Supporting Information

The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of sbp-1/SREBP pathway in HepG2 cells and Caenorhabditis elegans

Qi Gu^{*a*, #}, Litao Wang^{*a*, #}, Mingyue Xu^{*a*}, Wanmei Zhou^{*a*}, Guosheng Liu^{*a*}, Haiting Tian^{*a*}, Thomas Efferth^{*c*}, Chenlu Wang^{*a*, *}, Yujie Fu^{*a*,b *}

^a The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.

^bLaboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040,

Harbin, PR China.

^c Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.

* Corresponding author.

Tel: +010 62336778.

E-mail address: yujie_fu@163.com (Y.-J. Fu).

Establishment of a metabolomics assay for C. elegans

An in-house quality control sample was prepared by mixing an equal amount of each constituent sample. Extracted *C. elegans* samples were analyzed using a Thermo ScientificTM Q Exactive TM system (Waltham, MA, USA). The chromatographic column was performed with a Accuity UPLC BEH C18 column ($100 \times 2.1 \text{ mm}$, $1.7 \mu \text{m}$) maintained at 40 °C, inject 1 μ L in positive and negative mode respectively. The mobile phase was the aqueous solution with 0.1% formic acid (A) and acetonitrile solution (B). The flow rate was 0.35 mL/min. Post time was set as 5 min for system balance. The optimized elution gradient was as follows: 0 to 1 min, 3 to 3.3% B; from 1 to 3 min, 3 to 50% B; from 3 to 5 min, 50–60% B; from 5 to 8 min, 60 to 92 % B; from 8 to 14 min, 92% B; from 14 to 15 min, 92 to 3% B; and from 15 to 18 min, 3% B for equilibrating the systems. Mass spectrometry was operated in both positive and negative ion modes.

Figure S1. Oil Red O staining of lipid droplets in HepG2 cells treated with phloretin. Representative bright-field micrographs showing intracellular lipid accumulation (red droplets).

Figure S2. Effects of phloretin on intracellular ATP levels in HepG2 cells. Quantitative analysis showing ATP concentration changes. Values represent mean \pm SEM (n = 3 independent replicates). Bars labeled with different letters indicate statistically significant differences (p < 0.05 by ANOVA/Tukey's test).

Figure S3. The results of metabolomics analysis. A-B, Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). C-D, The result of OPLS-DA analysis. E, KEGG pathway analysis of differential metabolites.

GENE	Forward (5'-3')	Reverse (5'-3')		
GAPDH	GTCAAGGCTGAGAACGGGAA	AAATGAGCCCCAGCCTTCTC		
SREBP	GTGAAGACCAGTCTCCCACG	TCCCCATCCACGAAGAAACG		
ACC	AGGAGCTGTCTATTCGGGGT	GGTCGCTCAGCCTGTACTTT		
PPARα	GCTTCGCAAACTTGGACCTG	GCTACCAGCATCCCGTCTTT		
SCD	CCACTTGCTGCAGGACGATA	TAGAGGGGCATCGTCTCCAA		
FASN	GTCTTGAACTCCTTGGCGGA	GAGCGGGTGGTTCTGAGAAA		
AKT1	CAGGATGTGGACCAACGTGA	AAGGTGCGTTCGATGACAGT		
MTOR	CAGCTAAGTCCACCCTGGTG	GTGAAGGCAGAAGGTCGGAA		
FOXO4	TCTACGAGTGGATGGTCCGT	ATGAACTTGCTGTGCAGGGA		

 Table S1. (Primer sequence of HepG2 cell)

Table S2. (Primer seq	uence of C.	elegans.)

GENE	Forward (5'-3')	Reverse (5'-3')		
act-1	ACGAGGTTGCCGCTCTTGTTG	ACGAGTCCTTCTGTCCCATACCG		
daf-2	GCTCTCGGAACAACCACTGA	GACAAGTCGAAGCCGTCTCA		
age-1	TCTCTGGGCTCGTACGAAGA	GGCACGATTCACCAACACAC		
akt-1	CAAAGCCTAAGGAAGGACAACC	CATGAATCCAACGCTGACGAAC		
skn-1	AGTGCTTCTCTTCGGTAGCCG	TGTTGGACGATGGTGAACTGA		
daf-16	TCGTCGTCTCGTGTTTCTCCA	TTCCATAGGCACCCGGTAGTG		
sod-3	TCTCCAACCAGCGCTGAAAT	TTTGCACAGGTGGCGATCTT		
sbp-1	GGCGGCGAAGATTGTGATTC	GGCGGCGAAGATTGTGATTC		

