

ELECTRONIC SUPPORTING INFORMATION

Novel Double Nanoemulsion Loading of *Cordyceps militaris* Extract: Formulation, Stability, *In Vitro* Digestion, and *In Vivo* Evaluation for Regulation of Acute Lipid Disorders

Nguyen Thanh Tan^{1,2}, Phan Minh Vuong², Nguyen Quynh Dao^{1,3}, Tran Chi Dung⁴, Huynh Thi Nhan⁵, Pham Quynh Nhu^{2,6}, Nguyen Dang Hai Dang, Tran Quang Hieu^{7*}

¹Institue of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ho Chi Minh City 700000, Vietnam

²Institute of Advanced Technology, Vietnam Academy of Science and Technology, 1A TL29, Thanh Loc Ward, Ho Chi Minh City 700000, Vietnam

³Faculty of Food Technology -Saigon Technology University, Ho Chi Minh City, Vietnam, 180 Cao Lo Street, Chanh Hung Ward, Ho Chi Minh City 700000, Vietnam

⁵Faculty of Chemical HCM University of Education, 280 An Duong Vuong, Ho Chi Minh City 700000, Vietnam

⁶Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City 700000, Vietnam

⁶School of Science, Engineering and Technology, RMIT University, 702 Nguyen Van Linh, Tan Hung Ward, Ho Chi Minh City 700000, Vietnam.

⁷Chemistry Division -Basic Sciences Department-Saigon Technology University, 180 Cao Lo, Chanh Hung Ward, Ho Chi Minh City 700000, Vietnam

*Corresponding author: hieu.tranquang@stu.edu.vn

Table contents

Table S1. Effect of PGPR content

Table S2. Effect of SOWR

Table S3. Effect of CaCl_2 concentration

Table S4. Effect of HLB_{mix}

Table S5. Effect of SOR

Table S6. Effect of SOWR

Figure S1: Chromatogram of emulsifier content analysis at SWR 7.5% (first measurement).

Figure S2: Chromatogram of *Cordyceps militaris* dry extract solution content in the oil phase at SWOR 40% (first measurement).

Figure S3: Chromatogram evaluating the effect of refined palm oil (acid value 0.16 mg KOH/g) on the W1/O emulsion (first measurement).

Figure S4: Chromatogram evaluating the effect of crude oil (acid value 2.96 mg KOH/g) on the W1/O emulsion (first measurement).

Figure S5: Chromatogram evaluating the effect of CaCl_2 at 1% (first measurement).

Figure S6: Chromatogram evaluating the effect of HLB value 12 on the double nanoemulsion system (first measurement).

Figure S7: Chromatogram evaluating the effect of emulsifier content at SOR 20% on the double nanoemulsion system (first measurement).

Figure S8: Chromatogram evaluating the effect of primary emulsion content in the aqueous phase at SOWR 20% on the double nanoemulsion system (first measurement).

Figure S9: Chromatogram evaluating the effect of ultrasonic power (350 W) on the double nanoemulsion system (first measurement).

Figure S10: Chromatogram evaluating the effect of ultrasonication time (6 minutes) on the double nanoemulsion system (first measurement).

Figure S11: Particle size of the double nanoemulsion system at HLB value 12 measured by DLS (first measurement).

Figure S12: Particle size of the double nanoemulsion system at SOR 20% measured by DLS (first measurement).

Figure S13: Particle size of the double nanoemulsion system at SOWR 20% measured by DLS (first measurement).

Figure S14: Particle size of the double nanoemulsion system at ultrasonic power 350 W measured by DLS (first measurement).

Figure S15: Particle size of the double nanoemulsion system at ultrasonication time (6 minutes) measured by DLS (first measurement).

Figure S16: Zeta potential of the NCMs double nanoemulsion system (first measurement).

Figure S17. Zero- order model in SGF

Figure S18. Higuchi model in SGF

Figure S19. Korsmeyer-Peppas model in SGF

Figure S20. Zero-model in SIF

Figure S21. Higuchi model in SIF

Figure S22. COR_KP model in SIF

Figure S23. ADE_KP model in SIF

Table S1. Effect of PGPR content

№	PGPR, g (m1)	W1, g (m2)	Oil, g (m3)	CaCl ₂ , g	SWR, %	SWOR, %	EE %		Visual appearance
							ADE	COR	
1	0.638	10	24.82	0.03	6.0	30.0	93.2 ± 1.3	92.5 ± 0.86	Separated
2	0.695	10	24.95	0.03	6.5	30.0	93.2 ± 1.1	92.2 ± 1.2	Separated
3	0.753	10	25.08	0.03	7.0	30.0	93.2 ± 1.0	92.5 ± 1.0	Separated
4	0.811	10	25.22	0.03	7.5	30.0	93.3 ± 0.87	92.3 ± 0.46	Homogeneous emulsion
5	0.87	10	25.36	0.03	8.0	30.0	93.9 ± 1.0	92.7 ± 0.48	Homogeneous emulsion
6	0.929	10	25.5	0.03	8.5	30.0	92.7 ± 1.1	92.1 ± 1.1	Homogeneous emulsion

Table S2. Effect of SOWR

No	PGPR, g (m1)	Extract , g (m2)	Oil (m3)	CaCl₂, %	SWR, %	SOWR, %	EE %		Visual appearence
							ADE	COR	
1	0.811	10	25.22	1	7.5	30.0	96.8 ± 0.64	96.3 ± 0.60	Visual appearence
2	0.811	10	20.12	1	7.5	35.0	97.5 ± 0.76	97.0 ± 0.66	Hệ nhũ tương đồng nhất
3	0.811	10	16.2	1	7.5	40.0	97.2 ± 0.68	96.9 ± 0.59	Homogeneous emulsion
4	0.811	10	13.2	1	7.5	45.0	96.6 ± 0.59	96.2 ± 0.84	Homogeneous emulsion
5	0.811	10	10.8	1	7.5	50.0	-	-	Separated

