Supplementary material

Fruits native to South America: a narrative review of biological properties and chemical profile

Compilation of scientific name, common name, image, and main outcomes of studies on chemical profile, anti-inflammatory, antioxidant and antimicrobial properties of selected fruits native to South America.

Scientific	Fruit image	Common	Country	Chemical profile	Anti-inflammatory properties	Antioxidant properties	Antimicrobial properties
name	Inter S. M. Turk Manager and M. Mala	name	of origin				
Alibertia patinoi Borojoa patinoi	Source: Giovanny Garzon Pardo, CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/4.0>, via Wikimedia Commons</https:>	Borojo	Colombia, Venezuela , Ecuador	Studied part of the fruit: fruit. <u>Main outcomes</u> : Using the SPME–GC– M technique, 21 volatile compounds were identified, with 2-nonanol being the main component. The volatile fraction was distributed among different chemical classes: eight alcohols, eight esters, two ketones, two carboxylic acids and one monoterpene compound. The alcohol family represented 68.78% of the total volatile compounds, with 2-nonanol (53.52%), responsible for the fruity and pulpy aroma. DOI: 10.1016/j.indcrop.2014.10.047	No anti-inflammatory studies available for this fruit.	Studied part of the fruit: fruit pulp and peel. <u>Main outcomes</u> : Three different extraction processes (methanol; ethanol+acetone; and water) were tested and assessed the antioxidant potential by FRAP, DPPH and Ferrous ion-chelating (FIC). As results, the ethanol+acetone extract presented the highest antioxidant potential for all tested methodologies, being FRAP: 426.58 μM of Trolox equivalents/100g; DPPH: 55.55 μM of Trolox equivalents/100g; and FIC: 1.63 μM of Ethylenediaminetetraacetic acid equivalent/100g DOI: 10.1016/j.indcrop.2014.10.047	Main outcomes: In general, all the strains were inhibited by the BAE showing inhibition halos ranging between 10.3 ± 0.7 and 22.4 ± 0.9 mm. The most sensible strains were <i>S. enteritidis</i> SE4406 (22.4 ± 0.9 mm) followed by <i>S. typhimurium</i> SE48 (15.32 ± 0.5 mm) and Gram-positive bacteria (<i>L. monocytogenes, S. aureus</i> and <i>B. thermosphacta</i>) DOI: 10.1016/j.indcrop.2014.10.047
Anacardi um occidenta le	Source: Wilfredor, CC0, via Wikimedia Commons	Cajú	Brazil	Studied parts of the fruit: whole fruit. <u>Main outcomes</u> : By the UPLC-ESI-QTOF technique, 13 phenolic compounds were identified in different genotypes: two phenolic acids (digalloyl glucoside and cinnamoyl glucoside), 5 glycosylated flavonoids (myricetin-O- hexoside, myricetin-O-rhamnoside, quercetin-O-hexoside, quercetin-O- rhamnoside, and isorhamnetin-O- hexoside), and 6 anacardic acids. DOI: 10.1016/j.fbio.2021.100931	Studied parts of the fruit: leaf. <u>Main outcomes</u> : Leaf extract (0.5-5 µg/mL) suppressed TNF-α and IL-1β production in activated macrophage culture. DOI: 10.1155/2017/2787308	Studied parts of the fruit: fruit and fibers. <u>Main outcomes</u> : Antioxidant potential of fruit juice and fibers was analyzed after the simulated gastrointestinal digestion <i>in vitro</i> . It was observed a decrease in antioxidant potential for juice (27% decrease) and for fiber (10.2%) after digestion. DOI: 10.1155/2018/3753562	Main outcomes: Solutions using higher A. occidentale concentrations were capable of inhibiting the microbial growth (S. epidermidis ATCC 12228 or Staphylococcus aureus ATCC 25923). S. epidermidis was the more sensitive organism. DOI: 10.1590/S1516- 89132012000600006 Main outcomes: Antimicrobial activity was evaluated on Staphylococcus aureus ATCC 25923, Listeria monocytogenes ATCC 19115, Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 51812. Only L-CAE exerted antimicrobial activity against Listeria monocytogenes; treatment with 50 and 100 mg/mL L-CAE produced zones of inhibition around the colonies with sizes of 11 and 13 mm, respectively. CG-CAE and M-CAE did not exhibit antibacterial activity. DOI: 10.1007/s13197-020-04594-0
Ananas comosus	Source:	Abacaxi/ Pineapple	Brazil, Paraguay, Argentina	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Fruits were analyzed for their phenolic profile using ESI(–)FT-ICR MS and ESI(–)MS/MS techniques, and 13 compounds were	<u>Studied parts of the fruit</u> : leaf. <u>Main outcomes</u> : Oral administration of leaf extract (100-500mg/kg) reduced paw edema in mice. In vitro (50-500 μg/mL), it modulated the production of	Studied part of the fruit: peel. <u>Main outcomes</u> : An <i>in vivo</i> experiment was done with winstar rats fed with a high-fat diet and threated with the pineapple peel extract.	<u>Main outcomes</u> : Pineapple extract (<i>Ananas comosus L</i> . Merr.) is dissolved in aquadest, then poured into test tube at varying concentrations (6 g/ml; 3 g/ml; 1.5 g/ml; 0.75 g/ml, 0.375 g/ml; and

	Suniltg at Malayalam Wikipedia, CC BY 3.0 <https: cr<br="">eativecom mons.org/li censes/by/ 3.0>, via Wikimedia Commons</https:>			identified, present in the crude and phenolic extract of the samples. DOI: 10.1002/jsfa.8561	cytokines (TNF-α and IL-1β) prostaglandin. DOI: 10.1007/s10787-017-0379-3 Studied parts of the fruit: peel. Administration of peel extract (400 mg/kg) reduced <i>in vivo</i> inflammation in the carrageenan-induced air pouch model. DOI: 10.1016/j.jep.2021.114576	As results, the treatment was capable to decrease the MDA levels and increase the GSH levels, in comparison with the control group. DOI: 10.1016/j.metop.2021.100077	0.1875 g/ml). After 24 hours of incubation, samples are plated onto nutrient agar plate, to determine the MBC. The extract has antimicrobial activities against multidrug-resistant <i>Pseudomonas aeruginosa</i> . MIC could not be determined, because turbidity changes were not seen. The MBC of pineapple extract to multidrug-resistant <i>Pseudomonas aeruginosa</i> is 0.75 g/ml. DOI: 10.20473/ijtid.v6i5.4159
Annona crassiflor a	Source: Fernando Tatagiba, CC BY 3.0 <https: cr<br="">eativecom mons.org/li censes/by/ 3.0>, via Wikimedia Commons</https:>	Araticum/ Marolo	Brazil	<u>Studied parts of the fruit</u> : fruit pulp. <u>Main outcomes</u> : Semi-ripe fruit pulp was analyzed by HPLC-ESI-IT-MS/MS technique. From the ethanolic and ethyl acetate extracts, phenolic acids (p-coumaric, gallic, quinic and ferulic), flavones and derivatives (apigenin, epicatechin, 2'-5-dimethoxyflavone, 3',7-dimethoxy-3-hydroxyflavone, kaempferol-3- <i>O</i> -glucoside and 3- <i>O</i> - rutinoside, quercetin-3- <i>O</i> -glucoside, procyanidin B2 and rutin), aporphinic alkaloids (xylopine, stefagin and romucosine) and acetogenin (annonacin) were identified. DOI: 10.3390/foods11142079	Studied parts of the fruit: leaf. <u>Main outcomes</u> : Oral treatment (100- 300 mg/kg) with methanolic extract of the leaves reduced carrageenan-induced edema and leukocyte migration, as well as MPO activity. DOI: 10.3109/13880209.2015.1014567	No antioxidant studies available for this fruit.	Studied parts of the fruit: fruit pulp. <u>Main outcomes</u> : Extracts were obtained with ethanol: water (7:3, v/v) and <i>in vitro</i> antibacterial activity evaluated through both the agar diffusion and broth microdilution methods against 60 Oxacillin Resistant <i>S. aureus</i> (ORSA) strains and against <i>S. aureus</i> ATCC6538. <i>A. crassiflora</i> inhibited the growth of the ORSA isolates in both methods (6-15mm diameter hale and MIC 25mg/mL) and <i>S. aureus</i> ATCC6538 (14-18mm diameter hale and MIC 12.5mg/mL) DOI: 10.1590/S0036- 46652014000400011
Annona squamos a	Source: Muhamma d Mahdi Karim, GFDL 1.2 <http: ww<br="">w.gnu.org/l iccenses/fdl -1.2.html>, via Wikimedia Commons</http:>	Anón/ Fruta do conde	Brazil, Venezuela	Studied part of the fruit: fruit pulp. <u>Main outcomes</u> : The presence of the diterpenoid compound kaur-16-en-18- oic acid in considerable quantity (0.25% of DM) was detected in the lipid fraction. The essential oil from the fruit pulp was obtained and its volatile constituents were identified by GC-MS. The main compounds were α -pinene (25.3%), sabinene (22.7%) and limonene (10.1%). DOI: 10.3390/foods10102343 DOI: 10.1006/jfca.2000.0968	Studied part of the fruit: leaf and peel. <u>Main outcomes</u> : Leaf and peel extracts (1, 5 and 10 μg/mL) suppressed IL-6 secretion in stimulated THP-1 cell cultures. DOI: 10.34172/PS.2023.5	Studied part of the fruit: pulp and seeds.Main outcomes: Antioxidant potentialwas accessed by DPPH, ABTS, Fe3+reduction, β-carotene and 2-deoxyribose(2-DR) protection assays. As results, theseed extract showed the highestantioxidant potential for all testedmethodologies. (DPPH: IC ₅₀ 0.36mg/mL;ABTS: IC ₅₀ 0.14 mg/mL; Fe 3+ reduction:IC ₅₀ 0.57 mg/mL; 2-DR protection: IC ₅₀ 0.41 mg/mL; β-carotene protection: IC ₅₀ 0.16 mg/mL).DOI: 10.3390/foods10102343	Main outcomes: Ethanolic extract had a satisfactory inhibition effect for <i>Staphylococcus aureus</i> but did not affect <i>Escherichia</i> <i>coli, Listeria monocytogenes,</i> and <i>Salmonella typhimurium</i> . The sample presented a MIC of 0.340 mg mL-1 for all bacteria tested and showed no bactericidal effect on the tested concentrations. DOI: 10.4067/S0717- 75182020000200281
Aristoteli		Maqui	Chile,	Studied parts of the fruit: fruit.	Studied parts of the fruit: pulp.	Studied parts of the fruit: whole fruit.	Main outcomes: Inhibitory effect on 7 of
a chilensis			Argentina	aqueous extracts and their fractions of	fractions (50µg/mL) suppressed the	antioxidant potential of many different	concentration-dependent manner (S.

