-	-56-6					green	E-05	E-05	E-06	E-05	E-05	58E-	69E-	61E-	98E-	
													06	06	06	06	
17	Heptanal	111-	C7H14O	7.0	1191	Aldehyde	Fatty, green	8.1421	5.3004E	1.77838	1.34867	1.59664	1.346	0	0	0	3.113
		71-7						8E-06	-06	E-05	E-05	E-05	07E-				4E-
													05				06

18	Hexanal	66-25-	С6Н12О	5.6	1085	Aldehyde	Green, grassy	2.9506	4.9805E	7.3148	3.17118	4.81524	8.812	2.973	2.182	2.396	1.652
		1						9E-05	-05	E-05	E-06	E-05	79E-	48E-	73E-	16E-	79E-
													05	06	05	05	05
19	Nonanal	124-	С9Н18О	10.3	1400	Aldehyde	Green, cucumber	3.6746	3.55442	3.17581	3.06157	2.04399	2.305	9.418	8.651	1.492	1.392
		19-6						1E-05	E-05	E-05	E-05	E-05	36E-	31E-	51E-	92E-	31E-
													05	06	06	05	05
20	2-Octenal,	2548-	C8H14O	10.9	1441	Aldehyde	Fresh, cucumber,	3.0478	3.47488	2.22665	3.24509	3.86952	2.441	0	9.478	1.051	9.661
	(E)-	87-0					fatty, green, citrus	E-05	E-05	E-05	E-05	E-05	24E-		91E-	35E-	93E-
													05		06	05	06
21	2-Pentenal,	1576-	C5H8O	6.3	1138	Aldehyde	Pungent, green,	1.5116	4.7341E	4.86063	4.22268	4.86639	4.970	2.668	6.983	9.204	2.390
	(E)-	87-0					fruity, apple	4E-05	-05	E-05	E-05	E-05	87E-	13E-	78E-	E-06	77E-
							orange, tomato						05	05	06		05
22	3-	590-	C5H10O	3.9	921	Aldehyde	Ethereal, aldehydic,	2.5536	1.69893	1.53889	9.52913	1.05045	2.140	5.196	0	0	0
	methylbutanal	86-3					chocolate, peach,	3E-05	E-05	E-05	E-06	E-05	92E-	1E-			
							fatty						05	06			
23	4-Heptenal,	6728-	C7H12O	7.9	1247	Aldehyde	Green, oily, fatty,	3.6757	5.52971	4.70133	5.25069	5.82723	5.472	3.674	4.420	0	2.936
	(Z)-	31-0					dairy	5E-06	E-06	E-06	E-06	E-06	14E-	06E-	02E-		83E-
													06	06	06		06
24	beta-	432-	C10H16	14.0	1643	Aldehyde	Tropical, saffron,	9.1109	7.51192	3.68818	9.54359	6.1081	3.993	0.000	9.155	2.874	4.798

	Cyclocitral	25-7	О				herbal, clean, rose,	8E-05	E-05	E-05	E-05	E-05	24E-	1079	99E-	44E-	27E-
							sweet, tobacco,						05	71	05	05	05
							green, fruity										
25	cis-2-Butenal	590-	С4Н6О	5.1	1047	Aldehyde	Pungent,	4.0515	4.18626	4.11305	4.13284	4.00872	3.885	2.452	4.863	4.810	1.942
		18-1					suffocating,	6E-05	E-05	E-05	E-05	E-05	05E-	41E-	75E-	32E-	14E-
							irritating						05	05	06	06	06
26	Dodecanal	112-	C12H24	15.3	1732	Aldehyde	Soapy, waxy,	0.0001	4.85737	1.72808	0	1.15631	5.456	4.299	4.931	0	2.654
		54-9	О				aldehydic, citrus,	04569	E-06	E-05		E-05	98E-	87E-	51E-		49E-
							green, floral						06	06	06		06
							,										
27	Octanal	124-	C8H16O	8.6	1296	Aldehyde	Orange peel, green	0	3.71881	3.18694	6.57751	3.00568	3.686	0	0	0	0
		13-0							E-06	E-06	E-06	E-06	64E-				
													06				
28	Pentanal	110-	C5H10O	4.5	984	Aldehyde	Fermented, bready,	0.0001	0.00012	0.00012	0.000111	0.00012	0.000	3.512	0	1.456	3.468
		62-3					cocoa	64836	7786	8118	268	5985	1375	12E-		85E-	25E-
													83	05		05	05
29	Undecanal	112-	C11H22	13.6	1614	Aldehyde	Waxy, soapy,	0	3.1398E	2.86654	0	0	0	0	0	0	0
		44-7	О				floral, aldehydic,		-06	E-06							
							citrus, green, fatty,										
							laundered cloth										

30	4-	4748-	С9Н10О	15.2	1729	Aromatic	Almond, bitter,	1.9024	6.79073	8.25158	8.93263	0.00010	3.875	0	0	0	0
			6711100	13.2	1729	Tromatic	, ,										
	ethylbenzalde	78-1					sweet, anise cherry	7E-05	E-05	E-05	E-05	7134	47E-				
	hyde												05				
31	Benzaldehyde	100-	С7Н6О	12.4	1540	Aromatic	Almond, cherry,	0.0006	0.00067	0.00073	0.000639	0.00072	0.000	0.000	0.000	0.000	0.000
		52-7					sharp, sweet	86077	0456	8445	122	3182	6675	1747	2872	2643	2457
													91	53	85	58	61
32	Benzaldehyde	613-	С9Н10О	15.5	1751	Aromatic	Naphthyl, cherry,	0.0001	0.00020	0.00019	0.000172	0.00018	0.000	6.222	3.826	1.397	3.620
	, 2,4-	45-6					almond, spicy,	4304	615	1227	73	3541	1853	34E-	08E-	22E-	33E-
	dimethyl-						vanilla						66	05	05	05	05
33	Benzaldehyde	620-	C8H8O	13.9	1641	Aromatic	Sweet, fruity,	3.6329	0	0	0	0	0	0	0	0	0
	, 3-methyl-	23-5					cherry, almond	8E-05									
	,																
34	Benzene, 1,3-	1014-	C14H22	10.8	1433	Aromatic	-	4.8916	5.79204	6.22572	5.59074	4.92305	7.007	0	3.061	4.802	3.117
	bis(1,1-	60-4						5E-05	E-05	E-05	E-05	E-05	38E-		68E-	08E-	89E-
	dimethylethyl												05		05	05	05
)-																
35	Benzyl	100-	С7Н8О	17.5	1892	Aromatic	Floral, rose,	0	0	0	0	0	0	3.241	2.450	0	0
	alcohol	51-6					phenolic, balsamic							28E-	13E-		
														05	05		
36	Naphthalene,	447-	C13H16	15.8	1768	Aromatic	Licorice	0.0001	8.07668	0.00019	0.000154	0.00016	8.171	0.000	0.000	0.000	0.000

