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1 Experimental section

1.1 Materials

All reagents and solvents were purchased from Accela, Adamas, Innochem, Psaitong 

and Aladdin. Unless otherwise noted, materials obtained from commercial suppliers 

were used without further purification. In addition, the commercial cellulase (Cellic@ 

CTec2, 100 FPU/mL) and hemicellulase (shearzyme 500 L, 100,000 IU/mL) were 

kindly provided from Novozymes (Beijing, China). All commercially available 

chemical reagents were used without further unification unless especially noted. Larch 

(6 years old), Poplar (5 years old), Beech (5 years old) and Pinus (5 years old) were 

used as raw materials in this work, which were extracted, crushed and screened into 

powders in size of 40 ~ 60 meshes (0.5 ~ 1.0 mm), and dried vacuum at 50 ℃ for 72 h 

before used. Lignin model was synthesized according literatures.1 All commercially 

available compounds were used as received, unless otherwise noted.

1.2 General characterizations

The Brunauer-Emmett-Teller (BET) surface area computed by multipoint BET 

analysis of N2 adsorption constant temperature line and N2 adsorption–desorption 

constant temperature line was performed using a Kubo-X1000 equipment (Beijing 

Builder Co. Ltd., China) by liquid N2 (-196 ℃). Samples were allowed to degas under 

vacuum prior to measurement for 5 h at 300 ℃.

X-ray photoelectron spectra (XPS) were obtained using a scanning X-ray microprobe 

(PHI 5000 Verasa, ULAC-PHI, Inc.) with Al Ka emission and a 284.80 eV C1s peak 

used as an internal standard. After the catalyst samples were dissolved in hydrogen 

fluoride (HF) solution, the Cu and Zr contents were measured by inductively coupled 

plasma optical emission spectrometer (ICP-AES) using Thermos IRIS Intrepid II XSP 

emission spectroscopy.

Transmission electron microscope (TEM) was performed by a JEM-2100F FETEM 

fitted with energy dispersive X-ray spectrometer (EDS) for analysis at 100 kV, and the 

high-angle annular dark-field scanning TEM (HAADF-STEM). EDS elemental 

mapping was carried out at 200 kV.

The NH3-TPD was tested on Micromeritics AutoChem II 2920 apparatus to 
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determine the number of acid sites. Typically, about 100 mg of catalyst was restored in 

the H2 stream at 500 °C for 60 min, and before being cooled down to room temperature 

in the He stream. NH3-TPD was allowed to increase in temperature from 50 °C to 800 

°C at 10 °C min-¹ for 30 min. CO2-TPD assays were made on Micromeritics Autochem 

2920 apparatus. A sample was restored at 300 °C then purged for 1 h in a 10% H2/Ar 

stream, and chilled to 50 °C in a He flow. After being exposed to a 5% CO2/He flows 

(1 h, 50 °C) and purged with He (1 h, 50 °C), the sample was treated to 500 °C at 5 °C 

min-¹ at a 30 cm/min He streams, and the dehydrogenated gas was examined by TCD.

The Nuclear Magnetic Resonance Spectroscopy (NMR) spectra were acquired on a 

Bruker Ascend-400 MHz spectrometer instrument (Bruker, Germany). Lignin, oily 

products and synthetic lignin polymer were dissolved in DMSO-d6, whereas lignin 

models were dissolved in CDCl3. As for 2D HSQC NMR experiment, the solvent peak 

(DMSO-d6) at δC/δH 39.5/2.49 was used as an internal reference. The standard Bruker 

implementations of 2D HSQC NMR experiments were used for structural 

characterization and the authentication were assigned according to previously reported 

papers.2-5

X-ray diffraction (XRD) analysis was carried out using a Shimadzu Lab XRD-6100

diffractometer with a Cu Kα radiation source operated at 15 mA and 40 kV. XRD 

patterns were collected in the 2θ range of 10° to 90° at a scan speed of 10°/min with a 

step of 0.02°.