Berberis buxifolia	Source: Denis.prév ôt, CC BY- SA 3.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/3.0>, via Wikimedia Commons</https:>	Calafate	Chile, Argentina	ripe fruits, different phenolic compounds were identified by HPLC technique and spectroscopic data analysis (UV, NMR). Fractions of anthocyanidins, flavonoids and phenolic acids were obtained by flash and open column chromatography. The main compounds gentilic acid, ferulic acid, gallic acid, p-coumaric acid, sinapic acid, 4-hydroxybenzoic acid, delphinidin, cyanidin, vanillic acid, delphinidin gallate, gallocatechin gallate, quercetin, rutin, myricetin, catechin and epi-catechin as mixtures 1:1, and several glycosides of anthocyanidins (delphinidin-3- sambubioside-5-glucoside, cyanidin- 3-sambubioside-5-glucoside, cyanidin- 3-sambubioside, delphinidin-3- glucoside, delphinidin-3- glucoside, cyanidin-3-sambubioside, and cyanidin-3-glucoside), and proanthocyanidin B were detected. DOI: 10.1016/j.foodchem.2009.07.045 <u>Studied part of the fruit</u> : fruit. <u>Main outcomes</u> : The phenolic composition of fruits was evaluated by the HPLC-DAD technique. Fourteen phenolic compounds were identified. The main anthocyanins identified were the group of 3-glycoside conjugates, delphinidin-3-glucoside with a concentration of 23.61 µmol/g, followed by petunidin-3-glucoside with a concentration of 7.70 µmol/g and Cyanidin 3- <i>O</i> -p-coumaroyl- glucoside with a concentration of 3.8 µmol/g. Nine non-anthocyanin	production of nitric oxide, iNOS and COX-2 in RAW 264.7 macrophage cultures. DOI: 10.1016/j.fct.2016.12.036	extractions and partitions. As result, the ethanolic extract showed the highest antioxidant potential, by DPPH (IC ₅₀ 1.70 µg/mL), ORAC (31926.5 µmol Trolox equivalents/g) and FRAP (13937,9 µmol catechin equivalents/g) analysis, and it was directly related to the major content of phenolic compounds that could be extracted. DOI: 10.1016/j.foodchem.2009.07.045 DOI: 10.1016/j.foodchem.2009.07.045	 marcescens, A. faecalis, A. hydrophila, P. fluorescens, C. freundii, A. denitrificans, and S. putrefaciens). Only against L. innocua the films added with maqui berry were no active. DOI: 10.1016/j.lwt.2015.07.026 Main outcomes: Extracts exhibit significant antimicrobial activity against several bacterial strains, including those commonly associated with the spoilage of refrigerated foods or with pathogenic potential. The two strains most sensitive to the extract were Aeromonas hydrophila (MIC of 40 g/L) and Listeria innocua (MIC of 50 g/L), with MBC of 50 g/L and 60 g/L, respectively. In contrast, bacteria such as Enterobacter amnigenus, Enterobacter gergoviae and Achromobacter denitrificans demonstrated greater resistance, presenting MIC values ranging from 80 to 90 g/L and MBC of 90 to 100 g/L. DOI: 10.1002/jsfa.7628 No antimicrobial studies available for this fruit.
	vecommon s.orglicense sby-sa4.0, via Wikimedia Commons			µmol/g. Nine non-anthocyanin components were also identified. DOI: 10.1016/j.foodchem.2014.12.039 DOI: 10.1111/jfbc.13254		pt=sci_arttext&pid=S0025- 76802010000100012&Ing=es&nrm=iso	
Byrsonim a crassifoli a		Murici	Brazil	<u>Studied part of the fruit</u> : pulp. <u>Main outcomes</u> : Supercritical extraction of murici pulp was performed to determine the main bioactive compounds. The extracted oil presented lutein (224.77 μg/g),	<u>Studied parts of the fruit</u> : aerial parts, fruit, seed. <u>Main outcomes</u> : Oral administration (200 mg/kg) of hexane extract reduced inflammatory edema in an induced animal	<u>Studied part of the fruit</u> : pulp and oil. <u>Main outcomes</u> : Orac and DPPH methods were used in freeze-dried pulp, oil and ethanolic extracts. The extracts (oil and ethanolic) were obtained by supercritical fluid extractions. The freeze-dried pulp	Studied part of the fruit: fruit. <u>Main outcomes</u> : Extracts showed low effectiveness in controlling the population growth of Gram-negative and Gram-positive bacteria. Reference: Pío-Leon et al., 2013.

	Source: Koffermejia , CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/4.0>, via Wikimedia Commons</https:>			oleic, palmitic and linoleic as the main fatty acids, and POLi (17.63%), POO (15.84%), PPO (13.63%) and LiOO (10.26%) as the main triglycerides. The ethanolic extract presented lutein (242.16 μg/g), phenolic compounds (20.63 mg GAE/g) and flavonoids (0.65 mg QE/g). DOI: 10.3390/foods10040737	experimental model. Reference: Cotera et al., 2013. Altern Ther Health Med (2013), Jan-Feb, 19(1):26-36.	sample showed ORAC activity between 1.45-1.90 µmol TE/g, and DPPH 1.37-2.47 µmol TE/g. For the oil extract, the activity values were, for ORAC, 32.83-43.48 µmol TE/g, and for DPPH 6.01-6.04 µmol TE/g. The ethanolic extract showed the highest activities. The ORAC range was 100.88- 122.61µmol TE/g, and DPPH: 12.87- 17.14µmol TE/g. DOI: 10.3390/foods10040737 <u>Studied part of the fruit</u> : pulp and peel. <u>Main outcomes</u> : Extract made with methanol/water (80:20 v/v) was freeze- dried and re-suspended in methanol/water (10:90, v/v) for ROS and RNS assays. The ORAC obtained activity was 0.3µmol TE/mg of extract. The others analysis was expressed by IC ₅₀ values, being, H2O2 = 228 µg/mL, HO = 7 µg/mL, HOCI = 10 µg/mL, ONOO- (with NaHCO3): 21µg/mL. DOI: 10.1016/j.foodres.2014.07.032	Available at: https://www.cabidigitallibrary.org/doi/fu ll/10.5555/20133355305
Campom anesia phaea	Source: Webysther Nunes, CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/4.0>, via Wikimedia Commons</https:>	Cambuci	Brazil	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Phenolic composition was analyzed by LC-ESI-MS/MS technique and 36 compounds were identified. Identified phenolic compounds belonged to the class of phenolic acids, procyanidins, flavan-3- ols, flavonols, flavones, lignans, ellagitannins and gallotannins. DOI: 10.1039/D0FO01763A	<u>Studied parts of the fruit</u> : essential oil and leaf. <u>Main outcomes</u> : The essential oil and leaf extract (1-100 µg/mL) suppressed the production of inflammatory cytokines (TNF-α and IL-6). Furthermore, it inhibited (20 µg/mL) NF-κB in macrophage culture. DOI: 10.1016/j.jep.2020.112562	Studied parts of the fruit: puree. <u>Main outcomes</u> : A fruit puree was done and gastrointestinal digestion was simulated. The antioxidant potential was assessed before, during and after the digestion through the ABTS and DPPH assays. As results, the antioxidant potential decreased during the gastrointestinal digestion, for both analyses. DOI: 10.1016/j.fufo.2021.100066	Main outcomes: The MIC and MBC/MFC of the extracts was determined against <i>Candida albicans</i> ATCC 5314, <i>Staphylococcus aureus</i> ATCC 25923, <i>Staphylococcus epidermidis</i> ATCC 12228, <i>Pseudomonas aeruginosa</i> ATCC 27853, <i>Enterococcus faecalis</i> ATCC 29212 and <i>Bacillus cereus</i> ATCC 11778. The pulp extract of <i>Campomanesia phaea</i> did not show a significant effect on the planktonic cells and biofilms of the treated microbial cultures. DOI: 10.1039/D0FO01763A
Eugenia brasiliens is	Source: No machine- readable author provided. B.navez assumed	Grumixama	Brazil	Studied parts of the fruit: pulp. Main outcomes: Pulp presented sesquiterpene fractions greater than monoterpene fractions, respectively in its volatile composition, out of a total of 19 compounds identified by GC/MS. DOI: 10.3390/molecules27154955	$\label{eq:studied_parts} \begin{array}{ c c c c } \hline Studied parts of the fruit: pulp. \\ \hline \underline{Main outcomes}: Pretreatment with pulp extract (200 µg/mL) reduced TNF-\alpha release and NF-kB activation in RAW 264.7 macrophage cultures. In vivo, treatment with the extract (3-30 mg/kg) reduced neutrophil migration, TNF-\alpha release and paw edema after carrageenan challenge. DOI: 10.1016/j.biopha.2018.03.034 \\ \hline \end{array}$	Studied part of the fruit: whole fruit. <u>Main outcomes</u> : An extract containing 10g of the crushed fruit was made using 40mL of ethanol:water (40:60 v/v) to analyze the antioxidant potential by DPPH and coupled oxidation of β- carotene and linoleic acid. As results, grumixama showed a DPPH scavenging activity relative to EC50 100.74±2.85µg/mL. Related to the potential in minimize the oxidation of β- carotene by the inhibition of	Studied part of the fruit: pulp. <u>Main outcomes</u> : Hydroethanolic extract 40%. MIC ranged from 62.5–500 µg/mL while MBC values were >500 µg/mL against <i>P. aeruginosa</i> (ATCC 27853), <i>S.</i> <i>mutans</i> (MYA 2876), <i>L. acidophilus</i> (ATCC 4356), <i>S. aureus</i> (ATCC 25923), <i>S. aureus</i> MRSA (ATCC 33591). No effect against <i>E.</i> <i>coli</i> (ATCC 43895) with a decrease in biofilm formation of <i>L. acidophilus</i> ATCC 4356 at 625 µg extract/mL, and no effect against <i>S. aureus</i> ATCC 25923.