	1,2-dihydro-	53-0						71255	E-05	4913	746	5185	33E-	1792	1286	2094	2138
	1,1,6-												05	82	24	27	28
	trimethyl-																
	unneary																
37	Phenylacetald	122-	С8Н8О	14.2	1659	Aromatic	Rose, sweet, floral	0	1.34409	2.36096	0	7.33735	2.182	0	0	0	0
	ehyde	78-1							E-05	E-05		E-06	27E-				
													05				
38	Phenylethyl	60-12-	C8H10O	17.9	1933	Aromatic	Floral, rose, sweet	0.0002	0.00025	0.00027	0.000254	0.00027	0.000	0.000	0.001	0.002	0.002
	alcohol	8						91961	571	5207	718	4726	1778	3015	5459	3880	4782
													31	47	77	9	73
		105					_										
39	p-Xylene	106-	C8H10	6.4	1147	Aromatic	Sweet	1.1166	0	0	0	0	8.238	0	0	0	0
		42-3						8E-05					51E-				
													06				
40	2,4-	25152	C10H16	16.6	1827	Enal	Satty, chicken	0	0	0	0	1.28238	0	0	0	0	0
	Decadienal,	-84-5	О									E-05					
	(E,E)-																
	(L,L)																
41	2,4-	4313-	C7H10O	11.9	1507	Enal	Fatty, green, oily,	0.0005	0.00070	0.00077	0.000728	0.00092	0.000	0.000	0	5.456	0.000
	Heptadienal,	03-5					aldehydic,	76431	9327	8931	95	8734	7242	3731		77E-	1060
	(E,E)-						vegetable,						94	58		05	13
							cinnamon										

42	2,4-	142-	С6Н8О	10.5	1415	Enal	Sweet, green, spicy,	2.6175	4.4413E	3.19583	1.63111	1.95492	5.348	0	4.864	3.272	8.944
	Hexadienal,	83-6					floral, citrus	3E-05	-05	E-05	E-05	E-05	76E-		28E-	38E-	91E-
		03-0					noral, citrus	3L-03	-03	L-03	1-03	L-03	05		06	06	06
	(E,E)-												03		06	06	06
43	2,4-	5910-	С9Н14О	15.0	1717	Enal	Fatty, melon,	1.7184	7.44766	7.43974	5.47693	9.9412	8.661	1.738	0	0	9.033
	Nonadienal,	87-2					cucumber, chicken	7E-05	E-05	E-05	E-05	E-05	24E-	4E-			27E-
	(E,E)-						fat						05	05			06
44	2,6-	557-	С9Н14О	13.3	1599	Enal	Green, fatty, dry,	4.2153	2.43174	2.53043	3.00407	2.21378	1.305	2.798	1.365	1.382	4.886
	Nonadienal,	48-2					cucumber, violet	2E-05	E-05	E-05	E-05	E-05	E-05	58E-	66E-	85E-	94E-
	(E,Z)-						leaf							05	05	05	06
45	Methyl	112-	C17H34	20.7	2228	Ester	Fatty, waxy	6.4327	1.85663	3.67519	5.34491	2.14683	3.953	2.320	4.145	4.105	1.847
	palmitate	39-0	O2					E-05	E-05	E-05	E-05	E-05	51E-	69E-	7E-	57E-	66E-
	•												05	05	05	05	05
46	Methyl	119-	C8H8O3	16.2	1799	Ester	Wintergreen, minty	0.0007	0.00064	0.00058	0.000574	0.00052	0.000	0.000	0.000	0.000	0.000
	salicylate	36-8						48143	7308	2888	573	8463	5890	6150	1730	5354	5405
													75	54	08	53	67
47	2-Acetyl-5-	1193-	C7H8O2	13.4	1607	Furan	Sweet, musty,	0	0	0	0	0	0	0	0	8.277	0
	methylfuran	79-9					nutty, caramellic									36E-	
																05	
48	2-ethylfuran	3208-	С6Н8О	4.2	955	Furan	Chemical, beany,	2.9886	2.66821	2.75321	2.68418	3.24093	3.115	2.309	2.124	1.554	2.426

		16-0					ethereal, cocoa,	7E-05	E-05	E-05	E-05	E-05	1E-	77E-	33E-	44E-	48E-
							bready, malty,						05	05	05	05	05
							coffee, nutty										
49	2-Pentylfuran	3777-	С9Н14О	7.6	1234	Furan	Fruity, beany,	0.0002	0.00017	0.00015	0.000109	8.60189	0.000	8.220	7.560	6.408	0.000
		69-3					vegetable	62495	0152	3915	902	E-05	3044	13E-	5E-	52E-	1135
													94	05	05	05	95
50	3-	4412-	C5H6O2	14.3	1669	Furan	Sweet, nutty, herbal	0	0	0	0	0	0	1.665	0	0	0
	Furanmethano	91-3												61E-			
	1													05			
51	5-methyl	620-	С6Н6О2	12.9	1568	Furan	Sweet, caramel,	1.6415	1.40762	1.45381	1.31659	1.43611	1.524	0	0	0	0
	furfural	02-0					maple	3E-05	E-05	E-05	E-05	E-05	32E-				
													05				
52	Furan, 2-	534-	C5H6O2	3.6	874	Furan	Chocolate, ethereal,	3.3788	1.99509	1.92152	1.74903	0	3.190	5.881	1.144	0	1.371
	methyl-	22-5					acetone	5E-06	E-06	E-06	E-06		82E-	3E-	47E-		79E-
													06	07	06		06
53	Furfural	98-01-	C5H4O2	11.4	1473	Furan	Sweet, woody,	0.0001	0.00017	0.00023	0.000142	9.04195	0.000	2.001	2.411	0	0
		1					almond, bread,	92257	6687	4249	119	E-05	1692	06E-	57E-		
							baked						61	05	06		
54	trans-2-(2-	70424	C9H12O	8.8	1306	Furan	Bean, grassy	5.5219	1.06584	1.05849	9.12875	1.08564	9.220	0	1.834	3.566	0
			.,				,,						v				

