Supplementary Information

2 Crocin extends lifespan by mitigating oxidative stress and

3 regulating lipid metabolism through the DAF-16/FOXO

4 pathway

- 5 Ai-Pei Li ^{a,c}, Dan Li ^b, Xin Tan ^b, Rui Xu ^b, Lin-Xi Mao ^b, Juan-Juan Kang ^b, Sheng-
- 6 Hong Li^{b,d,*}, Yan Liu^{a,b,*}
- 7 a College of Medical Technology, Chengdu University of Traditional Chinese
- 8 Medicine, Chengdu 611137, P. R. China
- 9 ^b State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative
- 10 Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional
- 11 Chinese Medicine, Chengdu 611137, P. R. China
- 12 ° Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and
- 13 Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine
- 14 ^d State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of
- 15 Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- 16 * Corresponding author: Sheng-Hong Li, Yan Liu
- 17 *E-mail addresses:* liuyan@cdutcm.edu.cn (Y. Liu); shli@cdutcm.edu.cn (S.-H. Li)
 18

- 19 This PDF file includes:
- 20
- 21 Table S1. Primers used in RT-qPCR experiments
- 22 Table S2. Primers used in RNAi experiments
- 23 Table S3. Statistical analysis of the lifespan
- 24 **Table S4. The 42 hub targets information of PPI network**
- 25 Figure S1. High performance liquid chromatography (HPLC) of saffron extracts.
- 26 Figures S2. Crocin had no side effect in growth and development.
- 27 Figures S3. Gene expression of sir-2.1 and interference efficiency of daf-16/FOXO.
- 28 Figure S4. Proof of electrophoresis bands of the genes used in this study.
- 29 Figure S5. Corresponding melting curves of the genes used in this study.
- 30 Figure S6. Gel electrophoresis analysis was performed on both the daf-16 RNAi
- 31 fragment and the enzyme-digested L4440 plasmid.
- 32 Figure S7. Proof of electrophoresis bands of the *daf-16* RNAi fragments in the
- 33 recombinant product L4440-daf-16.

	Gene Prime forward (5' to 3')		Prime reverse (5' to 3')				
	actin-1	ggaaatcacc	gctcttgccc	cttgcggtgaacgatggatgg			
	daf-2	cggtgcgaag	gagaggatatt	tacagaggtcgccgttactg			
	daf-16	daf-16 cgatctagtcccgag		gtacgccgtggattccttcc			
	skn-1 agtgtcggcgttcca		ttccagatttc	gtcgacgaatcttgcgaatca			
	hsp16.2	hsp16.2 ctgcagaatctctccat gst-4 cccattttacaagteg		agattggaagcaactgcacc			
	gst-4			cttcctctgcagtttttcca			
	sod-3	agcatcatg	ccacctacg	caccaccattgaatttcagcg			
	fat-1	fat-1 atgtcgatgatgtcgctgagg		gaagtgatgggcaacgtgtc			
	fat-2	ctgtgcttaca	ttgcctttgtc	ggagttgcctccaacagatg			
	fat-4	fat-4tcacatccaggtggtagtgcfat-5gttggatggtattcctcctgc		ggttettgtgtagggeaete ggaggtagttetteetetggaae			
	fat-5						
	fat-6	ccacataaca	ccactcgtgg	catccgaaatagtgagcagcg			
	fat-7	ctcaggattcg	gtatcacage	gggaaatagtgctttctctgg			
	elo-2	ctctcaacctt	gccgtccac	cgatcgatagcacattccagc			
	atgl-1	caaatgtgga	ttggctccatg	cgaatggtttcttcatgatacttg			
	lipl-4	ggcactctca	actatgtttgc	cggacccatgtttctttacg			
	lipi-3	tgactacgcco	ccaaatcattg	cgaggccttcaagtttttgtgc			
	acs-2	accgagacat	cccctctagtc	gacgttctcaccacccttcac			
35	Table S1 Pr	Table S1 Primers used in RT-qPCR experiments					
36							
37							
38							
39	Table S2 Pr	imers used in RNA	experiments				
	Prime L4440- <i>daf-16</i> -F			Sequence			
			attcgatatcaa	attcgatatcaagcttGAAGAACTCGATCCGTCAC			
	L	4440- <i>daf-16</i> -R	cggtatcgataa	gcttTTACAAATCAAAATGAATATGCTGCC			
40							

Strains	Treatment	Mean lifespan ± SEM	Number	<i>p</i> -value
N2 (Wild type)	Control	16.669±0.24	117	
	CR 50 µM	18.431±0.292	121	< 0.0001
	CR 100 µM	18.081 ± 0.263	111	< 0.0001
	CR 200 µM	19.247±0.253	115	< 0.0001
	RES 200 µM	19.532±0.33	110	< 0.0001
Mutant				
strains				
N2 (Wild type)	Control	17.736±0.341	148	
<i>daf-16</i> (mu86)	Control	16.013 ± 0.331	150	<0.0001 a
	CR 200 µM	15.979 ± 0.384	140	0.4256
<i>daf-2</i> (e1370)	Control	21.347±0.38	147	<0.0001 a
	CR 200 µM	22.664 ± 0.451	143	0.0049 ^b