	(based on copyright claims)., CC BY-SA 3.0 <http: cre<br="">ativecomm ons.org/lice nses/by- sa/3.0/>, via Wikimedia Commons</http:>					hydroperoxides formation, the fruit extract showed a potential higher than 90% in inhibit the free radical peroxidation of lipids. DOI: 10.1111/j.1365-2621.2011.02653.x	DOI: 10.1016/j.biopha.2018.03.034 <u>Studied part of the fruit</u> : seed. <u>Main outcomes</u> : Methanolic extract. MIC <i>S. aureus</i> 500µg/mL and >1000µg/mL for <i>E. Coli</i> and <i>Candida albicans</i> without activity. The other extracts and microorganisms are inactive (values higher than 1000 µg/mL). Reference: Nesello et al., 2017). Available at: https://revistas.cff.org.br/?journal=infar ma&page=article&op=view&path%5B%5 D=2172&path%5B%5D=pdf <u>Main outcomes</u> : Diffusion methods: <i>E. coli</i> ATCC 25922, <i>S. aureus</i> 25923 and <i>K. pneumoniae</i> . DOI: 10.1111/j.1265.2621.2011.02653 x
Eugenia myrciant hes	Source: E. Goossen, CCO, via Wikimedia Commons	Ubajaí	Brazil	Studied parts of the fruit: leaf, pulp and seed. <u>Main outcomes</u> : According to the GC/MS technique, gallic acid was found in all 3 parts. In addition to gallic acid, the presence of cinnamic acid and 6,7-dihydroxycoumarin β-D- glucopyranoside was found in the pulp. DOI: 10.1371/journal.pone.0152974	Studied parts of the fruit: leaf, pulp and seed. <u>Main outcomes</u> : Eugenia myrcianthes (500 mg/kg) demonstrated significant anti-inflammatory potential by inhibiting neutrophil migration by 46% (leaves and pulps) and 29% (seeds) in mice challenged with carrageenan in the peritoneal cavity. DOI: 10.1371/journal.pone.0152974	Studied parts of the fruit: leaf, pulp and seed. <u>Main outcomes</u> : Extracts exhibited antioxidant effects against biologically relevant radicals such as peroxyl, superoxide and hypochlorous acid. The pulp exhibited the lowest antioxidant activities, while the leaf showed the highest. DOI: 10.1371/journal.pone.0152974	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Extracts from <i>Eugenia</i> <i>myrcianthes</i> fruits reduced the population density of planktonic cells of <i>Candida albicans</i> . The MIC values ranged from 15.62 to >2000 µg/mL. The extracts caused destabilization of the mature biofilm. DOI: 10.1016/j.micpath.2017.02.044
Eugenia pyriformi s	Source: DirecteurR Mutt, Public domain, via Wikimedia Commons	Uvaia	Brazil	Studied parts of the fruit: leaf. <u>Main outcomes</u> : Eight phenolic compounds were isolated from the leaf fraction by semipreparative HPLC and characterized by Nuclear Magnetic Resonance (NMR) and mass spectrometry (ESI-MS). This is the first report of the accumulation of isoquercitrin, quercitrin and aglycone quercetin in its leaf. DOI: 10.1080/14786419.2021.2005049	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Extracts of 12 genotypes demonstrated inhibitory action on neutrophil chemotaxis <i>in vitro</i> . The "uvaia" extract reduced paw edema in rats induced by carrageenan at doses of 0.5 and 1.0 g/kg. DOI: 10.1111/j.1745-4514.2011.00558.x	Studied part of the fruit: fruit juice. <u>Main outcomes</u> : An <i>in vivo</i> study was carried out to determine the antioxidant activity in high-fatty diet-fed mouses. It was identified a reduction in protein carbonyl levels in liver of high-fatty diet- fed + <i>E. pyriformis</i> juice group, when compared to the respective control. An increase on catalase enzyme activity was detected in the same group. DOI: 10.1016/j.foodres.2017.11.067	Studied part of the fruit: fruit. <u>Main outcomes</u> : Extracts showed bacteriostatic activity for up to 18 hours of observation against the tested bacteria. However, <i>Pseudomonas</i> <i>aeruginosa</i> was able to resist exposure to the extracts in all time periods evaluated. DOI: 10.26850/1678- 4618eqj.v34.3.2009.p07-16
Eugenia uniflora	Source: Guilherme	Pitanga	Brazil, Paraguay, Uruguay, Argentina	Studied parts of the fruit: fruit pulp and seeds. <u>Main outcomes</u> : Extracts were analyzed for phytochemical composition using the HPLC-ESI- MS/MS technique. For all extracts, the	Studied parts of the fruit: fruit. <u>Main outcomes</u> : The juice attenuated IL- 8 released <i>in vitro</i> . The compound cyanidin-3-glucoside and oxidoselin- 1,3,7(11)-trien-8-one, identified in pitanga, reduced CXCL8 and IL-8	Studied parts of the fruit: fruit pulp. <u>Main outcomes</u> : DPPH method was used to determine the antioxidant potential of 4 different ripening stages of 2 varieties (red and purple). Extracts were prepared with acetone/water/acetic acid (70:29:1,	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Extracts did not show significant antifungal effects in any of the fractions tested. DOI: 10.1080/14786419.2021.1956920

	Barbaresco, CC BY-SA 3.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/3.0>, via Wikimedia Commons</https:>			compounds identified and quantified were salicylic acid, protocatechuic acid, gallic acid and myricitrin. For the pulp extract, ellagic and p-coumaric acids were also identified and quantified. DOI: 10.1080/14786419.2022.2153128	expression in human gingival fibroblast cultures. DOI: 10.1039/c4fo00509k	v/v/v). As results, the green ripening stage (first one) presented the higher antioxidant activity for both varieties. In the red variety the decrease from 17.18 to 8.33 mmol Trolox equivalents/ 100 g dry fruit during the ripening. The purple variety decreased from 18.13 to 10.43 mmol Trolox equivalents/100 g dry fruit. DOI: /10.1016/j.foodres.2010.12.036	
Euterpe oleracea	Source: Vihelik, Public domain, via Wikimedia Commons	Açai	Brazil	<u>Studied parts of the fruit</u> : freeze-dried pulp. <u>Main outcomes</u> : Phenolic composition of pulps from three different açaí genotypes and three commercial açaí pulps were studied by the HPLC technique. Anthocyanin 3-rutinoside was the main anthocyanin. One commercial sample presented the highest amounts of cyanidin 3- glucoside and cyanidin 3-rutinoside (18,942 and 34,397 µg/g, respectively). In conclusion, the commercial samples evaluated presented the highest contents of anthocyanins and non-anthocyanin compounds. DOI: 10.1002/isfa.7886	Studied parts of the fruit: fruit oil. <u>Main outcomes</u> : Oral administration of fruit oil (1,226.8 mg/kg) reduced the inflammatory process in different <i>in vivo</i> models of inflammation. DOI: 10.1590/S0102- 695X2011005000007	Studied parts of the fruit: pulp. <u>Main outcomes</u> : The fruit pulps were studied by the antioxidant potential of ripening stage (unripe, intermediate and ripe). The antioxidant potential was higher in the unripe fruit extract by the ABTS and total oxidant scavenging capacity (TOSC) assays. DOI: 10.1016/j.foodchem.2011.11.150	<u>Main outcomes</u> : Euterpe oleracea pulp extract reduced the population density of <i>S. aureus</i> with MIC and MCD of 7.81 μg/mL and 62.5 μg/mL, respectively. DOI: 10.1016/j.micpath.2017.11.006
Feijoa sellowian a	Source: Didier Descouens, CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/4.0>, via Wikimedia Commons</https:>	Feijoa	Brazil, Uruguay, Paraguay, Argentina	Studied parts of the fruit: peel, fruit pulp, seed and leaf. <u>Main outcomes</u> : A total of 14 phenolic compounds were identified and semiquantified. Procyanidin B-type tetramer, procyanidin B-type dimer, and procyanidin C-type trimer showed the highest concentrations in all parts evaluated. Caffeoyl glucose, dihydroferulic acid 4- <i>O</i> -glucuronide, galloyl glucose, and lariciresinol- sesquilignan were detected in fruits and leaves. DOI: 10.1016/j.foodchem.2023.136074	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Oral administration of fruit juice (30 mg/die) was able to inhibit carrageenan-induced paw edema in rats (44.11% in the first hour) and 44.12% after 5 hours. Finally, the fruit juice suppressed superoxide anion generation in human whole blood neutrophils activated with phorbol-myristate-13- acetate (PMA). DOI: 10.1089/jmf.2012.0262	Studied parts of the fruit: fruit.Main outcomes: DPPH potential wasaccessed. An <i>in vitro</i> study in blood ofhealthy adult volunteers was performedto determine the superoxide anionrelease by neutrophils. As results, theDPPH activity was IC_{50} : $6.31\mu g/mL$.Related to the blood analysis, the bloodthreated with the highest concentrationof juice (10^-2 mg/mL) inhibit 70% ofradical formation. The same behaviorwas found by bloods stimulated withzymosan, N-formyl- methionyl-leucyl-phenylalanine (FMLP) and phorbol-myristate-13-acetate (PMA).DOI: 10.1089/jmf.2012.0262	Main outcomes: Gram-positive bacteria, Streptococcus faecalis and Staphylococcus aureus, were not very sensitive to the extract, and had the highest MICs (MIC=32 and 64 mg I–1, respectively). The Gram-negative bacteria were more sensitive. In particular, Enterobacter aerogenes and E. cloacae (MIC=2) and Pseudomonas aeruginosa (MIC=1) showed the greatest sensitivity to the extract. Pseudomonas aeruginosa (MBC=8 mg L ⁻¹). MBC values were from 4 to 16-fold higher than the MICs. DOI: 10.1016/s0924-8579(99)00122-3