	Pentenyl)fura	-14-5						5E-06	E-05	E-05	E-06	E-05	86E-		51E-	62E-	
	n												06		06	07	
55	1,3,5,7-	629-	С8Н8	8.1	1265	Hydrocarbo	-	0	0	0	0	0	0	0	0	0	1.982
	Cyclooctatetr	20-9				n											04E-
	aene																06
56	3-	68155	С9Н10О	15.1	1723	Hydrocarbo	-	0.0002	0.00036	0.00058	0.000529	0.00050	0.000	0.000	0.000	0.000	0.000
	Heptadecene,	-00-0				n		83823	2702	726	519	902	1712	1836	4846	4032	4844
	(Z)-												16	36	12	39	25
57	Heptadecane	629-	С17Н36	14.8	1698	Hydrocarbo	Waxy	0.0007	0.00073	0.00121	0.001006	0.00117	0	0.000	0.000	0.000	0.000
		78-7				n		00864	1208	5075	742	0633		4425	4718	4934	9506
														46	6	14	84
58	Pentadecane	629-	C15H32	11.8	1498	Hydrocarbo	-	4.0442	9.63707	0.00013	9.38504	0.00012	6.738	6.134	4.875	5.039	5.404
		62-9				n		9E-05	E-05	0275	E-05	3106	6E-	93E-	33E-	87E-	87E-
													05	05	05	05	05
59	Undecane	1120-	C10H22	4.6	999	Hydrocarbo	-	0	4.80151	5.10924	4.5991E-	0	3.233	0	2.660	0	6.424
		21-4				n			E-06	E-06	06		77E-		08E-		28E-
													06		06		06
60	(E,E)-3,5-	30086	C8H12O	13.1	1584	Ketone	Fruity, green,	0.0010	0.00085	0.00081	0.000710	0.00075	0.000	0.000	0.000	0.000	7.814
	Octadien-2-	-02-3					grassy	27837	3237	154	48	2466	9705	8568	2118	1063	24E-

	one												66	94	37	35	05
61	1-Octen-3-	4312-	C8H14O	8.8	1309	Ketone	Herbal, mushroom,	1.3969	1.60312	1.79359	0	1.32361	1.371	1.851	1.602	5.749	1.693
	one	99-6					earthy, must,y dirty	E-05	E-05	E-05		E-05	19E-	7E-	93E-	18E-	57E-
													05	05	05	06	05
62	1-Penten-3-	1629-	C5H8O	4.9	1026	Ketone	Spicy, pungent,	0	0	1.80323	0	0	0	1.432	0	0	0
	one	58-9					peppery, mustard,			E-05				5E-			
							garlic, onion							05			
63	1-Propanone,	3194-	C7H8O2	13.2	1590	Ketone	Fruity	0	0	0	0	0	0	0	0	3.118	4.629
	1-(2-furanyl)-	15-8														61E-	E-06
																06	
64	2,3-	431-	C4H6O2	4.4	976	Ketone	Buttery, sweet,	0	0	0	1.55107	0	0	0	2.168	0	0
	Butanedione	03-8					creamy, pungent,				E-05				52E-		
							caramellic								05		
65	2,3-	600-	C5H8O2	5.2	1056	Ketone	Sweet, buttery,	7.004E	2.19717	2.35508	2.08714	2.55922	2.234	1.634	1.838	1.678	5.249
	Pentanedione	14-6					creamy	-06	E-05	E-05	E-05	E-05	78E-	37E-	99E-	55E-	42E-
													05	05	05	05	06
66	2-Butanone	78-93-	С4Н8О	3.8	908	Ketone	Acetone, ethereal,	0.0002	0.00022	0.00034	0.000155	0.00015	0.000	0.000	0.000	0.000	0.000
		3					fruity,	4514	1226	8183	413	3143	2234	1268	2743	2022	1444
							camphoraceous						49	28	41	28	16

67	2-Heptanone	110-	C7H14O	7.0	1187	Ketone	Cheesy, fruity,	3.4466	1.6017E	1.51541	0	0	0	0	0	0	0
	2 Trepunone	43-0	6,111.16	7.0	1107	recone	ketogenic, green,	9E-05	-05	E-05						V	
		43-0						912-03	-03	E-03							
							banana, creamy										
68	2-Nonanone	821-	С9Н18О	10.2	1397	Ketone	Fruity, sweet,	1.3666	2.43512	3.91895	0	0	4.486	1.563	0	0	0
		55-6					waxy, soapy,	9E-05	E-05	E-05			29E-	26E-			
							cheesy, green,						05	05			
							herbal, coconut										
69	2-	502-	C18H36	20.0	2137	Ketone	Oily, herbal,	0.0003	0.00029	0.00032	0.000317	0.00039	0.000	0.000	0.000	0.000	0.000
	Pentadecanon	69-2	О				jasmine, celery,	21032	6771	2788	161	4462	2991	2071	1879	2342	2122
	e, 6,10,14-						woody						94	34	17	06	84
	trimethyl-																
	_														_	_	_
70	2-	593-	C13H26	16.5	1820	Ketone	Fatty, waxy, dairy,	2.1947	2.93369	1.91158	2.79608	3.16983	2.987	2.029	0	0	0
	Tridecanone	08-8	О				milky	6E-05	E-05	E-05	E-05	E-05	41E-	39E-			
													05	05			
71	3,5-Octadien-	38284	C8H12O	12.3	1532	Ketone	Fruity, fatty,	0.0001	0.00015	0.00016	9.56053	0.00012	0.000	9.728	0	0	0
	2-one	-27-4					mushroom	41213	384	6226	E-05	918	1088	88E-			
													19	05			
72	3-Nonen-2-	14309	C9H16O	12.2	1524	Ketone	Fruity, berry, fatty,	0	1.54487	1.45496	2.19196	2.7222	2.130	1.197	5.082	0	0
	one	-57-0					oily		E-05	E-05	E-05	E-05	97E-	24E-	51E-		
													05	05	06		