Table S3. Effect of CaCl_2 concentration

No	PGPR, g (m1)	Extract, g (m2)	Oil (m3)	CaCl_2 , %	SWR, %	SWOR, %	EE %		Visual appearance
							ADE	COR	
1	0.811	10	25.22	0.2	7.5	30.0	56.9 ± 1.8	57.1 ± 1.6	Homogeneous emulsion
2	0.811	10	25.22	0.4	7.5	30.0	72.9 ± 1.6	73.1 ± 1.6	Homogeneous emulsion
3	0.811	10	25.22	0.6	7.5	30.0	87.0 ± 1.4	86.5 ± 2.0	Homogeneous emulsion
4	0.811	10	25.22	0.8	7.5	30.0	94.9 ± 1.1	94.4 ± 1.1	Homogeneous emulsion
5	0.811	10	25.22	1.0	7.5	30.0	97.0 ± 1.1	96.5 ± 1.1	Homogeneous emulsion
6	0.811	10	25.22	1.2	7.5	30.0	97.0 ± 1.1	96.5 ± 1.1	Homogeneous emulsion
7	0.811	10	25.22	1.4	7.5	30.0	96.9 ± 1.0	96.3 ± 0.84	Homogeneous emulsion

Table S4. Effect of HLB_{mix}

HLB	PGPR, (g) (m ₄)	Tween 80, (g) (m ₅)	W1/O (g) (m ₆)	W2 (g) (m ₇)	SOR (%)	SOWR (%)	EE %		D, nm	PDI (a.u)
							ADE	COR		
8.0	2.500	1.786	10	80.95	30	15.0	84.8 ± 1.6	84.0 ± 1.5	438.9 ± 2.8	0.328 ± 0.010
8.5	2.321	1.964	10	80.95	30	15.0	84.4 ± 1.1	83.7 ± 0.9	385.9 ± 7.2	0.360 ± 0.013
9.0	2.143	2.143	10	80.95	30	15.0	85.5 ± 1.0	84.9 ± 1.4	315.7 ± 6.4	0.352 ± 0.021
9.5	1.964	2.321	10	80.95	30	15.0	87.2 ± 0.6	86.5 ± 0.5	273.5 ± 3.9	0.276 ± 0.016
10.0	1.786	2.500	10	80.95	30	15.0	89.6 ± 1.4	88.6 ± 1.4	237.5 ± 7.2	0.280 ± 0.012
10.5	1.607	2.679	10	80.95	30	15.0	89.6 ± 1.2	89.0 ± 1.3	211.9 ± 3.9	0.257 ± 0.010
11.0	1.429	2.857	10	80.95	30	15.0	90.1 ± 1.9	89.5 ± 1.9	188.1 ± 7.8	0.253 ± 0.013
11.5	1.250	3.036	10	80.95	30	15.0	91.4 ± 1.4	90.6 ± 1.4	150.8 ± 4.7	0.252 ± 0.015
12.0	1.071	3.214	10	80.95	30	15.0	92.0 ± 0.6	91.1 ± 0.5	133.0 ± 3.6	0.226 ± 0.011
12.5	0.893	3.393	10	80.95	30	15.0	92.3 ± 1.0	91.4 ± 1.0	181.6 ± 5.3	0.347 ± 0.017
13.0	0.714	3.571	10	80.95	30	15.0	91.3 ± 0.6	90.4 ± 0.4	554.7 ± 8.4	0.367 ± 0.033
13.5	0.536	3.750	10	80.95	30	15.0	-	-	-	-
14.0	0.357	3.929	10	80.95	30	15.0	-	-	-	-
14.5	0.179	4.107	10	80.95	30	15.0	-	-	-	-
15.0	0	4.286	10	80.95	30	15.0	-	-	-	-