Fragaria chiloensis	Source: Mushibugy o, CC BY 4.0 <https: cr<br="">eativecom mons.org/li censes/by/ 4.0>, via Wikimedia Commons</https:>	Chilean strawberry	Chile	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Fruits were investigated for polyphenol content and composition using the HPLC-DAD- ESI-MSn technique. Four anthocyanins, nine ellagitannins, two proanthocyanidin dimers, one flavan- 3-ol and five flavonols were found. DOI: 10.3390/molecules24183331	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Administration of aqueous extract (4 g/kg body weight/day) reduced serum levels and gene expression of pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) in rats with liver injury. DOI: 10.1155%2F2015%2F320136	Studied parts of the fruit: entire fruit. <u>Main outcomes</u> : Two different cultivars were tested. As results, both extracts showed important antioxidant properties, with emphasis on the fact that each extract had better activity in relation to a different methodology, and could be directly related to a different chemical composition. DOI: 10.3390/molecules24183331	No antimicrobial studies available for this fruit.
Garcinia humilis	Source: Shou-Hui Wang, CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/4.0>, via Wikimedia Commons</https:>	Achachairu	Bolivia	Studied parts of the fruit: peel, seed, and pulp. <u>Main outcomes</u> : Samples were analyzed for total phenolic and tannin content. The phenolic compounds showed variable results, where the highest contents ($p < 0.05$) were found in the aqueous extract of the peel (149.71 mg EAG/100 g) and in the ethereal extract of the seed (212.28 mg EAG/100 g). The highest tannin content ($p < 0.05$) was found in the seeds, both for the condensates (63.83 mg CAE/g) and for the hydrolysates (11.84 mg GA/g), and there was no significant difference between the results for peel and pulp. DOI: 10.1007/s11694-018-9934-x	Studied parts of the fruit: leaf. <u>Main outcomes</u> : Oral administration of the methanolic extract (30 mg/kg) reduced neutrophil influx and TNF, IL-1β and CXCL1 levels in carrageenan- challenged mice. <i>In vitro</i> , the extract reduced neutrophil chemotaxis. DOI: 10.1007/s10787-019-00645-x	Studied parts of the fruit: peel, pulp, and seeds. <u>Main outcomes</u> : Three different extracts (ethereal, ethanolic and aqueous) were prepared for each fruit part (peel, pulp, and seeds). The obtained results showed that the ethanolic extract was more effective in extracting compounds with antioxidant potential, against DPPH, ABTS and FRAP analyzes. DOI: 10.1007/s11694-018-9934-x	<u>Main outcomes</u> : The peel extract demonstrated no evidence of antibacterial effects, as no inhibition halos were observed against <i>Escherichia</i> <i>coli</i> and <i>Staphylococcus aureus</i> . This indicates an absence of detectable antibacterial activity in the extract. DOI: 10.1002/jsfa.13818
Garcinia madruno	Source: Chris Hind, CC BY 3.0 <https: cr<br="">eativecom mons.org/li censes/by/ 3.0>, via Wikimedia Commons</https:>	Charichuelo	Colombia	Studied parts of the fruit: leaf, stem, epicarp, mesocarp, and seed. <u>Main outcomes</u> : In total, 3 organic acids and 21 biflavonoids were identified and more than 15 peaks structurally associated with known benzophenones from <i>Garcinia</i> species were detected. The leaves were the most promising source of biflavonoids and the epicarp was the richest source of morelloflavone-type biflavonoids (>10%). DOI: 10.1016/j.jff.2016.10.001	No anti-inflammatory studies available for this fruit.	Studied part of the fruit: epicarp, mesocarp and seeds. <u>Main outcomes</u> : ORAC and DPPH were used as methodologies to access the antioxidant potential. As results, the epicarp had the highest antioxidant potential for both methodologies, being ORAC: 175.83µmol Trolox/100g of epicarp, and DPPH: 327.61 µmol Trolox/g of epicarp. DOI: 10.1016/j.jff.2016.10.001	Main outcomes: The MIC of extract and compounds ranging from 86.6 to 1253.4 μg/mL. DOI: 10.37360/blacpma.22.21.3.18

Gaultheri a pumila	Source: Dick Culbert from Gibsons, B.C., Canada, CC BY 2.0 <https: cr<br="">eativecom mons.org/li censes/by/ 2.0>, via Wikimedia Commons</https:>	Chaura	Chile	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Fruits were analyzed using the (UHPLC-DAD-Orbitrap-MS) technique, which allowed the identification of 36 compounds, belonging to the classes of anthocyanins, phenolic acids, flavonoids, iridoids, diterpenes and fatty acids. DOI: 10.3390/metabo11080523	No anti-inflammatory studies available for this fruit.	Studied parts of the fruit: fruit. <u>Main outcomes</u> : The antioxidant potential of the fruit extract was assessed by DPPH, FRAP and ORAC assays. As results, the extract presented an IC ₅₀ of 92.8mg/mL for DPPH scavenging, FRAP activity of 134 μmol Trolox Equivalents/g of extract, and peroxyl scavenging potential of 4,251.6 μmol Trolox Equivalents/g of extract. DOI: 10.3390/metabo11080523	No antimicrobial studies available for this fruit.
Genipa american a	Source: Alex Popovkin, Bahia, Brazil from Brazil, CC BY 2.0 <https: cr<br="">eativecom mons.org/li censes/by/ 2.0>, via Wikimedia Commons</https:>	Huito/ Jagua/ Jenipapo	Brazil, Peru, Colombia, Argentina	<u>Studied parts of the fruit</u> : ripe and unripe fruit. <u>Main outcomes</u> : Methanolic extracts were analyzed by UPLC-DAD-ESI-(-)- QTOF-MS/MS. Nine iridoids were identified (geniposidic acid, gardenoside, genipin-1-β- gentiobioside, geniposide, 6"-O-p- coumaroyl-1-β-gentiobioside geniposidic acid, 6"-O-p- coumaroylgenipin-gentiobioside, genipin, 6'-O-p-coumaroyl-geniposidic acid and 6'-O-feruloyl-geniposidic acid). Among them, genipin (60.77 mg/g DW) was found to be the most abundant iridoid in unripe fruit extract, while ripe fruit extract contained mainly geniposide and geniposidic acid (89.48 and 25.04 mg/g DW, respectively). DOI: 10.1016/j.foodres.2020.109252	<u>Studied parts of the fruit</u> : leaf. <u>Main outcomes</u> : Treatment with polysaccharide-rich extract (0.3-3.0 mg/kg; IV) of the leaves reduced edema and neutrophil migration in different models of inflammation in experimental animals. DOI: 10.1016/j.jep.2023.117234	Studied part of the fruit: mesocarp and endocarp of ripe and unripe fruits. <u>Main outcomes</u> : ORAC, DPPH and ABTS was used to determine the antioxidant potential of the obtained extracts. As results, it was observed a higher potential of the unripe fruit extract for all tested radicals (DPPH: 58.72 µmol Trolox Equivalents/g dry weight; ABTS: 24.67 µmol Trolox Equivalents/g dry weight; and ORAC: 571.36 µmol Trolox Equivalents/g dry weight). DOI: 10.1016/j.foodres.2020.109252	Studied part of the fruit: fruit. <u>Main outcomes</u> : Genipap extracts showed inhibition zones and MIC and MMC ranging between 150µg/mL and 940µg/mL against all microorganisms tested. DOI: 10.1590/0103-8478cr20160252
Malpighi a emargina ta	Source: Eric Gaba (Sting - fr:Sting), CC BY-SA	Acerola	South America, Central America	Studied parts of the fruit: whole fruit. <u>Main outcomes</u> : At least 76 phenolic compounds were identified using HPLC, including 55 flavonoids (anthocyanins, flavan-3-ols, flavonols, flavones, flavanones, isoflavones and chalcones) and 21 nonflavonoids (phenolic acids, stilbenes and lignans). DOI: 10.1007/s11694-023-02175-1	<u>Studied parts of the fruit</u> : whole fruit. <u>Main outcomes</u> : Oral administration of acerola juice reduced obesity-associated inflammation in <i>in vivo</i> models. DOI: 10.1186/1476-511X-13-24	<u>Studied part of the fruit</u> : pulp and peel. <u>Main outcomes</u> : A fruit puree was made and gastrointestinal digestion was simulated <i>in vitro</i> . The antioxidant potential was assessed before, during and after the digestion processes through the ABTS and DPPH assays. As results, the antioxidant potential decreased during the gastrointestinal	<u>Main outcomes</u> : Antimicrobial properties of the phenolic extract were evaluated by the disc diffusion method. The entire activities correspondent to sample amount of 500 µg. Phenolic extracts in the concentration tested showed limited antimicrobial activity against the bacterial strains tested: <i>Escherichia coli</i> (ATCC 25922), <i>Staphylococcus aureus</i>