73	3-Octanone	106-	C8H16O	8.1	1260	Ketone	Lavender,	1.0029	7.74798	3.31775	0	0	9.172	2.680	0	0	1.463
		68-3					mushroom, sweet	4E-05	E-06	E-06			42E-	99E-			66E-
													06	05			06
74	3-Octanone,	923-	С9Н18О	9.0	1323	Ketone	-	0.0001	7.37462	0.00010	0	3.45306	0.000	1.749	0	0	0
	2-methyl-	28-4						0475	E-05	4964		E-05	1234	83E-			
													55	05			
75	5-Hepten-2-	110-	C8H14O	9.4	1345	Ketone	Citrus, green,	2.8076	2.42381	2.37667	2.75072	3.0203	2.553	1.943	0	0	0
	one, 6-	93-0					musty, lemongrass,	4E-05	E-05	E-05	E-05	E-05	02E-	99E-			
	methyl-						apple						05	05			
76	6-Methyl-3,5-	1604-	C8H12O	13.5	1608	Ketone	Spicy, cinnamon,	0.0001	0.00024	0.00024	0.000150	0.00023	0.000	0.000	0	0	0
	heptadiene-2-	28-0					coconut, spicy,	8724	5117	3097	534	5556	2630	1792			
	one						woody, sweet,						96	41			
							weedy										
77	Acetoin	513-	C4H8O2	8.7	1299	Ketone	Buttery, creamy,	0	0	0	0	1.11621	0	0	0	0	0
		86-0					dairy, milky, fatty					E-05					
78	Acetone	67-64-	С3Н6О	3.2	818	Ketone	Solvent, ethereal,	0	0	0	0	1.89788	0	1.275	1.878	9.595	9.938
		1					apple, pear					E-05		31E-	63E-	86E-	38E-
														05	05	05	05
79	Acetophenone	98-86-	C8H8O	14.4	1670	Ketone	Sweet, hawthorn	1.4756	0	0	0	0	0	1.450	0	0	0

		2						9E-05						63E-			
														05			
80	Cyclohexanon	2408-	С9Н16О	9.2	1335	Ketone	Thujonic, pungent,	2.4851	5.27998	4.69297	2.01988	3.13161	4.283	2.552	2.175	0	5.135
	e, 2,2,6-	37-9					labdanum, honey	9E-05	E-05	E-05	E-05	E-05	09E-	85E-	41E-		E-06
	trimethyl-												05	05	05		
81	Isophorone	78-59-	С9Н14О	13.6	1621	Ketone	Cooling, woody,	8.9816	0.00012	4.45773	0	4.33334	3.967	8.854	4.153	7.954	0.000
		1					sweet, green,	5E-05	6727	E-05		E-05	4E-	49E-	23E-	99E-	1170
							camphoraceous,						05	05	05	05	45
							fruity, musty										
82	m-	585-	С9Н10О	16.2	1795	Ketone	Hawthorn, sweet,	0.0002	0.00021	0.00021	0.000199	0.00020	0.000	0.000	0.000	0.000	0.000
	Methylacetop	74-0					mimosa,	03678	3941	4632	17	2363	2366	1757	1643	1879	1846
	henone						coumarinic, cherry,						24	38	06	12	4
							acacia										
83	alpha-Ionone	127-	C13H20	17.2	1874	Terpene	Sweet, woody,	0.0021	0.00127	0.00192	0.001877	0.00126	0.002	0.001	0.001	0.001	0.001
		41-3	О				floral, violet, orris,	00297	0786	1168	712	9374	0122	8867	8128	8023	9332
							tropical, fruity						84	74	74	84	68
84	beta-Ionone	23267	C13H20	18.9	2019	Terpene	Fruity, sweet,	0.0014	0.00133	0.00131	0.001370	0.00149	0.001	0.001	0.001	0.001	0.001
	epoxide	-57-4	O2				berry, woody,	56673	0894	4103	537	5476	3948	3816	1931	3258	4819
							violet, orris,						85	75	37	55	14
							powdery										

85	Neophytadien	504-	C20H38	17.9	1929	Terpene	_	0.0001	0.00025	0.00034	0.000260	0.00036	0.000	0.000	0.000	0.000	0.000
05			C201130	17.5	1,2,5	respene		79889	1886		144						
	e	96-1						/9889	1886	1725	144	4417	2730	3249	3279	3225	4376
													54	66	7	65	89
86	trans-beta-	79-77-	C13H20	18.3	1966	Terpene	dry powdery floral	0.0014	0	0.00400	0.001349	0	0.004	0.003	0.003	0.003	0.003
	Ionone	6	О				woody orris berry	67838		7879	576		0017	8380	5510	6913	8803
							seedy						12	57	18	88	22
87	trans-	3796-	C13H22	17.1	1865	Terpene	Floral, fresh, green,	0.0003	0.00032	0.00031	0.000209	0.00034	0.000	0.000	0	0	0
	Geranylaceto	70-1	О				rose	66719	2123	8789	751	2013	3377	3326			
	ne												94	65			
88	2-	24295	C5H5NO	14.3	1665	Others	Pandan, popcorn,	4.1990	5.78992	6.20847	3.29585	7.25037	6.036	1.986	1.235	0	0
	Acetylthiazol	-03-2	S				hazelnut, peanut	6E-05	E-05	E-05	E-05	E-05	8E-	43E-	94E-		
	e												05	05	06		
89	2,3,5-	14667	C7H10N	10.6	1421	Pyrazine	Nutty	5.5614	6.45521	1.25676	0	0	0	4.926	1.199	1.314	1.356
	Trimethylpyra	-55-1	2					6E-06	E-06	E-05				84E-	41E-	2E-	64E-
	zine													06	05	05	05
90	2,5-	123-	C6H8N2	9.3	1340	Pyrazine	Cocoa, roasted,	2.8331	0	0	2.30964	1.68021	0	1.855	0	4.289	1.956
	Dimethylpyra	32-0					beefy, nutty	9E-05			E-05	E-05		97E-		33E-	21E-
	zine													05		05	05
91	2,6-	108-	C6H8N2	9.3	1338	Pyrazine	Cocoa, roasted,	0	0	0	0	0	0	0	1.703	0	1.017

