Supplementary Information (SI) for Food & Function. This journal is © The Royal Society of Chemistry 2025

Supplementary Materials

Supplemental Table 1. CONSORT Checklist

Section/topic	Item No	Description	Page No*
Γitle†	1a	Identification as a randomized crossover trial in the title	1
Abstract†	1b	Specify a crossover design and report all information outlined in table 2	1
introduction:			
Background‡	2a	Scientific background and explanation of rationale	2-3
Objectives‡	2b	Specific objectives or hypotheses	3
Methods:			
Γrial design†	3a	Rationale for a crossover design. Description of the design features including allocation ratio, especially the number and duration of periods, duration of washout period, and consideration	4, Figure 1
Change from protocol‡	3b	of carry over effect Important changes to methods after trial commencement (such as eligibility criteria), with	N/A
		reasons	
Participants‡	4a	Eligibility criteria for participants	5
Settings and location‡	4b	Settings and locations where the data were collected	5
Interventions†	5	The interventions with sufficient details to allow replication, including how and when they were actually administered	4-6
Outcomes‡	6a	Completely defined prespecified primary and secondary outcome measures, including how and when they were assessed	6-8
Changes to outcomes‡	6b	Any changes to trial outcomes after the trial commenced, with reasons	N/A
Sample size†	7a	How sample size was determined, accounting for within participant variability	5
nterim analyses and stopping guidelines‡	7b	When applicable, explanation of any interim analyses and stopping guidelines	N/A
Randomization:			
Sequence generation‡	8a	Method used to generate the random allocation sequence	4-5
Sequence generation‡	8b	Type of randomization; details of any restriction (such as blocking and block size)	5
Allocation concealment mechanism‡	9	Mechanism used to implement the random allocation sequences (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned	5
Implementation†	10	Who generated the random allocation sequence,§ who enrolled participants, and who assigned participants to the sequence of interventions	5
Blinding‡	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how	4
			N/A
Similarity of interventions‡ Statistical methods†	11b 12a	If relevant, description of the similarity of interventions Statistical methods used to compare groups for primary and secondary outcomes which are	9-10
Additional analyses‡	12b	appropriate for crossover design (that is, based on within participant comparison) Methods for additional analyses, such as subgroup analyses and adjusted analyses	N/A
	120	iviculous for additional analyses, such as subgroup analyses and adjusted analyses	IN/A
Results			
Participant flow (a diagram s strongly recommended)†	13a	The numbers of participants who were randomly assigned, received intended treatment, and were analyzed for the primary outcome, separately for each sequence and period	9 and Figure 2
Losses and exclusions†	13b		9 and Figure 2
Recruitment‡	14a	Dates defining the periods of recruitment and follow-up	5
Trial end‡	14b	Why the trial ended or was stopped	N/A
Baseline data†	15		Supplementary Tab
Numbers analyzed†	16	Number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	10
Outcomes and estimation†	17a	For each primary and secondary outcome, results including estimated effect size and its precision (such as 95% confidence interval) should be based on within participant comparisons.	12-15 and Supplementary Table 4
Binary outcomes‡	17b		N/A

		Results of any other analyses performed, including subgroup analyses and adjusted analyses,	N/A
Ancillary analyses‡	18	distinguishing prespecified from exploratory	
Harms†	19	Describe all important harms or untended effects in a way that accounts for the design (for	N/A
		specific guidance, see CONSORT for harms ³²)	
Discussion:			
Limitations†	20	Trial limitations, addressing sources of potential bias, imprecision, and if relevant, multiplicity	24
		of analyses. Consider potential carry over effects	
Generalizability‡	21	Generalizability (external validity, applicability) of the trial findings	24
Interpretation‡	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	20-24
Other information:			
Registration‡	23	Registration number and name of trial registry	1 and 4
Protocol‡	24	Where the full trial protocol can be accessed, if available	N/A
Funding‡	25	Sources of funding and other support (such as supply of drugs), role of funders	1

CONSORT=Consolidated Standards of Reporting Trials.

\$Random sequence here refers to a list of random orders, typically generated through a computer program. This should not be confused with the sequence of

interventions in a randomized crossover trial, for example receiving intervention A before B for an individual trial participant.