Table S5. Effect of SOR

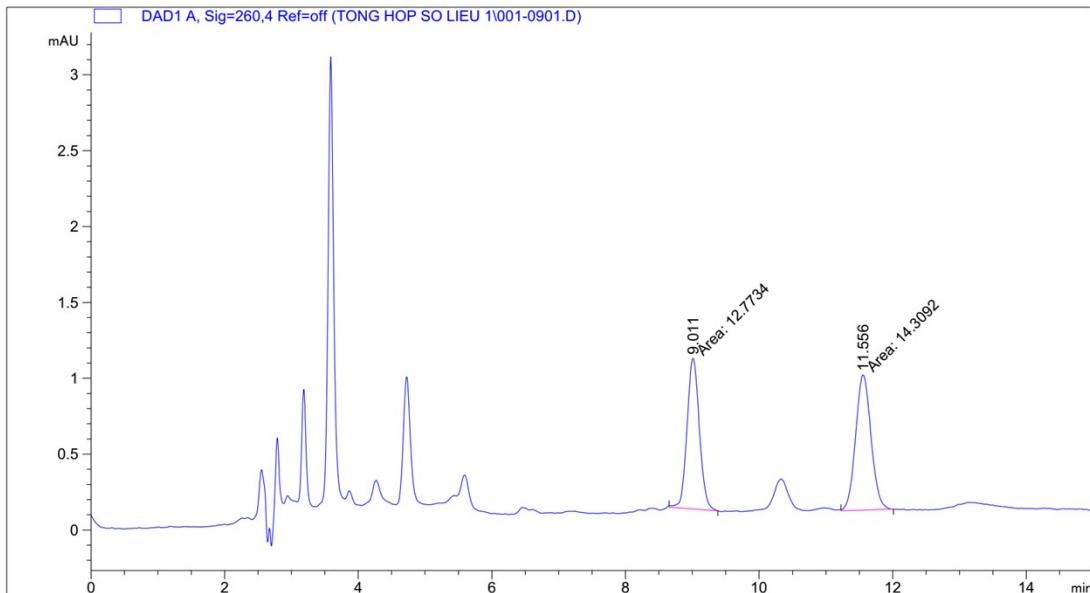

PGPR, (g) (m4)	Tween 80, (g) (m5)	W1/O (g) (m6)	W2 (g) (m7)	SOR (%)	SOWR (%)	EE %		D (nm)	PDI (a.u)	Visual appearence
						ADE	COR			
0.278	0.833	10	63.0	10	15.0	-	-	-	Homogeneous emulsion	Separated
0.441	1.324	10	66.5	15	15.0	-	-	-	-	Separated
0.625	1.875	10	71.0	20	15.0	92.0 ± 1.0	91.6 ± 1.1	116.7 ± 2.3	0.208 ± 0.009	Homogeneous emulsion
0.833	2.50	10	75.5	25	15.0	92.4 ± 1.1	91.8 ± 1.3	125.7 ± 2.0	0.208 ± 0.020	Homogeneous emulsion
1.071	3.214	10	81.0	30	15.0	92.0 ± 0.63	91.1 ± 0.52	133.0 ± 3.6	0.226 ± 0.011	Homogeneous emulsion

Table S6. Effect of SOWR

PGPR, (g) (m ⁴)	Tween 80, (g) (m ⁵)	W1/O (g) (m ⁶)	W2 (g) (m ⁷)	SOR (%)	SOWR (%)	EE %		D (nm)	PDI (a.u)	Visual appearence
						ADE	COR			
0.625	1.875	10	71.0	20	15.0	92.0± 1.0	91.6 ± 1.1	116.7 ± 2.3	0.208 ± 0.009	Homogeneou s emulsion
0.625	1.875	10	50.0	20	20.0	92.8 ± 0.54	92.3 ± 0.45	118.9 ± 2.0	0.200 ± 0.006	Homogeneou s emulsion
0.625	1.875	10	37.5	20	25.0	-	-	-	-	Separated
0.625	1.875	10	29.2	20	30.0	-	-	-	-	Separated

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\001-0901.D
Sample Name: TN 9.1

```
=====
Acq. Operator   : Nguyen Thanh Tan           Seq. Line : 9
Acq. Instrument : Instrument 1           Location : Vial 1
Injection Date  : 1/24/2024 10:46:56 AM      Inj : 1
Inj Volume : 25 ul
Acq. Method    : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed    : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

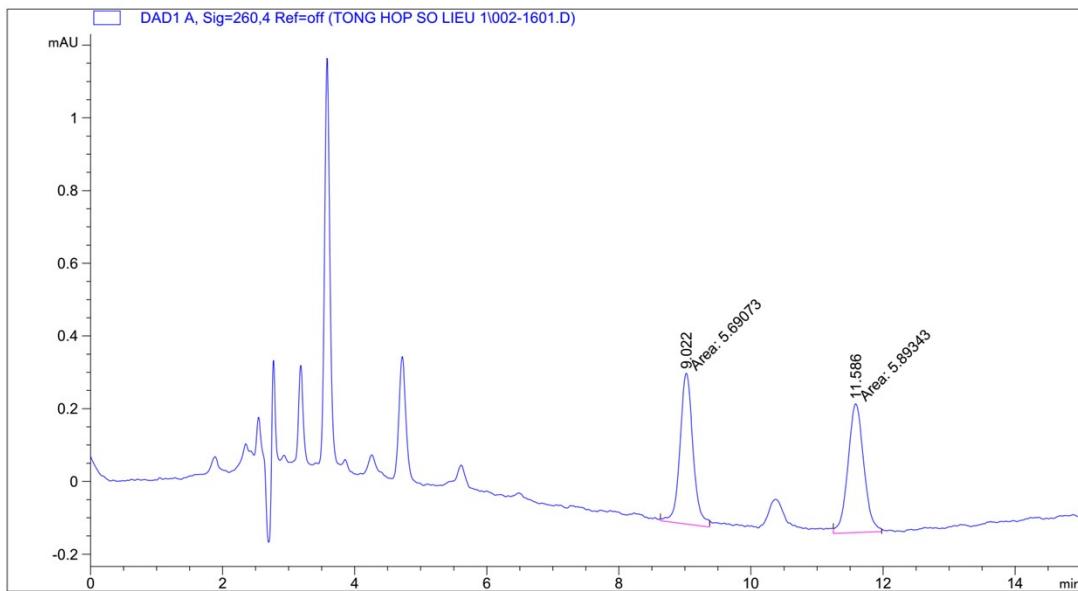


```
=====
Area Percent Report
=====
```

```
Sorted By      : Signal
Multiplier:    : 1.0000
Dilution:      : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.011	MM	0.2143	12.77337	9.93557e-1	47.16457
2	11.556	MM	0.2674	14.30918	8.91802e-1	52.83543