	dimethylpyraz	50-9					nutty, meaty								75E-		84E-
	ine														05		05
92	2-ethyl-3,6-	13360	C8H12N	11.2	1460	Pyrazine	Roasted, potato	2.4717	2.25479	2.13461	1.89756	2.06317	2.210	5.599	2.939	1.993	1.892
	dimethylpyraz	-65-1	2					E-05	E-05	E-05	E-05	E-05	7E-	49E-	93E-	67E-	E-05
	ine												05	06	05	05	
93	2-Ethyl-5-	13360	C7H10N	10.4	1408	Pyrazine	Coffee, nut	8.4125	1.40265	1.44929	1.0381E-	1.704E-	1.730	1.081	8.733	1.250	1.314
	methylpyrazin	-64-0	2					E-06	E-05	E-05	05	05	75E-	78E-	59E-	65E-	54E-
	e												05	05	06	05	05
94	2-	13925	C6H8N2	9.5	1350	Pyrazine	Nutty, fermented	0	1.4925E	0	0	0	0	0	0	0	0
	Ethylpyrazine	-00-3					coffee, meaty		-06								
95	2-	109-	C5H6N2	8.4	1281	Pyrazine	Nutty, cocoa,	5.6473	1.56795	1.67164	1.50864	1.66667	1.353	0	1.450	1.588	1.608
	Methylpyrazi	08-0					chocolate	5E-06	E-05	E-05	E-05	E-05	32E-		25E-	73E-	26E-
	ne												05		05	05	05
96	2,4,6-	108-	C8H11N	10.0	1388	Pyridine	-	5.3579	6.96537	8.23105	6.81916	7.76736	8.211	4.286	7.057	4.941	5.825
	trimethylpyrid	75-8						7E-06	E-06	E-06	E-06	E-06	01E-	81E-	71E-	32E-	58E-
	ine												06	06	06	06	06
97	3-	108-	C6H7N	8.9	1316	Pyridine	Green, earthy,	4.7288	3.89947	0	7.09646	0	3.851	0	0	8.366	4.075
	methylpyridin	99-6					hazelnut, nutty	8E-06	E-06		E-06		77E-			33E-	14E-
	e												06			06	06

98	Pyridine	110-	C5H5N	7.2	1204	Pyridine	Sour, fishy	1.0131	9.70381	1.02752	7.86009	6.04669	1.053	1.152	1.073	9.524	9.122
		86-1						6E-05	E-06	E-05	E-06	E-06	57E-	31E-	48E-	69E-	24E-
													05	05	05	06	06
99	1H-Pyrrole-	21494	C7H9NO	21.2	2298	Pyrrole	-	0.0001	0.00016	0.00018	0.000195	0.00021	0.000	0.000	0.000	0.000	0.000
	2,5-dione, 3-	-57-5						92216	3596	2589	079	8631	1708	1886	1682	1784	1967
	ethyl-4-												95	6	9	33	25
	methyl-																
101	Dimethyl	3658-	C2H6S3	10.2	1399	Sulphurous	Sulphurous, onion,	0	0	0	2.53319	0	0	0	0	0	0
	trisulfide	80-8					meaty, rotten eggs				E-06						

Summary of all the volatile compounds detected by GC-MS in unfermented microalgae samples and *L. plantarum*-fermented microalgae samples across different time points (0h, 24h, 48h, 72h, and 96h). Each compound entry includes its chemical name, CAS number, molecular formula, retention time (min), retention index (RI), compound class, and odour description and abundances at different time points.

251 Table S4: ASTREE E-tongue sensor summary with food applications

	Sensor	Taste Modality	Sensitivity and typical detected compounds	Common applications
1	AHS	Sour	Organic acids, H ⁺ ions	 Fermented foods (e.g., yogurt, kimchi, sauerkraut). Vinegar/acidity profiling in sauces. Spoilage detection (e.g., acid build-up).
2	CTS	Salty	Na+, K+, Cl-, mineral salts	 Salt reduction in soups and snacks. Mineral water profiling. Electrolyte beverage development.
3	NMS	Umami	Glutamate, IMP, GMP, amino acids	 Umami enhancement in broth/stock. Fermented soy (miso, soy sauce). Meat analogues or plant-based meat optimization.
4	ANS	Sweet	Glucose, fructose, sucrose, and artificial sweeteners	 Sweetener formulation in beverages Sugar content consistency in fruit juices Sugar-free product comparisons
5	SCS	Bitter	Caffeine, polyphenols, quinine, alkaloids	 Coffee and tea bitterness profiling. Cocoa/chocolate evaluation. Bitterness masking in functional foods/supplements.
6	PKS	General/Reference	Detects overall ionic strength or changes in general chemical	· Acts as a reference to help differentiate complex mixtures and stabilize the signal
7	CPS	General/Reference	environment	

252 Description of electronic tongue (E-tongue) sensors used for taste modality detection in food

53 samples. The table summarizes the target analytes for each sensor and their common

applications in food quality evaluation, flavour profiling, and product development 5-13.

255

Table S5. Metabolite profile of umami-related compounds detected during *L. plantarum*-mediated biotransformation of microalgae

Compound	Mass to			Peak Area		
name	charge ratio (m/z)	L. plantarum _MA_0h	L. plantarum_MA _24h	L. plantarum_MA _48h	L. plantarum_MA _72h	L. plantarum_MA _96h
Glutamic acid	148.0605	26077.91	25747.33	7396.46	6104.25	4747.83

3'-AMP	346.0547	15341.44	15621.17	64523.82	71823.88	56305.31
Adenosine 2',3'-cyclic						
monophosp hate			0.512.20			
(cAMP)	330.059	10029.51	8643.28	14599.89	8634.29	4084.71
Adenosine 5'- monophosp hate (AMP)	348.07	1293.7	13687.83	57535.56	68646.83	57002.32
nate (Alvii)	340.07	1273.7	13007.03	37333.30	000+0.03	37002.32
Cyclic GMP (cGMP)	344.0396	4024.8847 66	4647.526367	7276.584961	3959.945313	774.7654419
Guanosine 5'- monophosp						
hate	362.0501	40930.2	48802.02	61079.58	32945.93	15488.41

Umami-related compounds were detected using LC-MS and identified based on their mass-tocharge ratio (m/z) Peak area values represent relative abundances at each fermentation time point (0h, 24h, 48h, 72h, 96h).

Table S6. Metabolite profile of amino acids and their bioconversion products during L. plantarum-mediated biotransformation of microalgae

Compound	Mass to					
name	charge ratio (m/z)	L. plantarum_ MA_0h	L. plantarum_MA _24h	L. plantarum_MA _48h	L. plantarum_MA _72h	L. plantarum_MA _96h
L-Tyrosine	182.0787	37898	34893	7181	0	0
Phenylalanine	166.0866	89252	89795	8013	6714	4542
4- Hydroxyphen yllactic acid	181.0503	7257	5588	87693	127266	145663
D-Tryptophan	205.0973	58778	57684	8754	16172	13113
D-3- phenyllactic acid	165.0557	28351	20197	136790	327943	389709
DL-Indole-3- lactic acid	204.0666	0	0	24333.55	53092.48	60450.36

Amino acids and their relevant metabolites were detected using LC-MS and identified based on their mass-to-charge ratio (m/z). Peak area values represent relative abundances at each fermentation time point (0h, 24h, 48h, 72h, 96h).

