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1. Experimental methods:

1.1 Device fabrication: The required membrane was cut into different geometries and
embedded within a polydimethylsiloxane (PDMS) matrix. The polymer was
allowed to cure at room temperature for 12 h. After curing, two reservoirs adjacent
to the membrane were carved into the device and filled with electrolyte solutions as

depicted for a triangular membrane piece in Figure S1.

Vacuum filtration Reservoirs

Figure S1: Schematic representation for device fabrication steps
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Dimensions of membranes used for fabricating fluidic devices of different
geometries are described below:

e HFM (VO-0-CNT bilayer):

(a) (b)

0.5cm 1.0cm

1.7 cm 1.7 cm

(c)

Lateral View

Figure S1.1: VO-0-CNT heterostructure fluidic membrane (HFM), top view of (a)
rectangular strip and (b) triangular strip with dimensions, (¢) Schematic of the lateral view
with cross sectional FESEM image of the rectangular and triangular strips.
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e IFM (VO and 0-CNT) device:

(a) (b)

0.3cm 0.3cm

0.5cm 0.5cm
Top View

(c)

Lateral View

Figure S1.2: VO and o-CNT intermixed fluidic membrane (IFM), Schematic illustration of
(a) the top view of rectangular strip and (b) triangular strip with dimensions, and (b) lateral
view with FESEM cross sectional image of the rectangular and triangular strips.
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(a)

Figure S2: (a) AFM image along with the corresponding height profile of VO nanosheets.
(b) FESEM 1mage illustrating surface morphology of VO membrane. (¢) Cross sectional
FESEM image of VO membrane.

2 Supporting figures for characterization:
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Figure S3: Characterisation of 0o-CNT membrane: (a) FTIR spectra of CNT and o-CNT,

exhibiting new peaks at 1100 and 3300 cm_1 arising due to oxidation (b) RAMAN spectra
showing increased ID/IG ratio of o-CNT due to functionalization. (¢) XPS plot of o-CNT and

CNT depicting higher O/C ratio of oxidised CNT than that of the pristine CNTs. (d) FESEM and

() AFM image showing fibrous morphology of oCNTs.
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3 Calculations:

3.1 Determination of photothermal conversion efficiency: (n)

The photothermal conversion efficiency (n) was calculated using the formula mentioned

below:

n=Q/E = (cmAT)/pst
Here, Q denotes the thermal energy produced by the absorber, while E corresponds to the total
energy of the incident light. The parameters ¢ and m represent the specific heat capacity and
mass of the photothermal material, respectively. AT indicates the temperature rise under light
exposure, p refers to the power density of the light source, and s and t denote the irradiated area
and duration of exposure.
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3.2 Determination of transport number:
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Figure S5: Voltage vs time plot obtained with HFM under a 10* - fold concentration gradient of
KCI. The transport number was calculated to be ~ 0.8, from the potential drop at 300 sec.

The transport number of the HFM membrane was determined by recording the potential
difference across electrolyte solutions with different concentrations (10! and 10> M KCl). The

transport number of cations were calculated by using the equation 1 given below:

RT

E;=Vops. = Viedox = (2t.-1) X ?ln cl/c2
Here, £ ;denotes the junction potential, ¥, is the observed potential across the membrane, and
Vedox TEPresents the potential drop arising from redox processes at the electrode—electrolyte
interface. #. corresponds to the cation transport number, R is the universal gas constant, 7 is the
absolute temperature, F' is the Faraday constant, and ¢; and c: represent the higher and lower

electrolyte concentrations, respectively.
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Here, V.4 refers to the Nernst potential generated at the electrode—electrolyte interface as a
result of unequal chloride concentrations in the reservoirs. The values employed were
theoretically calculated using the Nernst equation (Equation 2) for different concentration
gradients.

kgT

redox — —Incl/c2
qion ............ (2)

4

Here, kg denotes the Boltzmann constant, 7 is the absolute temperature (K), g;,, is the charge
of the migrating ion, and ¢, and c, represent the higher and lower electrolyte concentrations,
respectively.