	3.0					digestion for both analyses	(ATCC 29247) and Pseudomonas putida
	chttps://cr					digestion, for both analyses.	(ATCC 23247) and Fseudomonus putidu
	eativecom					DOI: 10 1016/i fufo 2021 100066	DOI: 10 1111/iifs 12061
	mons.org/li					5011101010, j. 1002021.100000	5011101111, 1, 13112001
	censes/by-						Main outcomes: Antimicrobial properties
	sa/3.0>. via						of the phenolic extract were evaluated
	Wikimedia						by the disc diffusion method. The
	Commons						bacterial strains were not affected by the
							extracts (Gram
							negative bacteria Escherichia coli
							ATCC10536, Aeromonas hydrophila
							IOC/FDA110, Pseudomonas
							aeruginosa ATCC15442, Pseudomonas
							fluorescence NCTC10038, Salmonella
							spp., Serratia marcescens UFOP-001,
							Hafnia alvei ATCC11604, and the Gram
							positives Staphylococcus aureus
							ATCC6538P, Listeria monocytogenes
							ATCC7644 and Bacillus
							cereus ATCC 11778) indicating that this
							fruit presents low potential for inhibiting
							Dacterial growth.
							at:
							http://www.ifri.upm.edu.mv/24%20(05)
							%202017/(54) ndf
Maximili		Inaiá	Brazil	Studied parts of the fruit: cake after	Studied parts of the fruit: cake after oil	Studied parts of the fruit: pulp.	No antimicrobial studies were found for
ana		maja	21021	oil extraction	extraction	Main outcomes: Pulp was analyzed by	this fruit
manin							
maripa				Main outcomes: Chemical	Main outcomes: The extract (100 μ g/mL)	the capacity to scavenge superoxide	
maripa				<u>Main outcomes</u> : Chemical composition of inajá cake was	<u>Main outcomes</u> : The extract (100 μ g/mL) reduced the production of TNF-α and	the capacity to scavenge superoxide radical, inhibiting in 73.6% the	
maripa				<u>Main outcomes</u> : Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six	<u>Main outcomes</u> : The extract (100 μ g/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture.	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated.	
maripa				<u>Main outcomes</u> : Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified	<u>Main outcomes</u> : The extract (100 µg/mL) reduced the production of TNF- α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa				Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin,	Main outcomes: The extract (100 μ g/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source:			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin,	Main outcomes: The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans-	Main outcomes: The extract (100 μ g/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols	Main outcomes: The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from			<u>Main outcomes</u> : Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics.	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 chttps://cr			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eative.com</https:>			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li</https:>			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by-</https:>			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/2.0>, via</https:>			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/2.0>, via Wikimedia</https:>			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
maripa	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/2.0>, via Wikimedia Commons</https:>			Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	
Myrciant	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/2.0>, via Wikimedia Commons</https:>	Guabiju/	Brazil,	Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	Studied parts of the fruit: pulp, peels,
Myrciant hes	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/2.0>, via Wikimedia Commons</https:>	Guabiju/ Guabijuzeiro	Brazil, Uruguay,	Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	the capacity to scavenge superoxide radical, inhibiting in 73.6% the superoxide radicals generated. DOI: 10.46357/bcnaturais.v13i1.369	<u>Studied parts of the fruit</u> : pulp, peels, seeds.
Myrciant hes pungens	Source: Bernard DUPONT from FRANCE, CC BY-SA 2.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/2.0>, via Wikimedia Commons</https:>	Guabiju/ Guabijuzeiro	Brazil, Uruguay, Bolívia,	Main outcomes: Chemical composition of inajá cake was analyzed by LC-ESI-QTOF-MS. Six compounds were identified (procyanidin dimer B1, catechin, procyanidin dimer B2, epicatechin, procyanidin dimer B3 and trans- piceatannol), with the flavan-3-ols class being the main phenolics. DOI: 10.1016/j.foodres.2021.110353 Studied parts of the fruit: pulp. Main outcomes: pulp of fruits from 1 wild type (GB) and 2 genotypes (PL2	<u>Main outcomes</u> : The extract (100 μg/mL) reduced the production of TNF-α and NF-κB in activated macrophage culture. DOI: 10.1016/j.foodres.2021.110353	Studied parts of the fruit: pulp. Main outcomes: fruit pulp of 1 wild type	Studied parts of the fruit: pulp, peels, seeds. Main outcomes: Only the seed

	Source: Huertasurb anas, CC BY-SA 3.0, via Wikimedia Commons		Argentina	same 5 anthocyanidins (delphinidin, cyanidin, petunidin, peonidin, and malvidin) by HPLC. Total anthocyanin contents in the samples ranged from 334 to 531 mg/100 g dry weight (DW). Total flavonoids and polyphenols ranged from 79.8 to 154.0 mg/100 g and 2,438 to 4,613 mg/100 g (DW), respectively. Furthermore, the flavonoids quercitrin, hyperoside, and isoquercitrin were identified, and their relative amounts varied among the sample extracts. DOI: 10.1111/j.1750- 3841.2011.02375.x	inhibiting the release of nitric oxide and IL-6 in RAW 264.7 macrophage cultures activated with LPS. DOI: 10.1371/journal.pone.0285625	extract of guabiju was comparable to that of Trolox and, at a test concentration of 0.25 mg/mL, the activities of GB and PL2 were higher than those exhibited by Trolox. DOI: 10.1111/j.1750-3841.2011.02375.x <u>Studied part of the fruit</u> : whole freeze- dried fruit. <u>Main outcomes</u> : Two different acidified extracts (methanolic and aqueous). The methanolic extract showed highest activity for ORAC (63.4 µmol TE/g of fresh fruit or 338.4 µmol TE/g dry fruit) ($p \le$ 0.05), when compared to the aqueous extract. No statistical difference between the solvent extractions for DPPH and NO scavenging activities. DOI: 10.1371/journal.pone.0285625 <u>Studied part of the fruit</u> : pulp and peel of mature stage fruits and fully mature stage fruits. <u>Main outcomes</u> : Extracts were made using methanol:water (50:50 v/v) and re- extracted using acetone:water (70:30 v/v). Both obtained extracts were mixed and the antioxidants analysis were performed. Ripening stage has a significant impact on its antioxidant capacity. DPPH scavenging potential decreased from 244.3±2.9 mg TE/g of dry fully mature fruit (reduction of 17,5%). FRAP decreased from 42.6±1.9µmol TE/g of dry mature fruit to 28.4±1.1 µmol TE/g	activity against Staphylococcus aureus (MIC of 500 µg/mL). No activity against <i>Escherichia coli</i> or <i>Candida albicans</i> . Other extracts: inactive because they exhibited values higher than 1,000 µg/mL. DOI: 10.14450/2318- 9312.v29.e4.a2017.pp357-363 <u>Studied parts of the fruit</u> : leaf. <u>Main outcomes</u> : Ethyl acetate and hexane extracts showed MIC < 62.5 µg/ml against Gram-positive bacteria (<i>S.</i> <i>aureus</i> and <i>M. luteus</i>). Hexane extract showed the strongest inhibition, with MBC at the same concentration. Methanolic extracts showed good antifungal activity against <i>S. cerevisiae</i> , but no activity against <i>S. cerevisiae</i> , but no activity against <i>S. cerevisiae</i> , but no activity against <i>C. albicans</i> . Reference: Desoti et al. (2011). Available at: https://revistas.unipar.br/index.php/sau de/article/view/3686.
						of dry mature fruit to 28.4±1.1 µmol TE/g of dry fully mature fruit, (reduction of 33.3%). DOI: 10.1007/s11130-018-0690-1	
Myrciaria dubia	Source: Bobyhus25, CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by-</https:>	Camu-camu	Brazil, Peru	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Fruits were evaluated for the characterization of anthocyanin profile. HPLC-PDA, HPLC- MS/MS and 1H NMR techniques were used to confirm the identity of the main anthocyanins. Cyanidin-3- glucoside was identified as the principal pigment, followed by delphinidin-3-glucoside. DOI: 10.1021/jf051357v	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Male volunteer smokers had a reduction in inflammatory markers protein C, IL-6 and IL-8, after daily oral ingestion of 70mL of camu-camu juice. DOI: 10.1016/j.jjcc.2008.06.004	Studied part of the fruit: skin and pitted fruit. <u>Main outcomes</u> : The antioxidant potential was accessed by ABTS and DPPH methodologies for skin and pitted fruit extracts, collected in different areas (dry and flooded environments). The ripe fruits showed the highest antioxidant potential. DOI: 10.1002/jsfa.9224	Studied part of the fruit: fruit. <u>Main outcomes</u> : Fruit extracts were able to control the population density of <i>S.</i> <i>aureus</i> ATCC 29213. MIC values 0.16 mg/mL to 0.63 mg/mL. DOI: 10.1016/j.foodres.2015.07.009

	sa/4.0>, via			DOI: 10.1007/s11130-022-00985-0			
	Wikimedia						
	Commons						
Passiflora		Maracujá/	Brazil,	Studied parts of the fruit: non-	Studied parts of the fruit: Leaf.	Studied parts of the fruit: peel, pulp, and	Main outcomes: In a general way the
edulis		Passion fruit	Peru,	pasteurized juice.	Main outcomes: The ethyl acetate	seeds.	extracts not induced antibacterial
	1 Acres		Paraguay,	Main outcomes: Juice was evaluated	extract increased the production of the	Main outcomes: Three different ripening	activity. Moreover, both ethanolic and
			Argentina	for its aromatic composition. The	cytokines IL-4, IL-6, IL-10, IL-17, and INF-	stages (immature, mature and ripe) was	ethyl acetate extracts presented
	Constant of the second			characterization of volatiles by GC-IVIS	α . The nexate extract increased the	used to analyze each fruit part. As	rungicidal activity against Canalad
				components Fourteen esters 7	and IL-17	the ripening stage of seeds for the	only at 750 ug/ml
	Sourcos			alcohols 5 kotonos 2 aldohydos 2		methodologies tested The higher APTS	DOI: 10 1080/14786419 2020 1708660
	Alexander			terpenic hydrocarbons and 2 acids	001.10.1000/14780419.2020.1798000	scavenging notential and B-carotene	001. 10.1000/14/80419.2020.1/98000
	Klink, CC BY			were identified. Among these		oxidation inhibition was observed by the	
	3.0			components, 3-hydroxy-2-butanone.		seeds extract. However, the mature and	
	<https: cr<="" td=""><td></td><td></td><td>ethyl 3-hydroxy butyrate, ethyl</td><td></td><td>ripe fruit pulp extracts showed the</td><td></td></https:>			ethyl 3-hydroxy butyrate, ethyl		ripe fruit pulp extracts showed the	
	eativecom			hexanoate, benzyl alcohol, octanoic		highest potential for the	
	mons.org/li			acid, and hexyl hexanoate were the		Phosphomolybdenum complex analysis	
	censes/by/			most abundant compounds.		DOI: 10.1016/j.scienta.2023.112244	
	3.0>, via			DOI: 10.1021/jf011077p			
	Wikimedia						
	Commons						
Physalis		Aguaymanto	Chile,	Studied parts of the fruit: fruit.	Studied parts of the fruit: aerial parts	Studied parts of the fruit: fruit.	Main outcomes: Physalis peruviana
peruvian			Peru	Main outcomes: Several phenolic	and fruits.	Main outcomes: Ethanolic extract was	extract has antimicrobial activity against
а				compounds, such as gallic acid (183.0	Main outcomes: The isolated and	assessed the antioxidant activity by DPPH	Gram-positive and Gram-negative
	C			mg/100 g DW), catecnol (23.7 mg/100	Rentified compounds (Physaperuvin G,	assay. The obtained IC_{50} of the fruit	demonstrated higher susceptibility than
	Source: var			mg/100 g DW) coffeine (9.3 mg/100 g	Hydroxywithanolide F. Withaneruvin C	was related to the high levels of	gram-negative Escherichig coli and
	BV-SA 4 0			DW) vanillic acid (10.5 mg/100 g DW)	Physalactone Coagulin Phynerunolide F	nolyphenols and vitamins A and C	Pseudomonas tynhimurium Also the
	<https: cr<="" td=""><td></td><td></td><td>svringic acid (9.2 mg/100 g DW).</td><td>and Withanolide S) showed inhibitory</td><td>DOI: 10.1007/s10343-019-00456-8</td><td>extract showed positive effect on the</td></https:>			svringic acid (9.2 mg/100 g DW).	and Withanolide S) showed inhibitory	DOI: 10.1007/s10343-019-00456-8	extract showed positive effect on the
	eativecom			vanillin (2.5 mg/100 g DW), benzoic	activity on TNF-induced NF-kB activation		fungus used (Aspergillus niger and
	mons.org/li			acid (28.8 mg/100 g DW), o-coumaric	and nitric oxide release in culture of	Studied parts of the fruit: cultivated and	Candida albicans).
	censes/by-			acid (5.2 mg/100 g DW), salicylic acid	293/NF-kB-Luc HEK cells and	wild whole fruit.	DOI: 10.1007/s10343-019-00456-8
	sa/4.0>, via			(7.7 mg/100 g DW) and cinnamic acid	macrophage RAW 264.7.	Main outcomes: The antioxidant activity	
	Wikimedia			(3.1 mg/100 g DW), were identified by	Reference: Chang et al., 2016. Available	of the extract was evaluated by DPPH	Main outcomes: Physalis peruviana
	Commons			HPLC/UV in the ethanolic extract of	at:	and ABTS free radical assays, and the	extract has antioxidant and antimicrobial
				Physalis peruviana fruit.	https://www.ncbi.nlm.nih.gov/pmc/artic	FRAP assay was also conducted to assess	activity against Gram-positive and Gram-
				DOI: 10.1007/s10343-019-00456-8	les/PMC5125362/	the antioxidant potential. As results, all	negative bacteria. <i>Pseudomonas syringae</i>
				Studied parts of the fruit: pulp		analysis showed that the cultivated fruit	(WIC 0.313 mg/mL and WIBC 1.25 mg/mL)
				Main outcomes: Using the LIHPLC		notential than the wild fruit extract in	was the most susceptible bacterium. Meanwhile <i>Enwinig rhanontici was</i> the
				DAD technique, 12 phenolic		the DPPH analyze the IC ₋₂ was 0.64+0.01	most resistant bacterium (MIC and MIR
				compounds were identified in the		mg/mL for the cultivated fruit extract and	5.00 mg/mL).
				ethanolic extract (gallic acid. 4-		1.65±0.08 mg/mL for the wild fruit	DOI: 10.3390%2Ffoods10112699
				hydroxybenzoic acid, caffeic acid,		extract. The ABTS scavenging activity was	
				vanillic acid, chlorogenic acid, ferulic		3.76µmol of Trolox equivalents/100g of	
				acid, p-coumaric acid, trans-cinnamic		cultivated fruit, and 2.6µmol of Trolox	
				acid, luteolin, naringenin, apigenin		equivalents/100g of wild fruit. Related to	
				and kaempferol). The most abundant		FRAP, the results were 11.12 μ mol of	
				phenols were gallic acid (303.63 ±		Trolox equivalents/100g of cultivated	
				35.85 mg/100 g DW), 4-		fruit, and 8.96µmol of Trolox	