GPC analyses were performed on a Water System (Sunnyvale, CA) equipped with 

an isocratic pump (Waters 1515), an automatic injector (Waters 717), and a Dual 

Absorbance UV detector (Waters 2487) with an Agilent PLgel 3 μm 100 Å 300 × 7.5 

mm column. THF was used as the mobile phase with a column flow rate and 

temperature of 1.0 mL/min and 30 °C, respectively. GPC samples were prepared by 

dissolving 2 mg of lignin in 1 mL of THF and filtered with a 0.45 μm PTFE filter prior 

to injection. The filtered solution (20.0 μL) was injected into the GPC system and 

detected using an UV detector set at 280 nm.6 Seven GPC polystyrene standards (124 

~ 26520 g/mol) purchased from Agilent (Agilent Technologies, Inc., Santa Clara, CA) 

were used for calibration.7
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Gas chromatography (GC) and Gas chromatography-mass spectrometry (GC-MS) 

analyses were performed on a Shimadzu Model 2010 plus with a HP-5 column (30 m 

× 0.25 mm × 0.25 m) employing a flame ionization detector (FID) and a Shimadzu 

GCMS-QP2010SE with a HP-5MS (30 m × 0.25 mm × 0.25 mm) column, respectively. 

Injecting temperature was 250 °C column temperature procedure of 50 °C in 3 min, and 

8 °C/min to 280 °C. The injection temperature of FID was 200 °C. The characterization 

and quantification lignin monomers within oil-based products has been estimated by 

reference to real samples obtained from commercial sourcing or independent synthesis.

2 Catalysts preparation and characterization

2.1 Synthesis of m-ZrO2

The m-ZrO2 was synthesized with a modification according to previous report.8, 9 

The ammonium hydroxide solution was gradually introduced into an aqueous solution 

of zirconium nitrate tetrahydrate (Zr(NO₃)₄·5H₂O) under continuous stirring. The 

mixture was vigorously agitated for 30 minutes until reaching pH 7, followed by 24 h 

aging at room temperature. The resulting precipitate was subsequently filtered, washed 

with deionized water, and dried at 110 ℃ for 12 h. Finally, the m-ZrO₂ support was 

obtained through calcination in air at 500 ℃ for 3 h.

2.2 Synthesis of t -ZrO2

The t-ZrO₂ support was synthesized via a reflux-assisted precipitation method. 

Specifically, 32 g of zirconyl chloride octahydrate (ZrOCl₂·8H₂O) was dissolved in 200 

mL deionized water, followed by the gradual addition of 400 mL ammonium hydroxide 

solution (1 M) under vigorous stirring until pH 10 was attained. The resulting 

precipitate was maintained in its mother liquor at 105 ℃ for one week under reflux 

conditions with the pH = 10. The product was then thoroughly washed with deionized 

water until chloride ions were undetectable by AgNO₃ testing. After filtration, the 

material was dried at 110 ℃ for 12 h and subsequently calcined in air at 800 ℃ for 3 h 

to obtain the t-ZrO₂ support. For the preparation of Cu/t-ZrO₂ catalyst, Cu(NO₃)₂·3H₂O 

was dissolved in the suspension. The mixture was stirred at room temperature, followed 

by drying at 80 ℃ for 12 h and calcination at 500 ℃ for 3 h to yield the final catalyst.
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2.3 Synthesis of CuO/x-ZrO2

The CuO/m-ZrO₂ and CuO/t-ZrO₂ catalysts were synthesized through a facile 

impregnation method. In a typical procedure, an aqueous solution containing a 

Cu(NO₃)₂·3H₂O was introduced to the ZrO₂ support. The mixture was continuously 

stirred at 80 ℃ until complete evaporation of the solvent. The resulting material was 

subsequently dried at 80 ℃ for 12 h, followed by calcination in air at 500 ℃ for 3 h to 

obtain the final CuO/x-ZrO₂ catalysts.

2.4 Synthesis of CuO/SiO2, CuO/TiO2 and CuO/Al2O3

CuO/SiO2, CuO/TiO2 and CuO/Al2O3 samples were prepared with the similar 

synthesis methods of CuO/x-ZrO2 samples, respectively.
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2.5 Characterization of CuO/m-ZrO2

Table S1. ICP-AES analyses for the fresh CuO/m-ZrO2 and spent catalysts.

Sample Cu content (%) Zr content (%)

Fresh CuO/m-ZrO2 28.3 42.7

Spent CuO/m-ZrO2 22.5 34.6
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Table S2. N2 adsorption-desorption of CuO/m-ZrO2 and m-ZrO2 catalyst.

a BET surface area, b Pore Size.