A within participant comparison takes into account the correlation between measurements for each participant because they act as their own control, therefore measurements are not independent.

Supplemental Table 1. This study was conducted in compliance with the CONSORT checklist. Shown are the CONSORT checklist items and page numbers and/or figure/table numbers where the information can be found.

^{*}Note: page numbers are optional depending on journal requirements. The page numbers shown here refer to the submitted manuscript. †Modified original CONSORT item.

‡Unmodified CONSORT item.

Supplemental Table 2. Nutrient Analysis Summary

	Comparator		Chi			
	Baseline	Final	$M_{ m diff}$	Baseline	Final	$M_{ m diff}$
	M (SD)	M (SD)		M (SD)	M (SD)	
Kilocalories (kcal)	2078.46	2773.98		2181.88	2236.30	
	(1091.61)	(1676.70)	695.51	(1219.97)	(957.64)	54.42
Protein, Total (g)	88.72	96.17		87.80	84.59	
_	(50.72)	(61.87)	7.45	(45.07)	(34.47)	-3.21
Protein (% kcal)	4.06	3.54		3.86	3.83	
	(1.09)	(0.64)	-0.51	(0.64)	(0.64)	-0.03
Carbohydrate, Total (g)	237.46	305.92		269.67	251.45	
	(130.45)	(186.56)	68.46	(194.83)	123.89	-18.22
Carbohydrate (% kcal)	11.30	10.99		11.33	11.12	
•	(1.72)	(1.96)	-0.31	(1.77)	(1.52)	-0.20
Fat, Total (g)	78.66	124.31		93.97	95.32	
	(38.53)	(77.43)	45.64	(43.94)	(42.31)	1.35
Fat (% kcal)	4.12	4.51		4.26	4.37	
	(1.11)	(0.70)	0.40	(0.81)	(0.58)	0.11
Dietary Fiber, Total (g)	24.86	25.37		19.94	21.71	
	(13.25)	(11.72)	0.51	(8.23)	(11.45)	1.76
Dietary Fiber (% kcal)	1.39	0.91		0.95	1.02	
	(0.55)	(0.70)	-0.47	0.42	(0.39)	0.07
Alcohol (% kcal)	0.17	0.24	_	0.27	0.38	
	(0.33)	(0.30)	0.07	(0.54)	(0.47)	0.11

Supplemental Table 2. Shown are the intake of macronutrients and alcohol, calculated from 3-dayfood logs and returned at each study visit. Macronutrients are reported as totak intake in grams (g) and as percentage of total kilocalories (% kcal). Of note, all pre-post changes in macronutrients that are calculated as % kcal are under 1 percent; these values are bolded.

Supplemental Table 3. Micronutrient Composition of Cricket Chitin

	Concentration (mg/g)	Limit of Detection	Limit of Quantification
Al	1220	0.3	0.9
As	0.00438	2.00E-03	5.00E-03
В	0.232	0.05	0.1
Ba	4.11	3.00E-02	0.07
Be	2.27E-03	0.002	0.003
Ca	1670	2	4
Cd	0.0119	3.00E-03	0.008
Co	0.0167	2.00E-04	0.0007
Cr	0.629	0.003	0.009
Cu	40.1	0.02	0.05
Fe	63.6	0.3	0.8
K	19.3	0.6	2
Li	0.021	0.02	0.06
Mg	253	0.3	0.9
Mn	4.27	0.003	0.008
Mo	0.0211	0.0006	0.002
Na	66.2	0.9	3
Ni	0.394	0.003	0.0098
P	61.6	1	3
Pb	2.64	0.0008	0.002
S	<lod< td=""><td>50</td><td>100</td></lod<>	50	100
Se	<lod< td=""><td>0.04</td><td>0.1</td></lod<>	0.04	0.1
Sr	4.73	4.00E-03	0.01
V	0.138	2.00E-03	0.004
W	<lod< td=""><td>2.00E-03</td><td>0.006</td></lod<>	2.00E-03	0.006
Zn	120	0.3	0.7

Supplemental Table 3. Shown is the micronutrient composition of cricket chitin, including micronutrient concentration, limit of detection, and limit of quantification values. These values represent the composition found in 22g of cricket chitin, which is the daily dose of the chitin intervention.