				hydroxybenzoic acid (43.93 ± 3.45 mg/100 g DW) and kaempferol (19.57 ± 1.24 mg/100 g DW), while chlorogenic acid and apigenin were found in low concentrations.		equivalents/100g of wild fruit. DOI: 10.1007/s11130-018-0702-1	
Plinia cauliflora Myrciaria cauliflora	Source: Bruno.karkl is, CC BY-SA 4.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/4.0>, via Wikimedia Commons</https:>	Jabuticaba/ Guapuru	Brazil, Bolivia	Doi: 10.3390%2Ffoods10112699 Studied parts of the fruit: leaf, pulp, and seed. Main outcomes: Sixty-three compounds were identified by HPLC/MS in the aqueous and methanolic extracts. Flavonoids (40%), benzoic acid derivatives (13%), fatty acids (13%), carotenoids (6%), phenylpropanoids (6%) and tannins (5%) were the groups of substances found in greatest number, producing different fingerprints according to the parts of the fruit and the different extraction solvents used. DOI: 10.3390/molecules28052359 Studied parts of the fruit: fruit. Main outcomes: Juice presented a total phenolic content of 303.54 ± 28.28 mg GA/L. Through the HPLC-ESI- MS/MS technique, chlorogenic acid, p- coumaric acid, taxifolin and hispidulin were described for the first time. DOI: 10.1080/14786419.2018.1550760 Studied parts of the fruit: pulp. Main outcomes: According to NMR 1D spectrum, five groups of signals representing phenolic compounds (200 µg/mL), such as anthocyanins, tannins, flavonoids and phenolic acids were identified. Coumar	Studied parts of the fruit: epicarp. <u>Main outcomes</u> : The animals that received the extract at doses of 12.5, 25, 50 and 100 mg/kg showed inhibition of inflammatory paw edema at 120, 180 and 240 min, as well as migration at 41.8%, 44.1%, 50.4% and 52.1%, respectively. DOI: 10.1016/j.jep.2020.113611 DOI: 10.1016/j.jep.2020.113611	Studied part of the fruit: air-dried and milled seedless fruits. <u>Main outcomes</u> : The extract was obtained by mixing the fruit powder with ethanol:water (55:45 v/v). After this, the extract was filtered, evaporated and resuspended in distilled water. A differential pulse voltammetry and DPPH analysis were carried out to determine the antioxidant potential of the obtained extract. As results, it was possible to observe a presence of electroactive compounds in the extract. Related to the scavenging capacity, the result was 7.08 mg of acid gallic equivalents/mg of extract. DOI: 10.1155%2F2017%2F2383157	Studied part of the fruit: fruit. <u>Main outcomes</u> : Fruit extract inhibited the growth of 11 of the 14 bacteria tested (79%). Fruit extract inhibited 7 of the 10 Gram-negative bacteria (70%) and 100% of the Gram-positive bacteria tested. Reference: Mohanty & Cock, 2008. Available at: http://ispub.com/IJMB/7/2/10983
				mg/mL). DOI: 10.1155%2F2017%2F2383157			

Pouteria		Lucuma	Peru,	Studied parts of the fruit: fruit pulp.	No anti-inflammatory studies available	Studied part of the fruit: fruit pulp and	No antimicrobial studies available for this
lucuma			Bolivia	Main outcomes: A total of 36	for this fruit	peel.	fruit.
				compounds were identified by LC-		Main outcomes: Two different extracts	
				ESI/LTQ-Orbitrap/MS/MS technique.		were made: one from the peel using	
	Sourcos			The phenolic compounds were		methanol, and another from pulp, using	
	Dtarazona			isolated and their structures were		<i>n</i> -butanol. DPPH and ABTS analysis were	
	Dualazona,			unambiguously identified by NMR		carried out. As results, the methanolic	
	domain via			experiments.		extract of pup showed a higher	
	Wikimedia			DOI: 10.3390/molecules26175236		antioxidant potential for both assays	
	Commons					when compared to the <i>n</i> -butanol pulp	
	commons					extract.	
						DOI: 10.3390/molecules26175236	
						Studied part of the fruit: peel and pulp.	
						Main outcomes: Different extracts were	
						prepared for peel and pulp, and	
						antioxidant potential was assessed by	
						DPPH and ABTS methods.	
						As results, the peel extract showed	
						highest potential in scavenge the formed	
						free radicals for both analyzes.	
						DOI: 10.3390%2Fmolecules26175236	
						Studied part of the fruit: entire fruit.	
						It was analyzed 3 different cultivars,	
						extracted by solvents hydrophilic and	
						hydrophobic, at different ripening stages.	
						As results, the "Rosalia" cultivar, first	
						ripening stage and hydrophilic solvent	
						showed the highest antioxidant potential	
						against DPPH and ABTS free radicals.	
						DOI: 10.1016/j.foodchem.2015.05.111	