Sample Specific surface area (m2/g)a Pore Size (nm)b

CuO/m-ZrO2 83.8 5.18

m-ZrO2 162.3 4.39
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Figure S1. N2 adsorption-desorption isotherms of m-ZrO2 catalyst.
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Figure S2. NH3-TPD profile of CuO/m-ZrO2.
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(a) (b)

Figure S3. SEM analysis of catalysts. (a) fresh CuO/m-ZrO2; (b) spent CuO/m-ZrO2.
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3 Chemical composition of sawdust

Firstly, the sawdust (particles size: 0.5 ~ 1.0 mm) was extracted with toluene/ethanol 

(2:1, v/v) in a Soxhlet instrument for 12 h, and then dried at 50 ℃ under vacuum for 8 

h. The chemical compositions of woody sawdust were analyzed according to the 

National Renewable Energy Laboratory (NREL) standard analytical procedure 

(NREL/TP-510-42618).10 Typically, woody sawdust (300 mg) was hydrolyzed with 72 

wt% sulfuric acid solution (3.0 mL) at 30 ℃ for 1 h. Deionized water (84.0 mL) was 

then added to dilute sulfuric acid (ca. 3%). This mixture was heated at 120 ℃ for 1 h 

in an autoclave. After cooling, the mixture was filtered through a mixed cellulose ester 

(MCE) membrane filter (0.2 μm). The amount of acid insoluble lignin (AIL, Klason 

lignin) was determined by measurement the weight of residue after drying. The 

concentration of acid soluble lignin (ASL) was determined by UV spectra by measuring 

the absorbance of the soluble fraction at 205 nm. The concentrations of the 

monosaccharides were determined by high performance anion exchange 

chromatography with pulsedamperometry detection (HPAEC-PAD).11
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Table S3. The composition of softwood and hardwood sawdust.a

Entry Substrate AIL (wt%)b ASL (wt%)c
Cellulose

(wt%)

Hemicellulose

(wt%)

1 Larix 26.9 0.3 36.7 26.6

2 Pinus 26.5 0.7 44.3 28.4

3 Poplar 22.4 2.5 42.7 19.7

4 Beech 20.3 2.8 42.1 26.8
a The compositions of biomass were analyzed according to the procedures of the NREL 
method. b AIL: acid insoluble lignin (Klason lignin). c ASL: acid soluble lignin.
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4 Catalytic hydrogenolysis of woody biomass

In a typical reaction, woody sawdust (50 mg), CuO/m-ZrO₂ (25 mg) and MeOH (10 

mL) were charged into a 50 mL Parr autoclave. The reactor was sealed, purged with 

nitrogen, and then was pressured to H2 (3 MPa) at room temperature. The reaction was 

carried out at different temperatures for a certain time with a magnetic stirring at 800 

rpm. After completion, the autoclave was cooled (2.8 ~ 2.9 MPa) and depressurized 

carefully. Then the reaction mixture was filtered, and the insoluble fraction was washed 

with dichloromethane. Subsequently, the solution fraction was extracted with 

dichloromethane (DCM) and the resulting lignin oily product was obtained after 

removing all volatiles under vacuum condition. An external standard was added to the 

lignin oil solution in dichloromethane, which was subjected to GC and GC-MS for 

analysis. The identification and quantification of lignin monomers in the oily product 

were assessed by comparison with authentic samples acquired from commercial 

purchase or independent synthesis. In the case of commercial catalysts, 25 mg Ru/C 

(Ru content: 5 wt%) or 25 mg Pd/C (Pd content: 5 wt%) were used for the 

hydrogenolysis of Larch sawdust (50 mg).

5 Scale-up of catalytic processes

Larch sawdust (5 g), CuO/ m-ZrO₂ catalyst (1 g) and MeOH (30 mL) were mixed 

into a 100 mL Parr autoclave, which was then flushed with N2 for three times and 

pressurized with 3 MPa H2 at room temperature. Subsequently, the mixture was stirred 

at 500 rpm and maintained at 240 oC for 4 h. After completion of the reactions, the 

autoclave was cooled in water and depressurized at room temperature. The solid pulp 

and catalyst were filtered and thoroughly washed with dichloromethane. The combined 

organic phase of dichloromethane was concentrated and analyzed by GC and GC-MS. 