Totals : 27.08255 1.888536

```
=====
*** End of Report ***
=====
```

Figure S1: Chromatogram of emulsifier content analysis at SWR 7.5% (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\002-1601.D
Sample Name: TN 10.1

```
=====
Acq. Operator : Nguyen Thanh Tan           Seq. Line : 16
Acq. Instrument : Instrument 1           Location : Vial 2
Injection Date : 1/24/2024 11:59:21 AM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

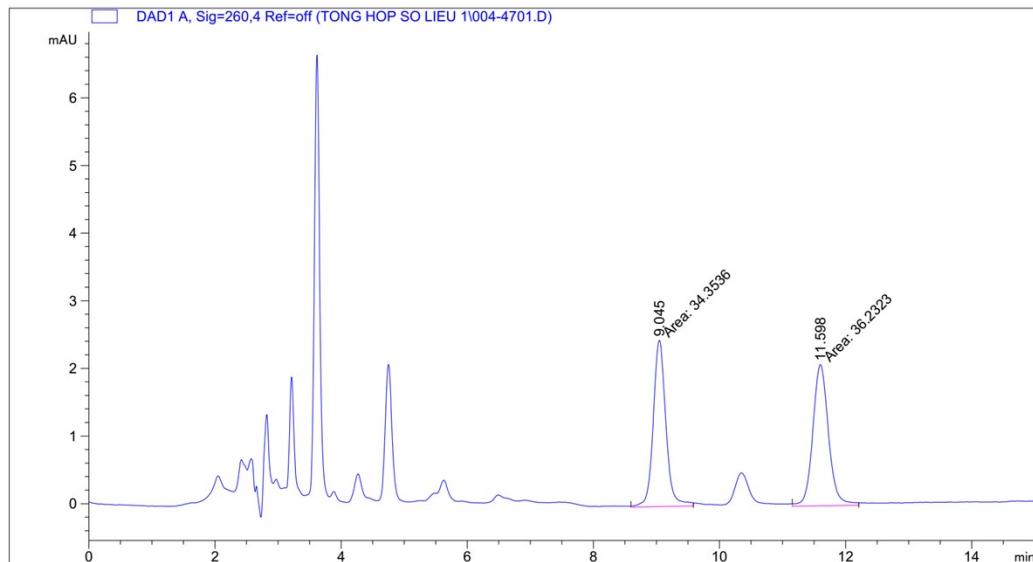


```
=====
Area Percent Report
=====
```

```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.022	MM	0.2285	5.69073	4.15029e-1	49.12508
2	11.586	MM	0.2776	5.89343	3.53886e-1	50.87492


Totals : 11.58416 7.68915e-1

```
=====
*** End of Report ***
=====
```

Figure S2: Chromatogram of *Cordyceps militaris* dry extract solution content in the oil phase at SWOR 40% (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\004-4701.D
Sample Name: TN 12.1

```
=====
Acq. Operator : Nguyen Thanh Tan          Seq. Line : 47
Acq. Instrument : Instrument 1          Location : Vial 4
Injection Date : 1/24/2024 2:57:01 PM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

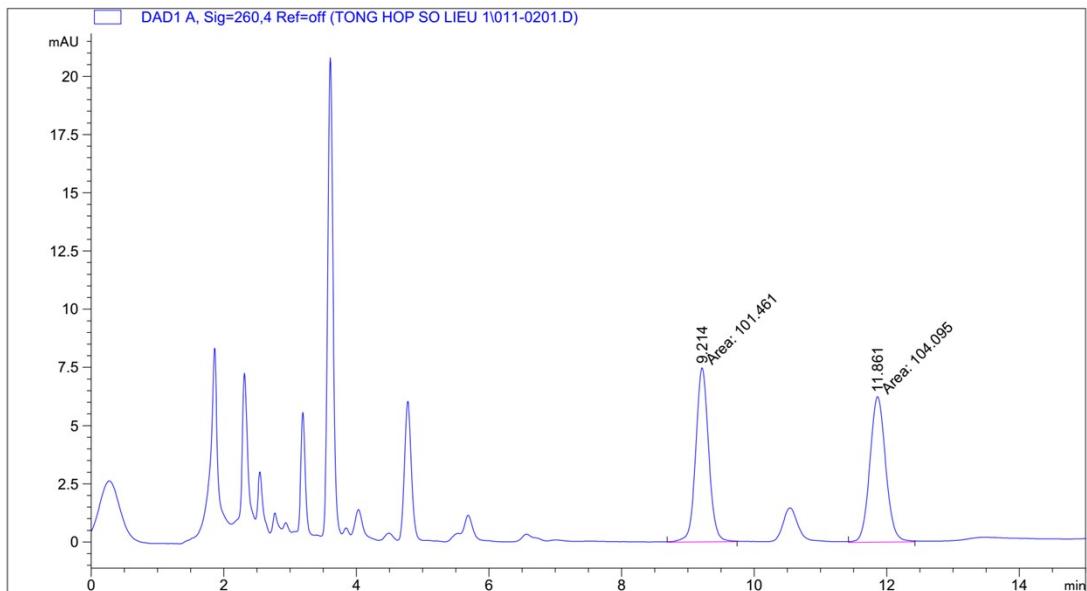


```
=====  
Area Percent Report  
=====
```

```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.045	MM	0.2328	34.35364	2.45970	48.66926
2	11.598	MM	0.2891	36.23227	2.08893	51.33074
Totals :				70.58590	4.54864	


```
=====  
*** End of Report ***
```