41 Table S3 Statistical analysis of the lifespan

42 ^a *p*-value indicates significant differences compared to the N2 (wild-type) control group; ^b

43 indicates significant differences compared to the control group of common strain, as

44 determined by the Log-rank test. *p* <0.05 was considered statistically significant. CR: crocin;

45 **RES: resveratrol.**

Gene Name	Degree	Betweenness	Closeness
MAPK3	19	614.65	40.66667
IL6	18	870.22444	41
MAPK1	18	467.97488	40.33333
STAT3	17	540.44581	39.66667
BCL2	17	669.97778	39
TNF	15	453.34777	39.33333
IL1B	13	180.42712	36.25
RELA	12	333.93453	35
MYC	11	286.40603	34.83333
TGFB1	11	240.94366	32.75
MMP9	11	524.83021	32.58333
CASP3	10	516.04231	35.08333
CREB1	9	119.35705	34.75
ESR1	9	70.67062	32.83333
PTPN11	9	108.22147	31.16667
CASP8	8	151.88508	32.33333
TLR4	8	70.74014	31.91667
IL10	8	17.65963	31.66667
HIF1A	7	16.03675	32.58333
AKT2	7	276.20684	31
CCND1	6	13.70804	30.91667
PTGS2	6	260.8381	30.66667
HRAS	6	32.02895	30
KEAP1	6	211.24232	29.75
BECN1	6	63.28642	29.41667
MAP2K1	6	18.29744	28.91667
GSK3B	6	55.04251	28.9
SQSTM1	6	59.66937	28.11667
NFE2L2	6	96.08782	27.56667
SMAD2	5	99.548	30.08333
ALB	5	351.21183	29.5
JAK2	5	77.07528	29.5
CYCS	5	82.12315	28.91667
CCL5	5	1.36905	28.83333
MYD88	5	24.46984	28.75
MAPK14	5	6.90543	28.41667
MMP2	4	61.75394	28.56667
APP	4	275.2	25.78333
IGF1	3	8.85288	28
NOS2	3	144.0381	24.81667
ELANE	3	23.35098	23.2
SERPINA1	2	18.67149	21.86667

47 Table S4 The 42 hub targets information of PPI network

49 Figure S1 High performance liquid chromatography (HPLC) analysis of saffron 50 extract. (A) HPLC of saffron extract and crocin detected at 440 nm. (B) Standard curve 51 of crocin (15.0625-250 μ g/mL) with the linear regression equation (y = 39.446x + 52 113.51; R² = 0.9998) used for quantification.

Figure S2 Crocin had no side effect in growth and development of *C. elegans*. (A)
Reproductive ability of *C. elegans* treated with crocin (50–400 μM). Data presented as
the average total eggs per nematode from ten replicates. (B-D) The indictors of growth

and development in C. elegans in different ages, including relative body length(B), 58 relative movement speed in 30 seconds (C) and relative pharyngeal pump in 30 seconds 59 (D). All data represented as mean \pm SEM with three biological replicates (n = 20 per 60 replicate). p < 0.05 was considered as statistically significant * p < 0.05, ** p < 0.01, 61 **** *p* < 0.0001. 62

Figure S3 Gene expression of sir-2.1 and interference efficiency of daf-16/FOXO. 65

(A) The expression of sir-2.1 in crocin-treated aged nematodes. (B) The expression of 66 *daf-16/FOXO* gene significantly decreased in *daf-16* RANi nematodes. p < 0.05 was 67 considered as statistically significant; ** p < 0.01. 68

- 69
- 70

Figure S4 Electrophoresis bands of the genes used in this study. Line 1-17 indicated
genes actin-1, daf-16, daf-2, skn-1, gst-4, hsp-16.2, sod-3, atgl-1, lipl-3, lipl-4, acs-2,
fat-2, fat-5, fat-6, fat-7, fat-4, elo-2, respectively.

79

80 Figure S6 Gel electrophoresis analysis was performed on both the *daf-16* RNAi

81 fragment and the enzyme-digested L4440 plasmid. Lines 1 and 2 were daf-16 RNAi

82 fragment and lines 3-5 were enzyme-digested plasmid L4440.

83

2000bp 1500bp	rker	
1000bp	123456	

84

- 85 Figure S7 Electrophoresis bands of the *daf-16* RNAi fragments in the recombinant
- plasmid L4440-*daf-16*. Lines 1-6 were the *daf-16* RNAi fragment inserted into the
 L4440 plasmid using L4440-*daf-16* primers.

88