Moreover, the corresponding products were purified by a column chromatography 

(silica, petroleum ether–ethyl acetate) and characterized by NMR and GC-MS analysis.
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6 Lignin products analysis

6.1 Monomers analysis

Gas chromatography (GC) and Gas chromatography-mass spectrometry (GC-MS) 

analyses were performed on a Shimadzu Model 2010 plus with a HP-5 column (30 m 

× 0.25 mm × 0.25 mm) employing a flame ionization detector (FID) and a Shimadzu 

GCMS-QP2010SE with a HP-5MS (30 m × 0.25 mm × 0.25 mm) column, respectively. 

Injecting temperature was 250 ℃. A column temperature procedure of 50 ℃ in 3 min, 

and 8 °C min-¹ to 280 ℃. The injection temperature of FID was 200 ℃. The 

characterization and quantification lignin monomers within oil-based products has been 

estimated by reference to real samples obtained from commercial source or independent 

synthesis. The monomer yields were calculated using the formula:

Monomer yield (𝑤𝑡%) =  
𝑀𝑎𝑠𝑠 (𝑚𝑜𝑛𝑜𝑚𝑒𝑟)

𝑀𝑎𝑠𝑠 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑔𝑛𝑖𝑛)
× 100%                        (1)

Monomer yield (𝑤𝑡%) =  
𝑀𝑜𝑙𝑒 (𝑚𝑜𝑛𝑜𝑚𝑒𝑟)

𝑀𝑜𝑙𝑒 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑔𝑛𝑖𝑛)
× 100%                        (2)

6.2 Delignification

For the soluble fraction, the dichloromethane was removed under vacuum to give 

crude “lignin oil”, which was weighted to determine the degree of delignification (based 

on Klason lignin weight).

Delignification (𝑤𝑡%) =  
𝑀𝑎𝑠𝑠 (𝐿𝑖𝑔𝑛𝑖𝑛 𝑜𝑖𝑙)

𝑀𝑎𝑠𝑠 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑔𝑛𝑖𝑛)
 ×  100%                        
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Figure S5. Gas chromatogram of the monomers from RCF reaction of β-O-4′ model 

compounds over different catalysts.
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Table S4. Products distribution of CuO/m-ZrO2-catalyzed hydrogenolysis of β-O-4′ model compounds at different recycle times.a

OH
OMe

OH
OMe

2

+ +
CuO/m-ZrO2

OH
OMe

Pe-G

3 MPa H2, MeOH, 240 oC

OH
O

OHHO

MeO
OMe

+

OH
OMe

Pol-G
OH

Pr-G1

Phenolic monomers yield (wt%)
Entry Run

2 Pr-G Pe-G

Total monomer

(wt%)

1 1 43.1 27.6 2.4 73.1

2 2 28.7 4.6 20.1 53.4

3 3 20.3 5.5 12.1 37.9

4 4 12.8 3.5 9.4 25.7

a Reaction condition: β-O-4′ model compounds (10 mg), CuO/m-ZrO2 (25 mg), MeOH (10 mL), 240 °C, H2 (3 MPa), and 4 h.
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Figure S7. Gas chromatogram of the different recycle times from RCF reaction of β-O-

4′ model compounds over a CuO/m-ZrO2 catalyst.
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Figure S9. GPC of lignin monomer (Pol-G), dimer, trimer, and lignin oily product 

from catalytic hydrogenolysis of Larch sawdust over a CuO/m-ZrO2 catalyst.
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Table S5. Products distribution catalyzed hydrogenolysis of Larch sawdust under different catalysts.a

Larch sawdust

OH
OMe

OH
OMe

OH

Pr-G Pol-G

+ +
Catalyst

OH
OMe

+

Et-G

OH
OMe

Pe-G

+

OH
OMe

Al-G

3 MPa H2, MeOH, 240 oC, 4 h

Phenolic monomers yield (wt%)

Entry Catalyst
Pr-G Pol-G Et-G Pe-G Al-G

Total 

monomer

(wt%)