mdt-15	CAAAACCAGACAAGCGGTGG	CAATTCAGACGAGGCGGAGT
nhr-49	CTGCAACGGGTGTAAGGGAT	GACACGCGCATCGAAAGTTT
fat-5	GGATGGCAGCCATACGATCA	CTCCGACTGCCGCAATAGAT
fat-6	AAGATTGAGAAGGACGGCGG	TTCATTTGGATCCACGGCGA
fat-7	TCGTTGCCATCACAAGTGGA	GAGTTTGCCTCCATGCTCCT

Table S3. (Identification of differential metabolic compounds in KEGG pathwayusing UPLC-Q-Exactive Orbitrap-MS method)

Name	RT	Formul	Calc.	m/z	Fragments	Reference Ion	
	[min]	a	MW				
4-acetamidobutyric	2 305	C6 H11	145.073	354.163	296.07184,223.06178,166.084	[2M+ACN+Na]+	
acid	2.305	N O3	4	4	9	1	
5-Aminopentanoic	1 776	C5 H11	117 078	140.067	118 08540 58 06520	[M+N-1+1	
acid	1.770	N O2	117.078	1	118.06549, 58.00529	[M+Na]+1	
Bataina	1.1	C5 H12	117.078	118.085	101 05021 58 06531	[M+H]+1	
Betaine	1.1	N O2	1	4	101.03921,38.06351	[141 + 11] + 1	
Chaline	1.076	C5 H14	103.099	104.106	60 08096 2 58 06533	[M+H]+1	
Chonne	1.076	N O	1	4	00.00070 - 50.00555	[[11]+1	
Donomine	5 262	C8 H11	153.079	348.192	260 12245 154 08517	[2M A CN 11] 1	
Dopamine	5.262	N O2	2	5	269.13345,154.08517	[2M+ACN+H]+1	
I (I) Alaring	1 079	C3 H7	89.0473	90.0546	00.0547		
L-(+)-Alanine	1.078	N O2	8	5	90.0547	[אידם]דו	
Louging	1.607	C6 H13	131.093	132.100	122 10081 86 0061		
Leucine	1.00/	N O2	6	8	132.10081,86.0961	[M+H]+I	

L-Histidine	1.117	C6 H9 N3 O2	155.068 2	156.075 5	156.07459,110.07059	[M+H]+1
L-Phenylalanine	1.934	C9 H11 N O2	165.077 6	166.084 9	166.08496, 102.0459	[M+H]+1
L-Threonine	1.082	C4 H9 N O3	119.057 6	120.064 6	120.07988, 97.00709, 78.99681	[M+H]+1
L-Tyrosine	1.285	C9 H11 N O3	181.072 5	182.079 7	165.03025, 91.05385	[M+H]+1
Succinic acid	3.878	C4 H6 O4	118.027 1	119.034 3	119.03428,118.06422	[M+H]+1
1,2-dihexadecanoyl- sn-glycero-3- phosphoserine	13.19 2	C38 H74 N O10 P	735.503	734.495 8	734.49707,733.49335	[M-H]-1
1-myristoyl-2-oleoyl- sn-glycero-3- phosphoethanolamin e	18.78 4	C37 H72 N O8 P	689.499 6	690.506 9	690.50714,689.50543	[M+H]+1
Arachidonic acid	14.51 9	C20 H32 O2	304.235 7	303.228 4	303.22882 , 231.44618	[M-H]-1
Ceramide	1.259	C42 H81 N O3	647.621 8	646.614 6	628.6028	[M-H]-1
Choline	1.076	C5 H14 N O	103.099 1	104.106 4	60.08096,58.06533	[M+H]+1
LysoPC	4.815	C30	571.364	286.689	286.2985	[M+2H]+2

		H54 N	4	5		
		07 P				
Palmitic Acid	9.274	C16 H32 O2	273.264	274.271 2	256.26082,71.08537	[M+H]+1
TxB2	7.085	C20 H34 O6	370.236 5	371.244	371.244	[M+H]+1