268 Table S7. Demographic and lifestyle information of the sniff test panellists (n = 10).

Participant (n=10)	Gender	Age range	Race	Diet	Smoker?	Self-rated smell sensitivity
1	Male	31-40	Chinese	Omnivore	No	5
2	Male	41-50	Chinese	Omnivore	No	2
3	Male	31-40	Chinese	Omnivore	No	3
4	Male	21-30	Chinese	Omnivore	No	3
5	Male	31-40	Chinese	Omnivore	No	3
6	Female	31-40	Chinese	Omnivore	No	5
7	Female	41-50	Indian	Omnivore	No	3
8	Female	31-40	Malay	Omnivore	No	5
9	Female	21-30	Chinese	Omnivore	No	3
10	Female	31-40	Chinese	Omnivore	No	3

- Demographic details and lifestyle factors of the untrained olfactory evaluation panel (n = 10).
- 270 All panellists were non-smokers and followed an omnivorous diet. Self-rated olfactory
- 271 sensitivity was collected using a 5-point scale (1 = very poor, 5 = very strong).

Table S8. Two-way ANOVA statistics for grassy odour intensity.

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	Significance and Interpretation
Interaction						The change in
(Time ×						grassy odour over
Treatment)				F(4,72) =		time depends on
	3.400	4	0.8500	3.161	P=0.0188	treatment.
Time						No significant
Time				F (3.282,		change in grassy
(Row				59.07) =		odour intensity
Factor)	2.440	4	0.6100	2.269	P=0.0845	over time alone.
Tuestuesut						NIa arraga 11
Treatment						No overall
(Column						difference
Factor)						between
1 detoi)				F (1.10)		fermented and
		_		F(1, 18) =		unfermented
	0.2500	1	0.2500	0.2089	P=0.6531	samples.
Subject						Panellists varied
(Panellist						significantly in
variation)				F (18, 72)		how they rated the
, an iation)	21.54	18	1.197	= 4.450	P<0.0001	grassy odour.

A two-way repeated measures ANOVA was used to assess the effects of fermentation treatment, time, and their interaction on grassy odour intensity. A significant interaction between time and treatment (p = 0.0188) indicates that the change in grassy odour perception over time differed depending on fermentation condition. A significant subject effect indicates variability among panellist ratings (P<0.0001). No significant main effects of time or treatment were observed. Geisser-Greenhouse correction was applied to the time effect ($\varepsilon = 0.8204$). Note: F = F-ratio; DF = degrees of freedom; SS = sum of squares; MS = mean square.

281

Table S9. Statistical summary of pairwise comparison for grassy odour intensity between unfermented and *L. plantarum*-fermented microalgae.

Difference between column means	
Mean of Microalgae only	2.060
Mean of L. plantarum_MA	1.960
Difference between means	0.1000
SE of difference	0.2188
95% CI of difference	-0.3596 to 0.5596

²⁸⁴ Reported values include mean difference, standard error (SE), and 95% confidence interval 285 (CI).

287 Table S10. Two-way ANOVA statistics for sour odour intensity.

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	Significance and Interpretation
Interaction						The change in
(Time ×						sour odour over
Treatment)				F (4, 72) =		time depends on
	1.840	4	0.4600	2.875	P=0.0287	treatment.
Time						No significant
Time				F (2.301,		change in sour
(Row				41.41) =		odour intensity
Factor)	1.840	4	0.4600	2.875	P=0.0607	over time alone.
Treatment (Column Factor)	0.8100	1	0.8100	F (1, 18) = 0.9480	P=0.3431	No overall difference in sour odour between the fermented and unfermented groups.
Subject						Panellists varied
(Panellist						significantly in
variation)				F (18, 72)		how they rated
, arranon)	15.38	18	0.8544	=5.340	P<0.0001	sour odour.

A two-way repeated measures ANOVA was used to assess the effects of fermentation treatment, time, and their interaction on sour odour intensity. A significant interaction between time and treatment (p = 0.0287) indicates that the change in grassy odour perception over time differed depending on fermentation condition. A significant subject effect indicates variability among panellist ratings (P<0.0001). No significant main effects of time or treatment were observed. Geisser-Greenhouse correction was applied to the time effect ($\varepsilon = 0.5751$). Note: F = F-ratio; DF = degrees of freedom; SS = sum of squares; MS = mean square.

295

300

Table S11. Statistical summary of pairwise comparison for sour odour intensity between unfermented and *L. plantarum*-fermented microalgae.

Difference between column means	
Mean of Microalgae only	1.220
Mean of L. plantarum_MA	1.400
Difference between means	-0.1800
SE of difference	0.1849
95% CI of difference	-0.5684 to 0.2084

298 Reported values include mean difference, standard error (SE), and 95% confidence interval 299 (CI).

301 Table S12. Two-way ANOVA statistics for fishy odour intensity.

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	Significance and Interpretation
Interaction						No difference in
(Time ×						changes between
Treatment)						fermented and
						unfermented
				F(4,72) =		samples over
	0.1000	4	0.02500	0.06329	P=0.9925	time.
				- /2		
Time				F (2.627,		No significant
				47.29) =		change in fishy
(Row	1.460	4	0.3650	0.9241	P=0.4262	odour intensity

Factor)						over time alone.
Treatment						No overall
						difference in
(Column						fishy odour
Factor)						between the
						fermented and
				F(1, 18) =		unfermented
	0.000	1	0.000	0.000	P>0.9999	groups.
G 1:						D 11: 4 : 1
Subject						Panellists varied
(Panelist						significantly in
variation)				F (18, 72)		how they rated
	24.96	18	1.387	= 3.511	P<0.0001	fishy odour.

302 A two-way repeated measures ANOVA was used to assess the effects of fermentation 303 treatment, time, and their interaction on fishy odour intensity. A significant subject effect 304 indicates variability among panellist ratings (P<0.0001). No significant main effects of 305 interaction, time or treatment were observed. Geisser-Greenhouse correction was applied to the 306 time effect ($\varepsilon = 0.6569$). Note: F = F-ratio; DF = degrees of freedom; SS = sum of squares; MS 307 = mean square.

308

Table S13. Statistical summary of pairwise comparison for fishy odour intensity between unfermented and *L. plantarum*-fermented microalgae.