Supplemental Table 4. Overview of physiological measures throughout the study.

Supplemental T	able 4. Ove	rview of phy	siological mea	sures througho	out the study.			
		Comparator			Chitin	hitin		
	Baseline	Final	Final - Baseline	Baseline	Final	Final - Baseline		
Serum	M (SD)	M (SD)	$ m M_{diff}$	M (SD)	M (SD)	$ m M_{diff}$		
Inflammatory			[95% CI _{diff}]			[95% CI _{diff}]		
Biomarkers								
TNF-a	39.55	36.22	-3.326	21.36	19.04	-2.337		
	(24.23)	(20.79)	[10.92 to 4.26]	(20.46)	(29.88)	[10.86 to 6.18]		
hsCRP	7669	7770	101.2	8805	7726	-1079		
	(17.54)	(22.48)	[-2667 to 2869]	(28.36)	(18.76)	[-4127 to 1970]		
IL-10	249.83	249.3	-0.5000	169.4	157.8	-11.58		
IL-6	(240.03)	(229.75) 13.24	[-72.17 to 71.17]	(181.34) 14.79	(200.61)	[-89.21 to 66.04] -3.749		
IL-0	12.62 (17.54)	(22.48)	0.6124 [-1.99 to 3.21]		11.04			
serum lipocalin	17.12	15.40	-1.712	(28.36) 16.02	(18.76) 15.75	[-10.60 to 3.10] -0.2670		
serum npocann	(10.44)	(10.21)	-1.712 [-10.57 to 7.15]	(6.86)	(8.28)	-0.2670 [-7.49 to 6.97]		
Fecal	M (SD)	M (SD)	M _{diff}	M (SD)	M (SD)	M _{diff}		
inflammatory	M (SD)	M (SD)	[95% CI _{diff}]	M (SD)	M (SD)	[95% CI _{diff}]		
biomarkers								
fecal calprotectin	86.87	29.17	-57.17	42.61	37.17	-3.951		
	(168.16)	(28.51)	[-188.3 to 73.95]	(64.13)	(60.45)	[-30.69 to 22.79]		
fecal lipocalin	73.87	55.80	-18.07	44.86	54.14	9.286		
101	(27.12)	(22.11)	[-76.57 to 40.44]	(41.40)	(43.98)	[-13.09 to 31.66]		
sIGA	1.70	1.91	-0.3583	3.04	2.52	-0.1232		
Lipid Panel	(1.14) M (SD)	(1.48) M (SD)	[-1.70 to 0.98] M _{diff}	(1.88) M (SD)	(1.11) M (SD)	[-1.34 to 1.09]		
Lipid Panei	M (SD)	M (SD)	[95% CI _{diff}]	M (SD)	M (SD)	M _{diff} [95% CI _{diff}]		
TCH	184.6	186.47	1.571	183.9	186.50	2.563		
	(38.69)	(25.62)	[-16.03 to 19.17]	(35.39)	(31.05)	[-10.90 to 16.02]		
HDL	62.71	66.43	3.714	61.50	63.88	2.375		
	(10.24)	(10.14)	[2.66 to 10.09]	(12.94)	(12.59)	[-3.32 to 8.07]		
LDL	103.5	102.3	-1.224	105.24	102.6	-2.633		
	(27.67)	(19.01)	[-13.71 to 11.26]	(27.17)	(27.83)	[-14.44 to 9.18]		
vLDL	20.69	20.07	-0.8736	18.76	20.50	2.133		
	(9.64)	(9.26)	[-4.81 to 3.06]	(7.21)	(5.70)	[-1.59 to 5.86]		
Non-HDL	124.3	122.2	-2.155	123.94	124.4	0.4868		
	(34.26)	(21.67)	[-14.85 to 10.54]	(32.17)	(28.19)	[-11.50 to 12.47]		
Triglycerides	104.1	95.79	-8.357	90.50	103.13	12.63		
	(47.07)	(48.645)	[-33.71 to 17.00]	(35.68)	(29.01)	[-9.86 to 35.11]		
TC/HDL	3.01	2.87	0.1303	3.07	3.07	0.08156		
M. () P. D I	(0.61)	(0.43)	[-0.09 to 0.35]	(0.73)	(0.73)	[-0.12 to 0.29]		
Metabolic Panel	M (SD)	M (SD)	M _{diff}	M (SD)	M (SD)	M _{diff}		
Glucose	93.40	97.51	[95% CI _{diff}] 4.106	98.29	97.20	[95% CI _{diff}] -1.093		
Glucose	(5.67)	(6.99)	[0.48 to 7.73]	(6.46)	(4.59)	[4.54 to 2.36]		
BUN	12.02	11.48	-0.5387	12.18 (2.35)	10.72 (2.73)	-1.455		
Воп	(2.26)	(1.99)	[-2.24 to 1.16]	12.10 (2.55)	10.72 (2.73)	[-3.09 to 0.18]		
Creatinine	0.87	0.84	-0.02239	0.94	0.79	-0.1483		
	(0.26)	(0.20)	[-0.193 to 0.148]	(0.23)	(0.20)	[-0.31 to 0.02]		
Na	141.19	139.90	-1.228	141.00	140.56	-0.4126		
	(4.55)	(3.62)	[-3.97 to 1.51]	(4.33)	(3.67)	[-3.03 to 2.21]		
K	4.78	7.25	2.470	4.63	4.57	-0.06100		
	(0.39)	(10.45)	[-1.79 to 6.73]	(0.37)	(0.40)	[-4.19 to 4.07]		
Cl	111.00	110.73	-0.2646	110.65	111.19	0.5260		
	(4.07)	(2.12)	[-2.847 to 2.318]	(2.91)	(2.99)	[-1.97 to 3.03]		
Other	M (SD)	M (SD)	M _{diff} [95% CI _{diff}]	M (SD)	M (SD)	M _{diff} [95% CI _{diff}]		
BMI	25.09 (5.89)	24.95 (5.62)	-0.1320	25.03 (5.83)	25.30 (5.74)	0.2752		
2.111	22.07 (3.07)	22 (3.02)	[-0.48 to 0.22]	20.00 (0.00)	20.00 (0.71)	[-0.10 to 0.65]		