Psidium cattleyan um	Source: Forest & Kim Starr, CC BY 3.0 <https: cr<br="">eativecom mons.org/li censes/by/ 3.0>, via Wikimedia Commons</https:>	Araçá/Arazá	Uruguay, Brazil	Studied part of the fruit: fruit pulp and peel. <u>Main outcomes</u> : HPLC-DAD–ESI-MS/M technique allowed the separation, quantification and identification of 21 phenolic compounds and 7 carotenoids. The main phenolic compounds identified and quantified (dry matter) in the extracts of skin and pulp were ellagic acid (2213–3818 µg/g extract), ellagic acid deoxyhexoside (1475–2070 µg/g extract) and epicatechin gallate (885– 1603 µg/g extract); while all-trans- lutein (2–10 µg/g extract), all-trans- antheraxanthin (1.6–9 µg/g extract) and all-trans-β-carotene (4–6 µg/g extract) were the main carotenoids identified in both extracts. DOI: 10.1016/j.foodchem.2014.05.079	Studied parts of the fruit: essential oil. <u>Main outcomes</u> : Oral treatment (50-200 mg/kg) reduced carrageenan-induced paw edema and leukocyte migration in an animal experimental model. DOI: 10.1016/j.jep.2023.116443	<u>Studied part of the fruit</u> : fruit pulp and peel. <u>Main outcomes</u> : Extracts were analyzed by the antioxidant potential through singlet oxygen, superoxide radical, hypochlorous acid (HOCI), hydrogen peroxide (H ₂ O ₂), nitric oxide (NO), and peroxynitrite (ONOO) assays. As results, the authors observed that the pulp extract presented the highest antioxidant potential for all tested analyzes (singlet oxygen: IC ₅₀ 22.8µg/mL; superoxide radical: IC ₅₀ 20.6µg/mL; HOCI: IC ₅₀ 18.7µg/mL; H ₂ O ₂ : IC ₅₀ 378µg/mL; NO: IC ₅₀ 2.2µg/mL; and ONOO: 26µg/mL.) DOI: 10.1016/j.foodchem.2014.05.079	<u>Main outcomes</u> : Antibacterial assay was carried out using the hexane, ethyl acetate and methanolic extracts of <i>P.</i> <i>cattleianum</i> , by employing the disc diffusion assay (Bauer, Kirby, Sherris, & Turck, 1966). The methanolic extract of the fruit has intermediate antimicrobial activity against the bacteria Bacillus subtilis and Staphylococcus aureus. No other extract of the fruit demonstrated positive results against the bacteria tested. DOI: 10.1016/j.foodchem.2012.03.018
Psidium guajava	Source: photograph ed in Taiwan on 20 January, 2004. Binomial name is tentative. Licensed under the GFDL.	Guava/ Goiaba	Brazil, Paraguay, Uruguay, Venezuela	Studied part of the fruit: pulp. <u>Main outcomes</u> : The pulp of seven cultivars was evaluated by HPLC-PDA and LC-TOF-MS techniques. Twenty- one compounds belonging to the classes of anthocyanins, flavonoids, proanthocyanidins, triterpenes and other constituents were characterized in the cultivars, ten of which were reported for the first time in this fruit, which were: delphinidin 3-O- glucoside, cyanidin-3-O-glucoside, myricetin-3-O-arabinoside, myricetin- 3-O-xyloside, isorhamnetin-3-O- galactoside, abscisic acid, pinfaensin, turpinionosides A, pedunculoside and madecassic acid. DOI: 10.1016/j.foodchem.2014.08.076 DOI: 10.1080/10412905.2013.796498	Studied part of the fruit: fruit. <u>Main outcomes</u> : The methanolic fraction of the fruit extract reduced edema formation, protein exudation and chronic arthritis <i>in vivo</i> . DOI: 10.1002/ptr.2650090208 <u>Studied parts of the fruit</u> : leaf and fruit. <u>Main outcomes</u> : Essential oils extracted from the leaves (IC ₅₀ of 32.53 µg/m) and fruits (49.76 µg/mL) reduced the activity of 5-lipoxygenase. DOI: 10.1080/10412905.2013.796498	Studied part of the fruit: essential oil of the fruit without seeds.Main outcomes: The essential oil was analyzed by the capacity to destabilize the DPPH radical and protect the 2- deoxyribose (2-DR) oxidation. As results the DPPH activity was IC_{50} 8.11 mg/mL and 2-deoxyribose protection IC_{50} 42.78 mg/mL. DOI: 10.1016/j.foodchem.2014.08.076Studied part of the fruit: whole fruit. Main outcomes: It was selected different cultivars, and the antioxidant potential was accessed by DPPH and ABTS assays. As results, the Thai Maroon cultivar present the highest activity to scavenge the DPPH radical, and Sardina 2 to scavenge the ABTS radical, DOI: 10.1080/10412905.2013.796498	<u>Main outcomes</u> : <i>Escherichia coli</i> , and <i>Staphylococcus aureus</i> . The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC ₅₀ 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 µg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 µg/ml, respectively, against pathogenic and MDR strains of <i>E. coli</i> and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 µg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 µg/ml, respectively, against pathogenic and MDR strains of <i>S. aureus</i> . DOI: 10.1007/s12033-023-00779-y

Sicana		Kurugua/	Brazil,	Studied parts of the fruit: fruit.	No anti-inflammatory studies available	No antioxidant studies available for this	Main outcomes: Extract showed
odorifera		Fruta	Paraguay	Main outcomes: Fruits were used for	for this fruit.	fruit.	efficiency to inhibit the growth of all
-		mortadela		anthocyanin extraction by heat-			bacterial culture tested (MIC = 1.1
	Courses			assisted and ultrasound-assisted			mg/mL) and its bactericidal effect was
	Source:			extraction (HAE and UAE,			achieved with twice the bacteriostatic
	do			respectively). HAE offered an extract			concentration (MBC = 2.2 mg/mL)
	ue Agricultura			with higher anthocyanin content but			(Staphylococcus aureus (ATCC 6538),
	Agricultura			required a longer processing time			Bacillus cereus (food isolate), and Listeria
	Abastocimo			than UAE (62 vs. 23 min, respectively).			monocytogenes (NCTC 7973), as well as
	nto			On the other hand, a slightly higher			three Gram-negative strains: Escherichia
	Agricultura			extract yield could be achieved with			coli (ATCC 35210), Salmonella
	sn (right)			UAE than with HAE (28% vs. 25%			typhimurium (ATCC 13311), and
	Julio chila			(w/w), respectively).			Enterobacter cloacae (ATCC 35030).
	(left)			DOI: 10.3390%2Ffoods10040700			Regarding antifungal activity,
	montage.						hydroethanolic extract epicarp was
	RoRo, CC						evaluated using following micromycetes:
	BY 3.0						Aspergillus fumigatus (ATCC 1022),
	<https: cr<="" td=""><td></td><td></td><td></td><td></td><td></td><td>Aspergillus versicolor (ATCC 11730),</td></https:>						Aspergillus versicolor (ATCC 11730),
	eativecom						Aspergillus niger (ATCC 6275), Penicillium
	mons.org/li						funiculosum (ATCC 36839), Penicillium
	censes/bv/						verrucosum var. cyclopium (food isolate),
	3.0>, via						and Trichoderma viride (IAM 5061). All
	Wikimedia						fungi strains were sensitive to the
	Commons						hydroethanolic extracts studied,
							highlighting the low concentration of
							extract that was required to inhibit the
							growth of <i>I. viride</i> (MIC = 0.28 mg/mL),
							while higher concentration of the
							controls E211 and E224 (MIC = 1.0 and
							0.5 mg/mL, respectively) were necessary.
							the extracts then Accorregillum con
							DOI: 10.2200% 2Efoods10040700
Colonum		Tamarilla	Delivie	Studied parts of the fruits fruit and	Studied parts of the fruits need	Studied part of the fruit, fruit pulp and	DOI: 10.3390%2F1000S10040700
Solanum	X	Tamarillo	Bolivia,	Studied parts of the fruit: fruit and	Studied parts of the fruit: peel.	Studied part of the fruit: fruit pulp and	Main outcomes: Compared to water as
Delaceu			Argontino	peel. Main outcomos: Eruits and pool of	<u>Wall outcomes</u> : The peer extract (12.5-	Main outcomes: Three different cultivars	by water and methanel extracts prepared
			Argentina	Solanum botacoum woro analyzed for	Prostaglandin E2_TNE-g and II_16 in	wore analyzed by the CLIPPAC and EPAP	showed significant antibactorial activity
	100			nhenolic composition by IC-MS/MS	macrophage culture	methods to access the antioxidant	against E coli P geruginosa and S
				technique Twelve nolynhenols were	DOI: 10 35790/eg 9 1 2021 32847	canacity As results the neel of Mulligan	aureus with zone of inhibition of at least
	Source: C T			quantified, six of which (ellagic acid		cultivar showed the high activity for both	13.5 mm.
	Johansson,			rutin, catechin, epicatechin		assays, being CUPRAC: 265-29 umol	DOI: 10.3390/foods10092212
	CC BY-SA			kaempferol-3-rutinoside and		Trolox equivalents/g of dry weight and	
	3.0			isorhamnetin-3-rutinoside) were		FRAP: 161.74 µmol Trolox equivalents/g	
	<https: cr<="" td=""><td></td><td></td><td>detected for the first time.</td><td></td><td>of dry weight.</td><td></td></https:>			detected for the first time.		of dry weight.	
	eativecom			DOI: 10.3390/antiox9020169		DOI: 10.3390/antiox9020169	
	mons.org/li						
	censes/by-						
	sa/3.0>, via						
	Wikimedia						
	Commons						

Solanum quitoense	Source: Dick Culbert from Gibsons, B.C., Canada, CC BY 2.0 <https: cr<br="">eativecom mons.org/li censes/by/ 2.0>, via Wikimedia Commons</https:>	Naranjilla	Ecuador, Colombia	Studied parts of the fruit: peel, pulp+seeds. <u>Main outcomes</u> : Samples were analyzed by the UHPLC-ESI-HRMS technique. The phenolics chlorogenic acid, p-coumaric acid, rutin, taxifolin were found in the peels, while in the pulp + seeds fraction only chlorogenic acid and taxifolin were identified. DOI: 10.3390/foods8030089	No anti-inflammatory studies available for this fruit.	Studied parts of the fruit: peel, pulp+seeds. <u>Main outcomes</u> : It was done 2 different extracts, one for pulp and seeds and another for peel. Bothe extracts were conducted to DPPH, ABTS, FRAP and β- carotene bleaching test. The results suggest that the peel extract present higher activity for DPPH (IC ₅₀ : 38.8 µg/mL), ABTS (IC ₅₀ : 167.7 µg/mL) and FRAP (49.4 µM Fe(II)/g) analysis than the pulp+seeds extract. However, for the β- carotene bleaching test the pulp+seeds extract present better results (IC ₅₀ : 6.9 µg/mL). DOI: 10.3390/foods8030089	<u>Main outcomes</u> : The fruit has not been directly reported to have antimicrobial activity. The highlight is that microorganisms isolated from this fruit, such as <i>Lactiplantibacillus</i> plantarum and <i>Weissella cibaria</i> , produce peptides with significant antimicrobial properties. In other words, it is the environment and the microorganisms present in the fruit that offer this potential through the production of antimicrobial compounds, and not the fruit itself. DOI: 10.3389/fmicb.2022.868025 DOI: 10.3390/foods9091242
Talisia esculenta	Source: Jorge Andrade from Rio de Janeiro, Brazil, CC BY 2.0 <https: cr<br="">eativecom mons.org/li censes/by/ 2.0>, via Wikimedia Commons</https:>	Pitomba	Brazil	Studied part of the fruit: pulp. <u>Main outcomes</u> : Fruit pulp was extracted with methanol and analyzed by LC–QTOF-MS/MS technique. A total of 13 compounds were tentatively identified (quinic acid, gallic acid, chlorogenic acid, catechin, epicatechin, caffeic acid, syringic acid, p-coumaric acid, rutin, ferulic acid, quercetin, eriodictyol and acacetin). Quinic acid was the main compound, presenting a concentration of 507.8 ± 7.4 µg g- 1 DW). DOI: 10.1016/j.foodres.2016.01.031	No anti-inflammatory studies available for this fruit.	Studied part of the fruit: pulp and peel. <u>Main outcomes</u> : The following extract concentrations were used for DPPH, ABTS, FRAP, β-carotene oxidation, spontaneous peroxidation in mouse brain homogenate (TBARs) and reduction of nitric oxide (NO): 2.5, 5, 10, 15, and 20 mg/mL. The ethanolic extract of peel showed the higher results in DPPH (54.21% to 81.41%), and ABTS (78.16– 94.07%). For FRAP, it ranged from ~1000 to ~1500 µmol-Fe ₂ SO ₄ /mL of extract. Related to the oxidation protection of β- carotene, the ethanolic extract of peel at 10mg/mL inhibit 84.91%. The TBAR's activities were not significant, but all of the extracts reduced the percentage of lipoperoxidation when compared to the control. The NO production decreased for all tested concentration of both extractions and both samples, except for the lower concentration of peel extracts (0.25 mg/mL). DOI: 10.1016/j.foodchem.2020.127929	<u>Main outcomes</u> : Antifungal activity of seed lectins against <i>Microsporum canis</i> . Microdilution method whose concentration for total inhibition of growth was 2 mg/mL. Study only <i>in vitro</i> by dilution methods (CLSI). DOI: 10.1111/j.1365-2672.2009.04387.x