Difference between column means	
Mean of Microalgae only	1.520
Mean of L. plantarum_MA	1.520
Difference between means	0.000
SE of difference	0.2355
95% CI of difference	1.520

Reported values include mean difference, standard error (SE), and 95% confidence interval (CI).

314 Table S14. Two-way ANOVA statistics for earthy odour intensity.

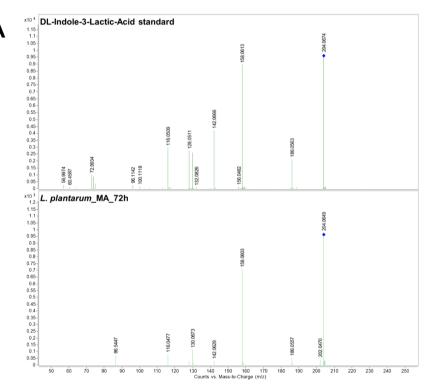
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value	Significance and Interpretation
T						N. 1.00
Interaction						No difference in
(Time ×						changes between
Treatment)				E (4, 70)		fermented and
				F(4, 72) =	0.0400	unfermented
	0.9400	4	0.2350	0.7719	0.9400	samples over time.
Time						No significant
Time				F (3.299,		change in earthy
(Row				59.38) =		odour intensity
Factor)	1.140	4	0.2850	0.9361	1.140	over time alone.
1 333321)	1.140	4	0.2830	0.9361	1.140	over time alone.
Treatment						No overall
						difference in
(Column						earthy odour
Factor)						between the
						fermented and
				F (1, 18) =		unfermented
	0.3600	1	0.3600	0.1617	0.3600	groups.
	0.5000	1	0.3000	0.1017	0.5000	groups.
Subject						Panellists varied
(Panellist						significantly in
variation)				F (18, 72)		how they rated
,	40.08	18	2.227	= 7.314	40.08	earthy odour.

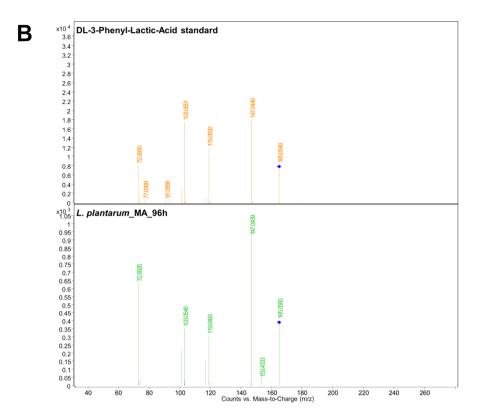
315 A two-way repeated measures ANOVA was used to assess the effects of fermentation 316 treatment, time, and their interaction on earthy odour intensity. A significant subject effect 317 indicates variability among panellist ratings (P<0.0001). No significant main effects of 318 interaction, time or treatment were observed. Geisser-Greenhouse correction was applied to the 319 time effect ($\varepsilon = 0.5470$). Note: F = F-ratio; DF = degrees of freedom; SS = sum of squares; MS 320 = mean square.

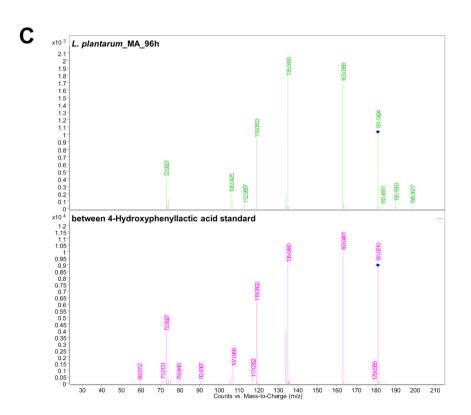
321

Table S15. Statistical summary of pairwise comparison for earthy odour intensity between unfermented and *L. plantarum*-fermented microalgae.

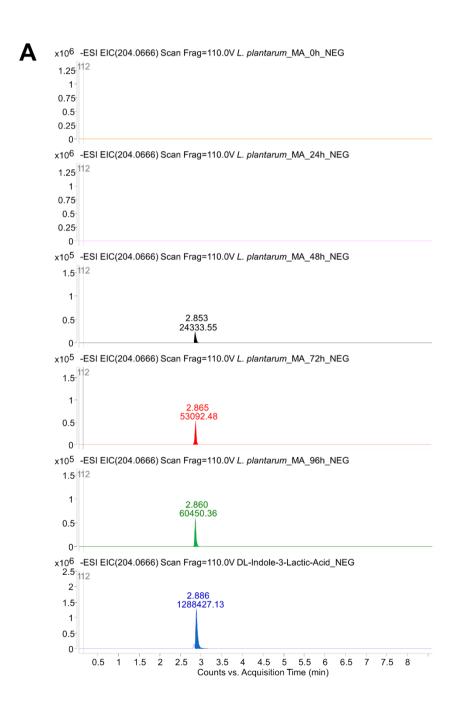
Difference between column means	
Mean of Microalgae only	1.720

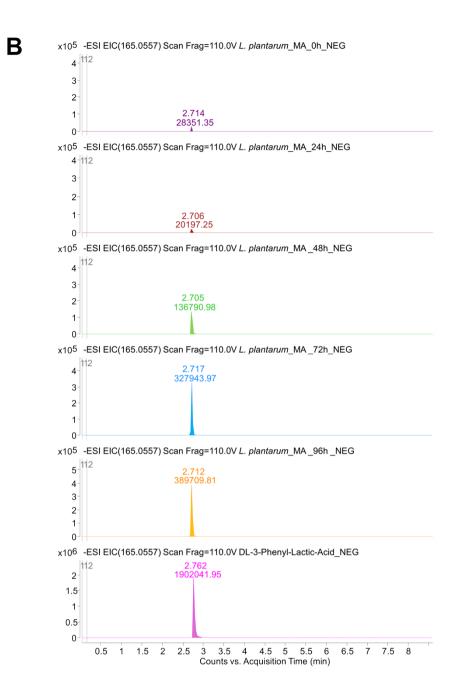

Mean of L. plantarum_MA	1.600
Difference between means	0.1200
SE of difference	0.2984
95% CI of difference	-0.5070 to 0.7470


Reported values include mean difference, standard error (SE), and 95% confidence interval (CI).