1 CuO/m-ZrO2 2.9 15.4 0.3 NDb ND 18.6

2 Pd/C 2.4 12.2 3.2 ND ND 17.8

3 Ru/C 11.6 2.5 0.6 ND ND 14.7

4 CuO/Al2O3 6.5 0.4 0.3 5.2 ND 12.4

5 CuO/TiO2 6.7 3.6 0.4 ND ND 10.7

6 CuO/t-ZrO2 7.4 3.4 0.2 ND ND 10.9

7 CuO/SiO2 0.3 ND ND 7.8 0.7 8.8

8 m-ZrO2 0.5 ND ND 7.3 0.6 8.4
a Reaction condition: Larch sawdust (50 mg), catalyst (25 mg), solvent (10 mL), 240 °C, H2 (3 MPa), and 4 h.
b ND, not detectable. 
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Figure S10. Gas chromatogram of the different catalysts from RCF reaction of Larch 

sawdust.
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Table S6. Products distribution of CuO/m-ZrO2-catalyzed hydrogenolysis of Larch sawdust at various mass fraction.a

Larch sawdust

OH
OMe

OH
OMe

OH
Pr-G Pol-G

+ +

CuO/m-ZrO2

OH
OMe

+

Et-G

OH
OMe

Pe-G

+

OH
OMe

Al-G

3 MPa H2, MeOH, 240 oC, 4 h

Phenolic monomers yield (wt%)

Catalyst
Pr-G Pol-G Et-G Pe-G Al-G

Total 

monomer

(wt%)

10%Cu/m-ZrO2 0.5 NDb ND 4.1 4.8 9.4

20%Cu/m-ZrO2 3.6 1.7 ND 6.2 2.9 14.5

30%Cu/ m-ZrO2 5.3 8.4 0.4 0.6 ND 14.7

40%Cu/ m-ZrO2 7.4 8.6 0.5 ND ND 16.5

45%Cu/ m-ZrO2 2.9 15.4 0.3 ND ND 18.6

50%Cu/ m-ZrO2 2.6 12.6 0.4 ND ND 15.6

60%Cu/ m-ZrO2 2.1 8.0 0.4 ND ND 10.5
a Reaction condition: Larch sawdust (50 mg), CuO/m-ZrO2 (25 mg), solvent (10 mL), 240 °C, H2 (3 MPa), and 4 h.
b ND, not detectable.
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Figure S13. Gas chromatogram of the monomers from RCF reaction of lignin from 

Larch sawdust over a CuO/m-ZrO2 catalyst under different various mass fraction.

10 12 14 16 18 20 22

Retention time (min)

Mw  826 g mol-1

Mw  366 g mol-1

Mw  830 g mol-1

Mw  386 g mol-1

Mw  482 g mol-1

Mw  327 g mol-1

Mw  268 g mol-1

10%

20%

30%

40%

45%

50%

60%

Trimer Mw 428 g mol-1
Dimer Mw 251 g mol-1

Monomer Mw 164 g mol-1

Molar mass scale Mw  544 g mol-1

Figure S14. GPC of lignin oil products from RCF reaction of lignin from Larch sawdust 

over a CuO/m-ZrO2 catalyst under different various mass fraction.
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Table S7. Products distribution of CuO/m-ZrO2-catalyzed hydrogenolysis of Larch sawdust under different solvents.a

Larch sawdust

OH
OMe

OH
OMe

OH

Pr-G Pol-G

+ +
CuO/m-ZrO2

OH
OMe

+

Et-G

OH
OMe

Pe-G

3 MPa H2, 240 oC, 4 h

Phenolic monomers yield (wt%)
Solvent

Pr-G Pol-G Et-G Pe-G

Total monomer

(wt%)

MeOH 2.9 15.4 0.3 NDb 18.6

EtOH 3.8 ND 3.6 3.6 11.6
iPrOH 2.5 ND ND 6.4 8.9

Dioxane 1.5 ND ND 6.1 7.6
a Reaction condition: Larch sawdust (50 mg), CuO/m-ZrO2 (25 mg), solvent (10 mL), 240 °C, H2 (3 MPa), and 4 h.
b ND, not detectable.
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Figure S15. Gas chromatogram of the monomers from RCF reaction of lignin from 