Theobro		Macambo	Colombia,	No chemical composition studies	No anti-inflammatory studies available	Studied part of the fruit: whole fruit.	No antimicrobial studies available for this
ma			Ecuador,	available for this fruit.	for this fruit.	Main outcomes: Three extracts were	fruit.
bicolor			Peru			prepared using water, ether, and	
						ethanol. Additionally, three phenolic	
	Courses					compound fractions were obtained using	
	Source:					tetrahydrofuran:dry matter of free	
	Juan Gpe					phenolic acids (FPA), soluble phenolic	
	Ignacio, CC					esters (SPE), and insoluble phenolic	
	BY-SA 4.0					esters (IPE). Antioxidant activity was	
	<nttps: cr<="" td=""><td></td><td></td><td></td><td></td><td>assessed in both the extracts and</td><td></td></nttps:>					assessed in both the extracts and	
	eativecom					phenolic fractions using the β-carotene-	
	mons.org/li					linoleic acid model system. The phenolic	
	censes/by-					fractions (FPA, SPE, and IPE)	
	sa/4.0>, via					demonstrated significantly higher	
	Wikimedia					antioxidant activities (82.58%, 85.02%,	
	Commons					and 93.1%, respectively) compared to the	
						synthetic antioxidant BHT (70.46%).	
						Among the extracts, the ethanolic extract	
						exhibited the highest antioxidant	
						potential (68.2%). Furthermore, when all	
						extracts and fractions were combined	
						with BHT, a synergistic effect was	
						observed.	
						DOI: 10.1002/1438-	
						9312(200205)104:5%3C278::AID-	
						EJLT278%3E3.0.CO;2-K	
Theobro		Cacao/	Brazil	Studied parts of the fruit: seeds.	Studied parts of the fruit: stem peel.	Studied part of the fruit: pulp.	Studied part of the fruit: pulp.
ma cacao		Сосоа		Main outcomes: Characterization and	Main outcomes: Oral administration of	Main outcomes: Pulp was extracted and	Main outcomes: Pulp extract showed a
				quantification of phenolic compounds	the ethanolic extract (250 mg/kg) and	the DPPH and ABTS scavenging potential	significant effect on planktonic cells of
	-			from Theobroma cacao extract was	ethyl acetate fraction (62.5-250 mg/kg)	was determined. As results, the DPPH	oral bacteria Porphyromonas gingivalis,
	Sourco			performed using the HPLC-MS-ESI-	showed in vivo anti-inflammatory	scavenging potential was 979.19 μmol	Fusobacterium nucleatum and Prevotella
	Muséum de			QTOF technique. A total of 61	activity by inhibiting granuloma	Trolox equivalents/100g, and ABTS	intermedia.
	Toulouse			compounds were identified and	formation in the carrageenan-induced	scavenging potential 813.79 µmol Trolox	DOI: 10.1016/S1349-0079(10)80033-7
	CC BV-SA			quantified and fractions belonging to	air pouch model.	equivalents/100g.	
	30			several structural classes, such as	DOI: 10.1016/j.jep.2018.04.050	DOI: 10.1016/j.bcab.2021.101995	
	chttps://cr			flavan-3-ol and derivatives (including			
	eativecom			procyanidins), flavonols, N-			
	mons org/li			phenylpropenoyl-L-amino acids and			
	concoc/by			other compounds.			
	$c_{2}/2 \rightarrow v_{2}$			DOI: 10.1016/j.jff.2014.07.016			
	Sa/S.UZ, VId						
	Commons						
	Commons						

Theobro ma grandiflo rum	Source: Upper left: The original uploader was Roy Bateman at English Wikipedia. (Transferre d by IKAI); upper right: MA. Wolf bottom: BjoernS, montage by User:RoRo, CC BY-SA 3.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/3.0>, via Wikimedia</https:>	Cupuaçu	Brazil, Peru, Bolivia, Colombia	Studied parts of the fruit: fruit. <u>Main outcomes</u> : Fruits were analyzed for phenolic composition by HPLC– DAD-MS-MS and UPLC-QTOF techniques, which allowed the detection of nine flavone derivatives. Vitexin, hypolaetin 8-glucuronide- glucoside, hypolaetin 3'-methyl ether 8-β-d-glucuronide, and the corresponding 3"-sulfate were reported for the first time in cupuaçu and the latter is a novel conjugate. Isoscutellarein 8- <i>O</i> -β-d-glucuronide 6"-methyl ester and quercetin 3- <i>O</i> -β- d-glucuronide 6"-methyl ester were not detected. DOI: 10.1021/jf304349u	Studied parts of the fruit: fruit pulp. <u>Main outcomes</u> : Oral administration of a diet enriched in cupuaçu provides protective effects in an animal model of intestinal inflammation. DOI: 10.1016/j.fbio.2020.100599	Studied parts of the fruit: pulp, seeds and pulp. <u>Main outcomes</u> : Different extracts were prepared for each season of the year (autumn, winter and summer). All extracts were analyzed by DPPH and ORAC scavenging potential. As results, the seed extracts of all seasons presented the highest antioxidant potential. No difference was observed between seasons for fresh pulp and commercial frozen pulp. However, for seeds, the autumn collected fruits presented a decrease in antioxidant potential when compared to the other seasons. DOI: 10.1021/jf304349u	No antimicrobial studies were found for this fruit.
Ugni molinae	Source: Richard Fensome (myself), CC BY-SA 3.0 <https: cr<br="">eativecom mons.org/li censes/by- sa/3.0>, via Wikimedia Commons</https:>	Murta/ Murtilla/ Myrtle	Chile	Studied part of the fruit: fruit. <u>Main outcomes</u> : Fruits were analyzed for phenolic compounds profile by HPLC technique. Nine compounds (pyrogallol, vanillic, catechin, 3- hydroxytyrosol, gallic, protocatechuic, tyrosol, quercetin, and trans-cinnamic acids) were detected in the phenolic fractions of fresh and dried myrtle fruits. The most abundant phenol in fresh myrtle berries was catechin (172.72 mg/100 g DM). In contrast, the lowest levels were gallic acid (4.57 mg/100 g DM) and 3-hydroxytyrosol (24.73 mg/100 g DM). DOI: 10.3389/fpls.2023.1095179	Studied part of the fruit: fruit. <u>Main outcomes</u> : Extracts (3 mg/ear) reduced inflammatory edema induced by phorbol 12-myristate 13-acetate (TPA) and arachidonic acid (AA) in mice. DOI: 10.3389/fpls.2023.1095179	Studied part of the fruit: entire fruit. <u>Main outcomes</u> : Six different extracts were done, changing the dried methods. DPPH and ORAC assays were done to access the antioxidant properties of the fruit extracts. As results, the fresh fruit, without any dried procedure, showed the highest potential to scavenge DPPH and peroxyl radicals. DOI: 10.3389/fpls.2023.1095179	Main outcomes: Extracts from fruits showed significant antibacterial and antifungal effects. Escherichia coli and Listeria monocytogenes had MIC of 0.6 mg/mL and MBC of 1.7 mg/mL. Penicillium expansum showed greater sensitivity to the extract and there was a reduction of approximately 4% in fungal population density. DOI: 10.1016/j.foodres.2017.09.073

Ziziphus		Mistol	Paraguay,	Studied parts of the fruit: fruit pulp	Studied parts of the fruit: seeds, fruit	Studied parts of the fruit: whole fruit.	No antimicrobial studies available for this
mistol			Argentina	and peel.	pulp and peel.	Main outcomes: Two extractions type	fruit.
				Main outcomes: Samples were	Main outcomes: Extracts of Ziziphus	were analyzed, simulating the domestic	
				analyzed by HPLC–ESI-MS/MS	mistol (100 μg GAE/mL for extract	cooking processing of the fruit: ethanolic	
				technique. It was possible to identify	samples) from the seeds, pulp and peel	and aqueous extracts. As results, the	
				17 compounds, including 16	exhibited inhibitory activity (greater	ethanolic extract showed high potential	
				flavonoids and one procyanidin.	than 90%) against lipoxygenase and	to scavenge the DPPH and ABTS radical	
	Source:			DOI: 10.1016/j.jff.2017.08.020	cyclooxygenase-2. The extract obtained	formations, as well as inhibit the	
	Abestrobi,				from the pulp demonstrated greater	oxidation of β -carotene. However,	
	CC BY-SA				inhibitory activity against phospholipase	related to the superoxide and hydroxyl	
	3.0				A2.	radical formation, the aqueous extract	
	<http: cre<="" td=""><td></td><td></td><td></td><td>DOI: 10.3390/foods11142125</td><td>exhibited higher scavenging activity.</td><td></td></http:>				DOI: 10.3390/foods11142125	exhibited higher scavenging activity.	
	ativecomm					DOI: 10.1016/j.foodres.2011.02.040	
	ons.org/lice				Studied parts of the fruit: fruit.		
	nses/by-				Main outcomes: The aqueous extract		
	sa/3.0/>,				showed an inhibitory effect on		
	via				lipoxygenase activity, with an IC_{50} of		
	Wikimedia				183.80 μg GAE/mL.		
	Commons				DOI: 10.1016/j.foodres.2011.02.040		

MIC: Minimum Inhibitory Concentration. MBC: Minimum Bacterial Concentration. MMC: Minimum microbicidal concentration.