326

327 Supporting Figures


Δ



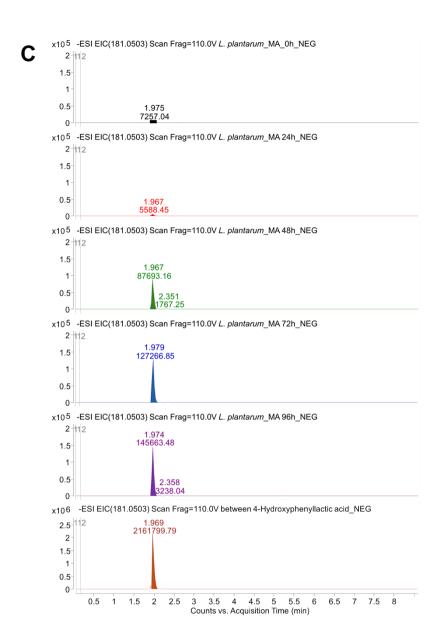


Figure S1. LC-MS/MS fragmentation spectra at collision-induced dissociation (CID)10V of aromatic lactic acid derivatives in *L. plantarum***-fermented microalgae. (A)** MS/MS spectra of key fragment ions matched between DL-Indole-3-lactic acid reference standard and *L. plantarum*-fermented microalgae at 72h of fermentation. **(B)** MS/MS spectra of key fragment ions matched between DL-3-phenyllactic acid reference standard and *L. plantarum*-fermented microalgae at 96 h of fermentation. **(C)** MS/MS spectra of key fragment ions matched between 4-Hydroxyphenyllactic acid reference standard and *L. plantarum*-fermented microalgae at 96h of fermentation.

Figure S2. Extracted ion chromatograms (EICs) from LC-MS showing the bioconversion of precursor amino acids during *L. plantarum*-mediated fermentation of microalgae (MA) over 96 hours. (A–C) LC-MS EICs showing the time-dependent increase in signal intensity of (A) DL-indole-3-lactic acid (m/z 204.0666), (B) D-3-phenyllactic acid (m/z 165.0557), and (C) 4-Hydroxyphenyllactic acid (m/z 181.0503), across fermentation time points (0h, 24h, 48h, 72h, 96h) compared to reference standards.

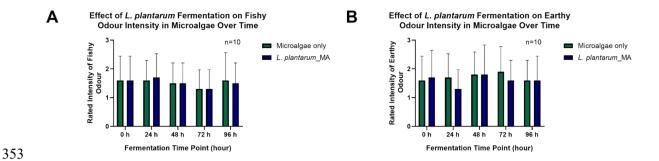


Figure S3. Olfactory evaluation of microalgae fermented with L. plantarum. (A-B) Sensory intensities of (A) fishy and (B) earthy odour attributes in unfermented microalgae (Microalgae only) and L. plantarum-fermented microalgae (L. plantarum_MA) over 96 hours. Olfactory evaluation was performed by an untrained in-house olfactory panel (n = 10), with intensities ranked on a structured 3-point scale (1 = weak, 2 = moderate, 3 = strong). Bars represent mean \pm standard deviation.

370 Supporting References

- 371 1 X. H. Chin, R. Soh, G. Chan, P. Ng, A. Thong, H. Elhalis, K. Yoganathan, Y. Chow and S.
- 372 Q. Liu, Current Research in Food Science, 2025, 10, 100933.
- 373 2 F. L. Sirota, F. Goh, K.-N. Low, L.-K. Yang, S. C. Crasta, B. Eisenhaber, F. Eisenhaber, Y.
- 374 Kanagasundaram and S. B. Ng, *Journal of Genomics*, 2018, **6**, 63–73.
- 375 3 R. Schmid, S. Heuckeroth, A. Korf, A. Smirnov, O. Myers, T. S. Dyrlund, R. Bushuiev, K.
- 376 J. Murray, N. Hoffmann, M. Lu, A. Sarvepalli, Z. Zhang, M. Fleischauer, K. Dührkop, M.
- Wesner, S. J. Hoogstra, E. Rudt, O. Mokshyna, C. Brungs, K. Ponomarov, L. Mutabdžija, T.
- 378 Damiani, C. J. Pudney, M. Earll, P. O. Helmer, T. R. Fallon, T. Schulze, A. Rivas-Ubach, A.
- 379 Bilbao, H. Richter, L.-F. Nothias, M. Wang, M. Orešič, J.-K. Weng, S. Böcker, A. Jeibmann,
- 380 H. Hayen, U. Karst, P. C. Dorrestein, D. Petras, X. Du and T. Pluskal, *Nature Biotechnology*,
- 381 2023, **41**, 447–449.
- 4 Z. Pang, Y. Lu, G. Zhou, F. Hui, L. Xu, C. Viau, A. F. Spigelman, P. E. MacDonald, D. S.
- 383 Wishart, S. Li and J. Xia, *Nucleic Acids Research*, 2024, **52**, 398–406.
- 5 B. Zhou, X. Zhao, L. Laghi, X. Jiang, J. Tang, X. Du, C. Zhu and G. Picone, Foods, 2024,
- 385 **13**, 2911.
- 386 6 L. Wang, J. Xie, Q. Wang, J. Hu, Y. Jiang, J. Wang, H. Tong, H. Yuan and Y. Yang, Food
- 387 *Chemistry: X*, 2024, **23**, 101519.
- 388 7 M. Gil, M. Rudy, P. Duma-Kocan and R. Stanisławczyk, *Applied Sciences*, 2025, **15**, 1530.
- 389 8 M. S. Moazzem, M. Hayden, D.-J. Kim and S. Cho, Foods, 2024, 13, 3269.
- 390 9 N. Muenprasitivej, Electronic Tongue Analysis of Major and Minor Steviol Glycosides and
- 391 Their Application in Foods, https://etd.auburn.edu/handle/10415/8305.
- 392 10 R. I. Potter, J. Lee and C. F. Ross, Food science & nutrition, 2025, 13, e70366.
- 393 11 T. Wang, L. Yang, Y. Xiong, B. Wu, Y. Liu, M. Qiao, C. Zhu, H. Wu, J. Deng and J.
- 394 Guan, Frontiers in Nutrition, 2024, 11, 1435364.
- 395 12 X. Cai, Y. Zeng, K. Zhu, Y. Peng, P. Xv, P. Dong, M. Qiao and W. Fan, Foods, 2025, 14,
- 396 1982.
- 397 13 X. Yin, Y. Lv, R. Wen, Y. Wang, Q. Chen and B. Kong, *Meat Science*, 2021, 172,
- 398 108345.