Larch sawdust over a CuO/m-ZrO2 catalyst under different solvents.
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Figure S16. GPC of lignin oil products from RCF reaction of lignin from Larch sawdust 

over a CuO/m-ZrO2 catalyst under different solvents.
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Table S8. Products distribution of CuO/m-ZrO2 catalyzed hydrogenolysis of Larch sawdust under different reaction temperatures.a

Larch sawdust

OH
OMe

OH
OMe

OH
Pr-G Pol-G

+ +
CuO/m-ZrO2

OH
OMe

Et-G

3 MPa H2, MeOH, 4 h

Phenolic monomers yield (wt%)Temperatur

e (℃) Pr-G Pol-G Et-G

Total monomer

(wt%)

200 2.1 8.0 0.3 10.4

220 3.1 12.4 0.4 15.9

240 2.9 15.4 0.3 18.6

260 5.2 14.8 0.9 20.9

a Reaction condition: Larch sawdust (50 mg), CuO/m-ZrO2 (25 mg), MeOH (10 mL), H2 (3 MPa), 4 h.
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Figure S17. Gas chromatogram of the monomers from RCF reaction of lignin from 

Larch sawdust over a CuO/m-ZrO2 catalyst under different catalyst temperatures.
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Figure S18. GPC of lignin oil products from RCF reaction of lignin from Larch sawdust 

over a CuO/m-ZrO2 catalyst under different catalyst temperatures.
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Table S9. Products distribution of CuO/m-ZrO2 catalyzed hydrogenolysis of Larch sawdust with different reaction times.a

Larch sawdust

OH
OMe

OH
OMe

OH

Pr-G Pol-G

+ +
CuO/m-ZrO2

OH
OMe

+

Et-G

OH
OMe

Pe-G

3 MPa H2, MeOH, 240 oC

Phenolic monomers yield (wt%)
Time (h)

Pr-G Pol-G Et-G Pe-G

Total monomer

(wt%)

1 1.0 7.9 NDb 1.0 9.9

2 1.0 9.4 0.3 ND 10.7

4 2.9 15.4 0.3 ND 18.6

6 3.9 15.1 0.4 ND 19.4
a Reaction condition: Larch sawdust (50 mg), CuO/m-ZrO2 (25 mg), MeOH (10 mL), 240 °C, H2 (3 MPa).
b ND, not detectable.
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Figure S19. Gas chromatogram of the monomers from RCF reaction of lignin from 

Larch sawdust over a CuO/m-ZrO2 catalyst under different reaction times.
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Figure S20. GPC of lignin oil products from RCF reaction of lignin from Larch sawdust 

over a CuO/m-ZrO2 catalyst under different reaction times.
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Table S10. Products distribution of CuO/m-ZrO2 catalyzed hydrogenolysis of Larch sawdust at different catalyst dosages.a

Larch sawdust

OH
OMe

OH
OMe

OH

Pr-G Pol-G

+ +
CuO/m-ZrO2

OH
OMe

+

Et-G

OH
OMe

Pe-G

+

OH
OMe

Al-G

3 MPa H2, MeOH, 240 oC, 4 h

Phenolic monomers yield (wt%)Catalyst

dosage (mg) Pr-G Pol-G Et-G Pe-G Al-G

Total monomer

(wt%)

10 NDb 0.9 ND 4.4 1.7 7.0

15 0.6 3.8 ND 4.2 2.3 10.9

20 1.9 6.6 ND 3.5 ND 12.0

25 2.9 15.4 0.3 ND ND 18.6

30 2.2 13.4 0.4 ND ND 16.0
a Reaction condition: Larch sawdust (50 mg), MeOH (10 mL), H2 (3 MPa), and 4 h.
b ND, not detectable.
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Figure S21. Gas chromatogram of the monomers from RCF reaction of lignin from 

Larch sawdust over a CuO/m-ZrO2 catalyst under different reaction dosages.
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Figure S22. GPC of lignin oil products from RCF reaction of lignin from Larch sawdust 

over a CuO/m-ZrO2 catalyst under different reaction dosages.
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Table S11. Products distribution of CuO/m-ZrO2 catalyzed hydrogenolysis of various wood sawdust.a