3.3 Determination of ion delivery rate from /- curve:

The ion delivery rate was derived from the I-t curve by considering the current values as
indicative of the number of ions moving from the higher-concentration region to the lower-
concentration side of the fluidic triangle. The average ion transport rate across the membrane
was then obtained by integrating the I-t curve and dividing the resulting area by the time
interval (2 — t:).

Area under curve

Average current = — -
Time dif ference (t, — t1)

From the average current value, the rate of ion transport through the nanochannels was

calculated as follows:

Since 1 ampere corresponds to 1 coulomb of charge per second, and the charge on a single

. . -19 .
ion is 1.6 X 1077 C, let the average current obtained from the area under the I-t curve be

XA.

The number of ions corresponding to a charge of XC/s is:
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x C/s
1.6 x 10~ CJion

Therefore, the characteristic ion transport rate is:

X

m ions/s

This value is then converted to mol/min using:

_ (Average area) X 60 '
Delivery rate = mol/min

1.6 x 10" % 6.022 x 10%3

3.4 Determination of conductivity of drain reservoir:

To measure conductivity in the drain reservoir, I~V curves were recorded at regular time
intervals through two Ag/AgCl electrodes, positioned approximately 0.4 cm apart inside the
drain reservoir. The conductivity was determined by normalizing the slope of each -V curve

with respect to the electrode separation and the cross-sectional area of the reservoir.

3.5 Determination of channel height:

The average channel height (%.;) was determined by utilizing the equation mentioned below:

_ox107°
o CN,e

where, o is the surface charge density, Ny is the Avogadro’s number, e is the electronic charge

and C, is the transition concentration. The transition concentration is determined from the
surface charge governed ionic conductivity plot of the system (Figure S3). To calculate the

surface charge density, the following equation is used:
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Here, ¢ is the dielectric constant of water, g is the permittivity in vacuum, { is the zeta potential

of the V,05 and o-CNT intermixed (100:150) dispersion and A, is the Debye length of water.

g 1 0_1 _ —— |[FM; oCNT:VO (100:150)
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Figure S6: Determination of transition concentration (C,) from the surface charge governed
ionic conductivity plot for rectangular VO-0-CNT (IFM; o-CNT:VO ratio: 100:150).
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4 Supporting figures and tables
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Figure S7: (a) FTIR spectra, and pXRD pattern of (b) VO and HFM. (c) XRD patterns of HFM in
dry and wet states.
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Figure S8: (a) Current vs voltage (I-V) plot of rectangular HFM device. (b) Conductivity vs KCl
concentration plot of HFM device exhibiting characteristic surface charge governed ionic transport.

Zeta Potential Distribution

Zeta Potential Distribution ( b
BO000 T+ =+ o rr e R
: : : : I
] i : : H :
FO000 F= 4 s G A e e e Bt i et R R e 2 | > z
: A : : % 20000 - - e ik | ‘;f ..... R
: 1 ; i 3 : | ;
0000 F s Tr R E s e e R e s s men s % | :
: : : 2 oo [ ST FAL.. TR
: : . = 10000 . \ : 2
US| NSRRI R—; 15 (- (T S————. ; 1 :
0 t 0 \
2200 gl 2 10 -200 -100 0 100
Apparent Zeta Potential (mV) Apparent Zeta Potential (mV)

Zeta Potential Distribution (d) —~ 0
7177075 0 E
: y v—10
<1111} SERKREEESTIRESRERRTSR IR (IR ARRRER —_
=
©
= . —
LT L -IE 20
Kl
PR RN WO | | T NO— 230
o ]
0 : : ‘ : : -40
-200 -100 0 100 E 1
Apparent Zeta Potential (mV) (D _
N o0