Page 1 of 1

Figure S3: Chromatogram evaluating the effect of refined palm oil (acid value 0.16 mg KOH/g) on the W1/O emulsion (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\011-0201.D
Sample Name: TN 14.1

```
=====
Acq. Operator : Nguyen Thanh Tan           Seq. Line : 2
Acq. Instrument : Instrument 1           Location : Vial 11
Injection Date : 1/25/2024 1:04:11 PM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 PM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

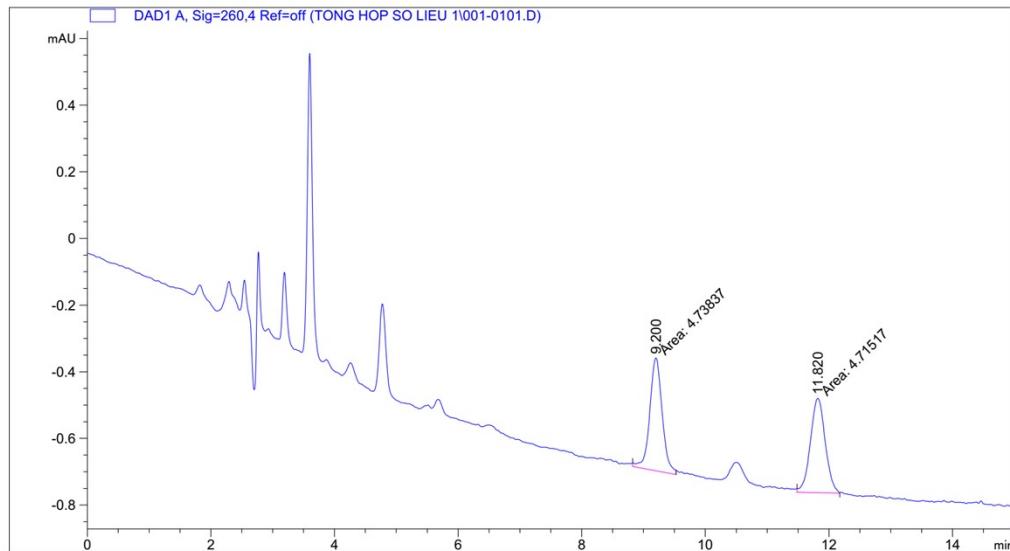


```
=====
Area Percent Report
=====
```

```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.214	MM	0.2259	101.46100	7.48480	49.35933
2	11.861	MM	0.2774	104.09489	6.25460	50.64067


Totals : 205.55589 13.73941

```
=====
*** End of Report ***
=====
```

Figure S4: Chromatogram evaluating the effect of crude oil (acid value 2.96 mg KOH/g) on the W1/O emulsion (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\001-0101.D
Sample Name: TN 20.1

```
=====
Acq. Operator : Nguyen Thanh Tan           Seq. Line : 1
Acq. Instrument : Instrument 1           Location : Vial 1
Injection Date : 1/27/2024 8:00:24 AM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

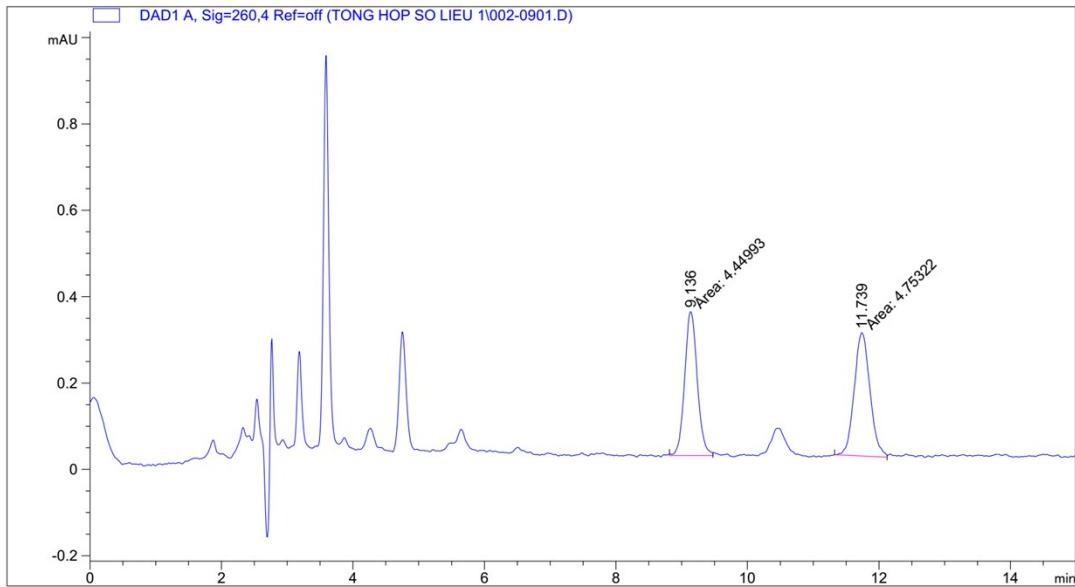


```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.200	MM	0.2327	4.73837	3.39337e-1	50.12273
2	11.820	MM	0.2776	4.71517	2.83047e-1	49.87727