Sawdust

OH
OMe

OH
OMe

OH
Pr-G Pol-G

+ +

CuO/m-ZrO2
OH

OMe
+

Et-G

OH
OMe

Pe-G

+
3 MPa H2, MeOH, 240 oC, 4 h

OH
OMe

OH
OMe

OH
Pr-S Pol-S

+ +

OH
OMe

Et-S

MeO MeO MeO

Phenolic monomers yield (wt%)

Total 

monomer

(wt%)
Sawdust

Et-G Pe-G Pr-G Et-S Pr-S Pol-G Pol-S

Beech NDb ND ND 0.8 3.7 10.5 18.0 33.0
Hardwood

Poplar ND ND 2.6 1.9 8.1 8.6 14.6 35.8

Larch 0.3 ND 2.9 ND ND 15.4 ND 18.6
Softwood

Pinus 0.8 2.2 2.0 ND ND 10.8 ND 15.8

a Reaction condition: Wood sawdust (50 mg), CuO/m-ZrO2 (25 mg), MeOH (10 mL), H2 (3 MPa), 240 ℃, and 4 h.
b ND, not detectable.
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Figure S23. Gas chromatogram of the monomers from RCF reaction of lignin from 

various wood sawdust over CuO/m-ZrO2 catalysts.
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Figure S24. GPC of lignin oil products from RCF reaction of lignin from various wood 

sawdust over CuO/m-ZrO2 catalysts.
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7 Identification and quantitation of phenolic monomers

More details could be found in our previous work.12

CAS: 2305-13-7, 4-n-propylguaiacol (Pr-G) was prepared following previously 

reported procedures.13
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Figure S25. Standard curve of compound Pr-G. Mass spectra of standard sample Pr-

G. GC spectra of product derived from lignin depolymerization and standard sample 

Pr-G.
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CAS: 2785-87-7, 4-n-guaiacol (Pol-G) was commercially available.14
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Figure S26. Standard curve of compound Pol-G. Mass spectra of standard sample Pol-

G. GC spectra of product derived from lignin depolymerization and standard sample 

Pol-G.
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CAS: 97-54-1, 2-methoxy-4-[(1E)-prop-1-en-1-yl] phenol (Pe-G) was prepared 

following previously reported procedures.15
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Figure S27. Standard curve of compound Pe-G. Mass spectra of standard sample Pe-

G. GC spectra of product derived from lignin depolymerization and standard sample 

Pe-G.
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CAS: 97-53-0, 4-allyl-2-methoxyphenol (Al-G) was commercially available.
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Figure S28. Standard curve of compound Al-G. Mass spectra of standard sample Al-

G. GC spectra of product derived from lignin depolymerization and standard sample 

Al-G. 
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CAS: 2785-89-9, 4-ethylguaiacol (Et-G) was commercially available.
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Figure S29. Standard curve of compound Et-G. Mass spectra of standard sample Et-

G. GC spectra of product derived from lignin depolymerization and standard sample 

Et-G. 
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CAS: 6766-82-1, 4-n-propanolsyringol (Pol-S) was commercially available.16
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Figure S30. Standard curve of compound Pol-S. Mass spectra of standard sample 

Pol-S. GC spectra of product derived from lignin depolymerization and standard 

sample Pol-S.
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CAS: 20736-25-8, 4-n-propylsyringol (Pr-S) was prepared following previously 

reported procedures.17
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Figure S31. Standard curve of compound Pr-S. Mass spectra of standard sample Pr-S. 

GC spectra of product derived from lignin depolymerization and standard sample Pr-

S.
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CAS: 6766-82-1, 2,6-Dimethoxy-4-ethylphenol (Et-S) was commercially available.
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Figure S32. Standard curve of compound Et-S. Mass spectra of standard sample Et-S. 

GC spectra of product derived from lignin depolymerization and standard sample Et-S.
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CAS: 90-05-1, guaiacol (2) was commercially available.
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Figure S33. Standard curve of compound 2. Mass spectra of standard sample 2. GC 

spectra of product derived from lignin depolymerization and standard sample 2.
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Figure S34. 1H and 13C NMR spectra of 4-n-propylguaiacol (Pr-G).
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Figure S35. 1H and 13C NMR spectra of 4-n-guaiacol (Pol-G).
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