VO VO-0-CNT o-CNT

Figure S9: Zeta potential distribution plot for aqueous dispersion of (a) VO, (b) VO-0-CNT and
(c) 0-CNT, (d) a comparison plot for zeta potential for the dispersions.
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Figure S10: The observed ion delivery rates for five HFM devices in similar configurations (source
with 10"! M and drain with 10> M KCI solutions).
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Figure S11: (a) Current vs time plot of triangular o-CNT membrane compared with that of triangular
VO membrane (10! M KCl as source and 10> M KCl at drain). (b) I-V plot showing increment in ionic
conductivity value inside the drain reservoir after 300 seconds.
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Figure S12: Current vs time plot of triangular HFM device with 10! M KCI at the base and DI water
at the vertex of the triangular membrane.
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Figure S13: Current vs time (I-t) measurements, for a triangular HFM device under a 10* fold
concentration gradient, with 0.1 M KCI placed at the base (source), (a) at a regular interval of time (4
hours), (b) for long term release of ions (10,000 seconds), exhibiting consistent release of potassium
ions.
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Figure S14: The increment percentage obtained from the area under /-f graph upon light illumination,
plotted for five different HFM devices in similar device configuration.
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Figure S15: (a) The temperature variation of the triangular HFM device upon the intensity variation
of the illuminated light. (b) Delivery rates obtained through ICP-MS analysis before and after light
illumination for devices with varying thicknesses. (¢) /-f plot demonstrating increasing current pulses
upon increasing irradiated light intensity from 45 to 300 klux.
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System Stimulus Transported Transport Rate/ratio/ Ref.
ion/molecule metric percentage

Table 1: A table comprising of a few stimuli-responsive ionic/molecular systems with their corresponding
transport metrics and stimulus.
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AAO
membrane
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with
ferrofluids
Hydrogel-
based porous
gating systems
(HPGSs)
Functionalised
COF
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Nanopores

GO
membrane

External  Dodecyl trimethyl Transport 0-36.6 pgmL™!
magnetic ammonium speed min!
field chloride (close to open
(DTAC)molecules state)
pH Doxorubicin hydro Colour 1.47% to
chloride (DOX) change and  72.80% in 48 hrs
concentration (pH>7)
determination
Light Potassium ions Transport 3.2x1012
rate ions/scm?
Conc. Difference
(2000:1)
Voltage lons Rectification Over 40,000
ratio
Light Ions Transport 0.78 mol h™' m™
rate
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Figure S16: UV-vis plot demonstrating absence of Trp peaks (at 218 and 280 nm) in the molecular
diffusion experiment through HFM, 0-CNT, and VO membrane.
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Figure S17: (a) pXRD pattern showing relative increase in the intensity of subordinate peaks of the
I[FM in comparison to that of VO, (b) FTIR spectra for IFM with VO and o-CNT exhibiting peaks
corresponding to both the components.
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Figure S18: Characteristic surface charge governed ionic conductivity plot of the IFM (o-CNT : VO =
100:150).
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Figure S19: (a) I-V plot of triangular IFM with symmetrical (10> M KCl both sides) and asymmetrical
electrolytes (0.1 M KCl at the base and 10> M KClI at the vertex) b) The current vs time plot of 100:150,
0-CNT: VO triangular IFM with 0.1 M KCl as source and 10> M KClI as drain electrolyte. (¢) The ionic
pulsing through IFM device under light illumination (15 second pulses).
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Figure S20: (a) UV-vis plot of Trp with increasing concentration. (b) the calibration curve of
concentration with absorbance at 218 nm.
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Figure S21: Variation of diffusion rate of Trp with increasing concentration.
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Figure S22: (a) HPLC peak, and (b) area under the peak of Trp at different concentrations. (c)
Delivery rates of Trp calculated from HPLC analysis through IFM of different compositions.
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Figure S23: (a) UV-vis plot exhibiting absorbance for aspirin molecule in drain reservoir of IFM. (b)
corresponding calibration plot at A=230 nm.
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Figure S24: (a) The increment in Trp delivery upon light illumination on the IFM devices. (b) Thermal
image of the IFM device along with a digital image in the subset.
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