Totals : 9.45354 6.22383e-1


=====
*** End of Report ***

Page 1 of 1

Figure S5: Chromatogram evaluating the effect of CaCl_2 at 1% (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\002-0901.D
Sample Name: TN 32.1

```
=====
Acq. Operator : Nguyen Thanh Tan           Seq. Line : 9
Acq. Instrument : Instrument 1           Location : Vial 2
Injection Date : 2/5/2024 10:07:47 AM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

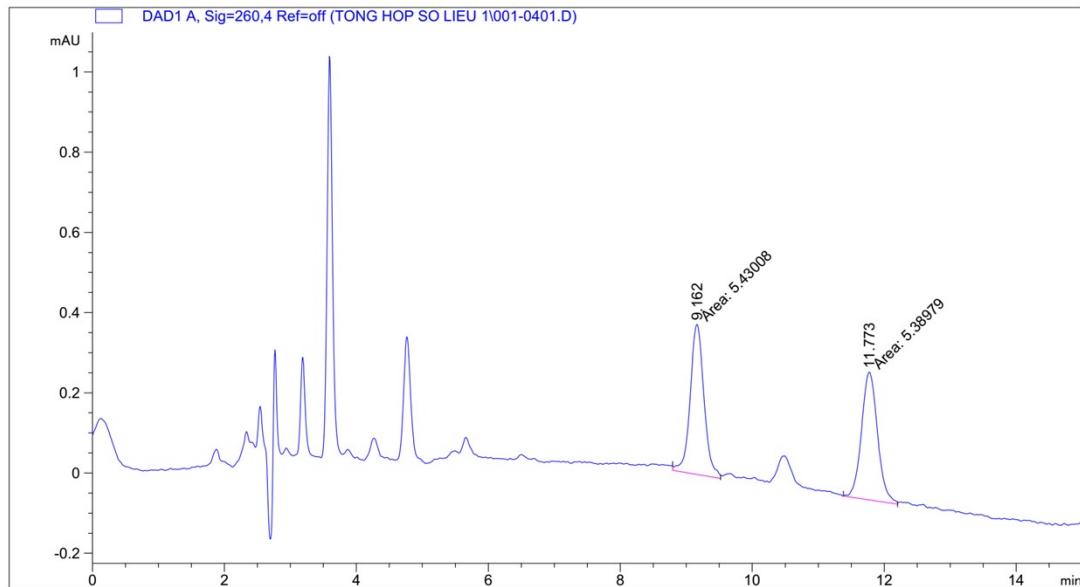


```
=====
Area Percent Report
=====
```

```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.136	MM	0.2225	4.44993	3.33394e-1	48.35226
2	11.739	MM	0.2774	4.75322	2.85593e-1	51.64774


Totals : 9.20314 6.18987e-1

```
=====
*** End of Report ***
=====
```

Figure S6: Chromatogram evaluating the effect of HLB value 12 on the double nanoemulsion system (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\001-0401.D
Sample Name: TN 45.1

```
=====
Acq. Operator   : Nguyen Thanh Tan           Seq. Line : 4
Acq. Instrument : Instrument 1           Location  : Vial 1
Injection Date  : 2/25/2024 11:58:09 AM      Inj       : 1
Inj Volume     : 25  $\mu$ l
Acq. Method     : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed    : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

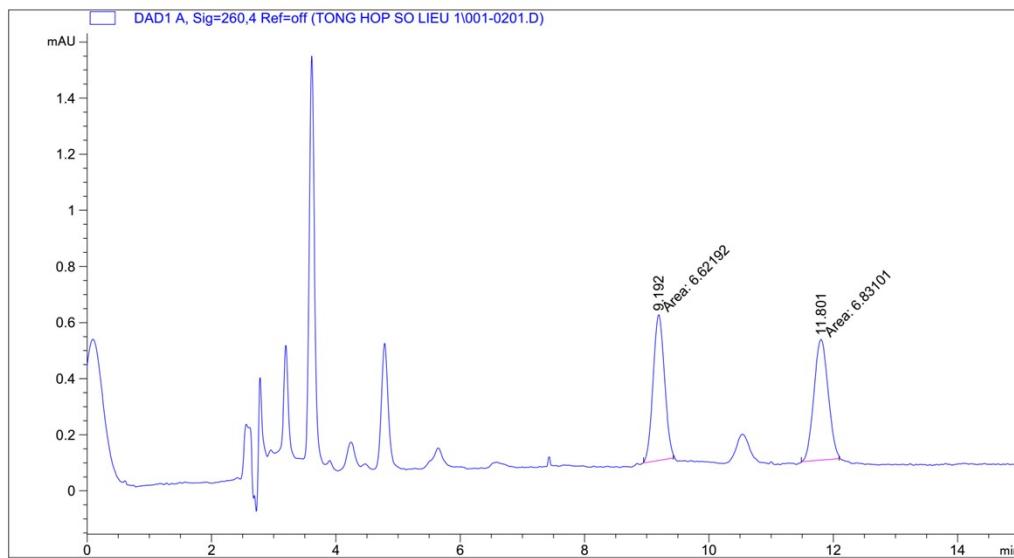


```
=====
Area Percent Report
=====
```

```
Sorted By      : Signal
Multiplier:   : 1.0000
Dilution:     : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.162	MM	0.2420	5.43008	3.74005e-1	50.18618
2	11.773	MM	0.2819	5.38979	3.18680e-1	49.81382