Supplemental Table 4. Shown is an overview of physiological measures at baseline and final time points of each intervention period for all participants (intent-to-treat), in addition to mean differences calculated as final – baseline values. M = mean; SD = standard deviation; $M_{diff} = mean$ differences; 95% $CI_{diff} = 95\%$ CI of the mean difference.

Supplementary Table 5. Maaslin ZINB results for taxon biomarkers of each treatment group.

Бирргениен	tary Table 5. Maasiii Zind results for tax	Log2FC	St.Error	P-value	FDR
Comparator	g_[Eubacterium]_siraeum_group; suncultured_bacterium	-2.12	0.263		
treatment biomarkers	g_Barnesiella	0.433	0.0599		6.61E-11
	g_Angelakisella; s_uncultured_bacterium	1.55	0.231	1.92E-11	2.11E-09
	f_Ruminococcaceae; g_uncultured; s_uncultured_organism	-2.82	0.57	7.50E-07	4.67E-05
	s_Lachnospiraceae_NK4A136_group_uncultured_Clostridium	1.85	0.377	8.93E-07	5.33E-05
	f_Lachnospiraceae	1.1	0.231	1.97E-06	0.000109
	g_[Eubacterium]_coprostanoligenes_group; s_gut_metagenome	-2.75	0.612	7.10E-06	0.000328
	f_Lachnospiraceae	-0.571	0.133	1.85E-05	0.00078
	g_Streptococcus	1.12	0.264	2.19E-05	0.00087
	g_[Eubacterium]_ventriosum_group; s_uncultured_Lachnospiraceae	2.08	0.508	4.31E-05	0.00151
	f_Ruminococcaceae; g_uncultured; s_anaerobic_digester	-1.8	0.456	7.99E-05	0.00243
	f_Ruminococcaceae; g_Subdoligranulum	-0.549	0.148	0.000209	0.00535
	f_Lachnospiraceae; g_Lachnoclostridium	0.841	0.228	0.000228	0.00553
	g[Eubacterium]_xylanophilum_group	1.59	0.438	0.00027	0.00645
	o_Oscillospirales; f_UCG-010; g_UCG-010; s_gut_metagenome	-2.17	0.598	0.000284	0.00667
	g_Coprococcus; s_unidentified	1.83	0.521	0.000459	0.00966
	g_Campylobacter; s_Campylobacter_hominis	2.43	0.705	0.000563	0.0106
	g[Eubacterium]_nodatum_group	-3.78	1.1	0.000579	0.0108
	f_Oscillospiraceae; g_UCG-005; s_uncultured_rumen	1.26	0.37	0.000653	0.0114
	g_Sellimonas; s_uncultured_bacterium	0.809	0.241	0.000767	0.0132
	f_Ruminococcaceae	-2.66	0.801	0.000895	0.0151
	o_Oscillospirales; f_UCG-010; g_UCG-010; s_gut_metagenome	3.26	1.04	0.00161	0.0215
	o_Rhodospirillales; f_uncultured; g_uncultured; s_uncultured_organism	-3.2	1.02	0.00175	0.0223
	g_Lachnoclostridium	-1.53	0.49	0.00174	0.0223
	f_Lachnospiraceae; g_UC5-1-2E3	-2.71	0.864	0.00173	0.0223
	c_Clostridia	1.08	0.346	0.00178	0.0225
	g_Parabacteroides	0.672	0.222	0.00244	0.0289
	f_Lachnospiraceae	1.7	0.579	0.00337	0.0369
	g_Streptococcus	0.98	0.339	0.00381	0.0401
	g_Flavonifractor; s_uncultured_bacterium	1.1	0.382	0.00395	0.041
	g_Shuttleworthia; s_uncultured_bacterium	-1.36	0.473	0.00412	0.0424
	g_Ezakiella; s_uncultured_bacterium	-1.6	0.563	0.00439	0.0449
	f_Ruminococcaceae	0.814	0.289	0.0048	0.0484

Chitin treatment biomarkers	g_Barnesiella	-0.738	0.0452	5.96E-60	8.53E-57
	g_Streptococcus	-2.17	0.271	1.20E-15	2.46E-13
	g_Clostridia_UCG-014; s_uncultured_bacterium	-3.07	0.486	2.86E-10	2.93E-08
	g_Coprococcus; s_unidentified	3.1	0.642	1.38E-06	0.000104
	f_Oscillospiraceae; g_UCG-005; s_uncultured_organism	-1.78	0.441	5.47E-05	0.0023
	o_Oscillospirales; f_UCG-010; g_UCG-010; s_gut_metagenome	1.61	0.411	9.11E-05	0.00335
	gClostridia_UCG-014; suncultured_bacterium	2.55	0.674	0.000152	0.00482
	g_[Clostridium]_methylpentosum_group	-0.926	0.245	0.000158	0.00482
	g_Streptococcus	-0.932	0.247	0.000158	0.00482
	g_Lachnoclostridium; s_uncultured_Clostridium	1.33	0.359	0.00021	0.00578
	g_[Eubacterium]_coprostanoligenes_group; smetagenome	-0.282	0.076	0.000206	0.00578
	gClostridia_UCG-014; sgut_metagenome	2.15	0.598	0.000324	0.00829
	f_Oscillospiraceae; g_UCG-005	1.24	0.346	0.000334	0.00839
	g_Negativibacillus; s_uncultured_bacterium	-1.57	0.45	0.000494	0.011
	g_Lachnospiraceae_NK4A136_group; s_uncultured_Clostridium	2.36	0.687	0.000572	0.0117
	g_Colidextribacter; s_uncultured_Clostridia	2.01	0.602	0.000867	0.0161
	gMarvinbryantia	1.29	0.43	0.00267	0.0338
	f_Ruminococcaceae; g_uncultured; s_uncultured_organism	-1.09	0.365	0.00296	0.0365
	f_Lachnospiraceae; g_[Ruminococcus]_torques_group	-0.677	0.228	0.00301	0.0369
	g_Dialister	1.09	0.379	0.00408	0.046

Supplemental Table 5. Shown are the taxon biomarkers of the comparator treatment and the chitin treatment, which are identified by Maaslin's Zero Inflated Negative Binomial (ZINB) regression as being significantly different pre- to post-treatment for each treatment group, after controlling for false discover rate (FDR). Also shown is the effect size of the pre- to post-intervention difference, indicated by Log2 fold change (FC) values.