Totals : 10.81988 6.92685e-1

```
=====
*** End of Report ***
=====
```

Figure S7: Chromatogram evaluating the effect of emulsifier content at SOR 20% on the double nanoemulsion system (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\001-0201.D
Sample Name: TN 52.1

```
=====
Acq. Operator : Nguyen Thanh Tan           Seq. Line : 2
Acq. Instrument : Instrument 1           Location : Vial 1
Injection Date : 2/27/2024 12:33:06 AM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```

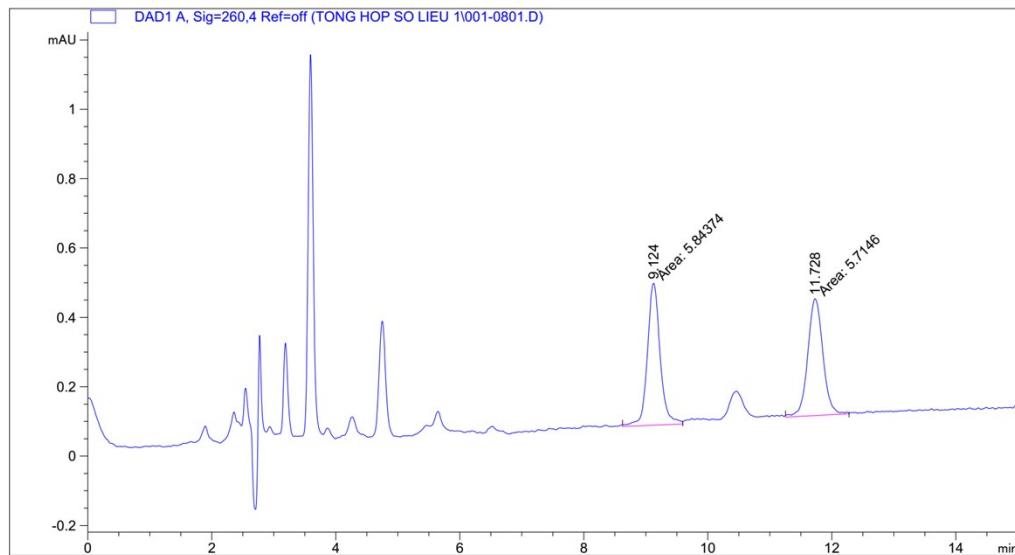


```
=====
Area Percent Report
=====
```

```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.192	MM	0.2123	6.62192	5.19801e-1	49.22288
2	11.801	MM	0.2646	6.83101	4.30284e-1	50.77712


Totals : 13.45292 9.50086e-1

=====
*** End of Report ***
=====

Figure S8: Chromatogram evaluating the effect of primary emulsion content in the aqueous phase at SOWR 20% on the double nanoemulsion system (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\001-0801.D
Sample Name: TN 59.1

```
=====
Acq. Operator : Nguyen Thanh Tan           Seq. Line : 8
Acq. Instrument : Instrument 1           Location : Vial 1
Injection Date : 2/28/2024 9:51:51 AM      Inj : 1
Inj Volume : 25  $\mu$ l
Acq. Method : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```



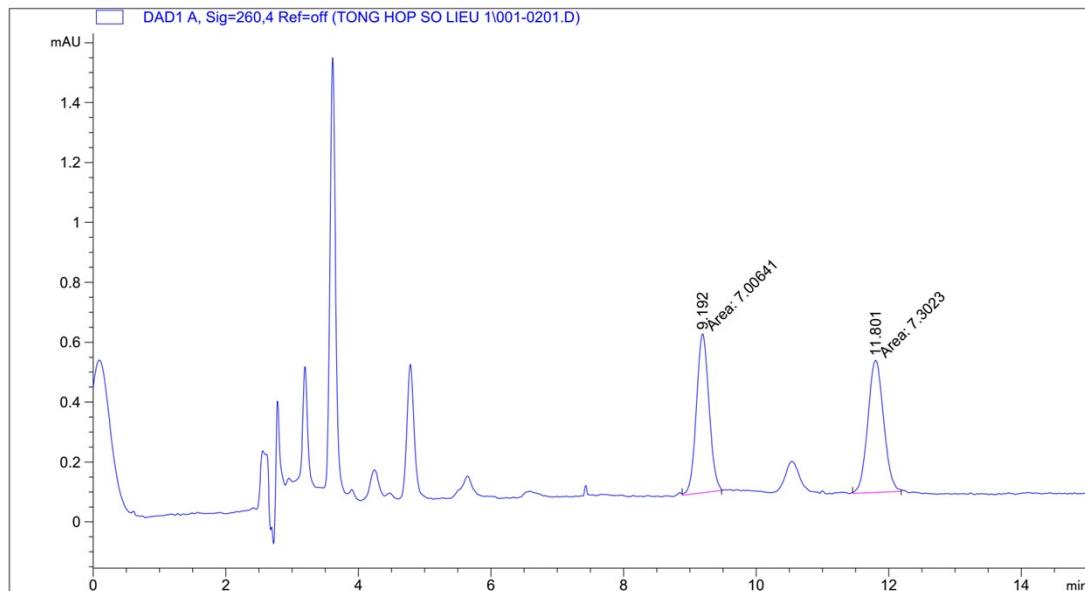
```
=====
Area Percent Report
=====
```

```
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.124	MM	0.2378	5.84374	4.09601e-1	50.55861
2	11.728	MM	0.2830	5.71460	3.36547e-1	49.44139

Totals : 11.55834 7.46148e-1


```
=====
*** End of Report ***
=====
```

Page 1 of 1

Figure S9: Chromatogram evaluating the effect of ultrasonic power (350 W) on the double nanoemulsion system (first measurement).

Data File C:\CHEM32\1\DATA\TONG HOP SO LIEU 1\001-0201.D
Sample Name: TN 66.1

```
=====
Acq. Operator   : Nguyen Thanh Tan           Seq. Line : 2
Acq. Instrument : Instrument 1           Location  : Vial 1
Injection Date  : 2/29/2024 12:33:06 AM      Inj       : 1
Inj Volume    : 25  $\mu$ l
Acq. Method    : D:\DATA\ADENOSINE-CORDYCEPIN.M
Last changed    : 1/24/2024 8:37:42 AM by Nguyen Thanh Tan
Analysis Method : C:\CHEM32\1\METHODS\DEF_GC.M
Additional Info : Peak(s) manually integrated
```



```
=====  
Area Percent Report  
=====
```

```
Sorted By          : Signal
Multiplier:      : 1.0000
Dilution:        : 1.0000
Use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 A, Sig=260.4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.192	MM	0.2199	7.00641	5.30946e-1	48.96604
2	11.801	MM	0.2757	7.30230	4.41436e-1	51.03396

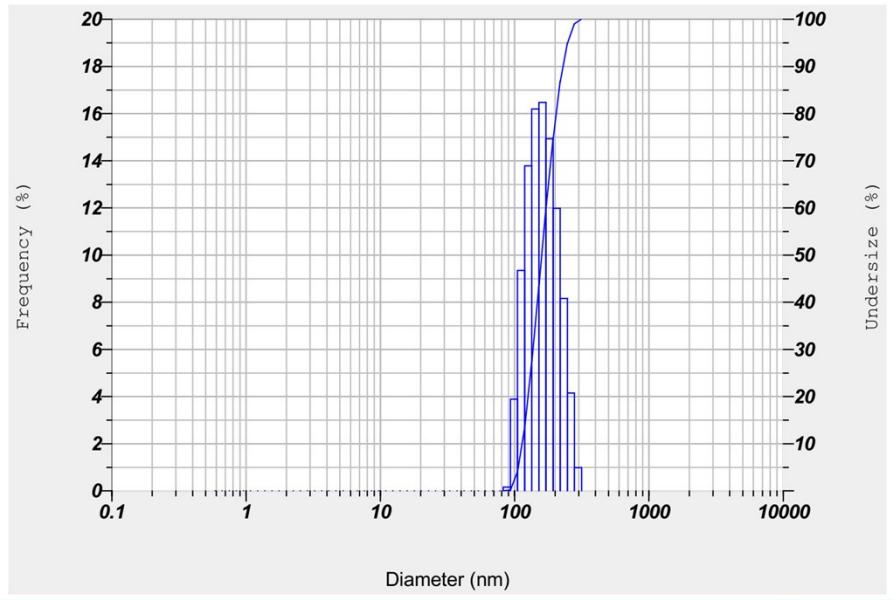
Totals : 14.30871 9.72382e-1

```
=====  
*** End of Report ***
```

Figure S10: Chromatogram evaluating the effect of ultrasonication time (6 minutes) on the double nanoemulsion system (first measurement).

SZ-100

HLB 12.1.nsz Measurement Results


Date	: February 6, 2024
Measurement Type	: Particle Size
Sample Name	: HLB 12.1
Scattering Angle	: 173
Temperature of the Holder	: 25.0 °C
Dispersion Medium Viscosity	: 0.897 mPa·s
Transmission Intensity before Meas.	: 28403
Distribution Form	: Standard
Distribution Form(Dispersity)	: Monodisperse
Representation of Result	: Scattering Light Intensity
Count Rate	: 1161 kCPS

Calculation Results

Peak No.	S.P.Area Ratio	Mean	S. D.	Mode
1	1.00	166.0 nm	43.7 nm	160.4 nm
2	---	--- nm	--- nm	--- nm
3	---	--- nm	--- nm	--- nm
Total	1.00	166.0 nm	43.7 nm	160.4 nm

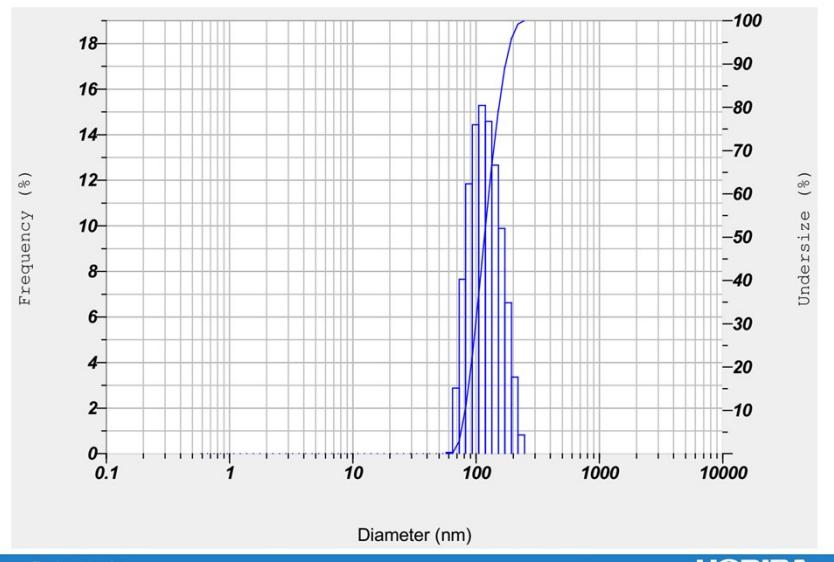
Cumulant Operations

Z-Average	: 132.7 nm
PI	: 0.226

Figure S11: Particle size of the double nanoemulsion system at HLB value 12 measured by DLS (first measurement).

SZ-100

SOR 20.1.nsz Measurement Results


Date	:	February 25, 2024
Measurement Type	:	Particle Size
Sample Name	:	SOR 20.1
Scattering Angle	:	173
Temperature of the Holder	:	24.9 °C
Dispersion Medium Viscosity	:	0.897 mPa·s
Transmission Intensity before Meas.	:	29416
Distribution Form	:	Standard
Distribution Form(Dispersity)	:	Monodisperse
Representation of Result	:	Scattering Light Intensity
Count Rate	:	1816 kCPS

Calculation Results

Peak No.	S.P.Area Ratio	Mean	S. D.	Mode
1	1.00	122.8 nm	35.3 nm	111.8 nm
2	---	---	---	---
3	---	---	---	---
Total	1.00	122.8 nm	35.3 nm	111.8 nm

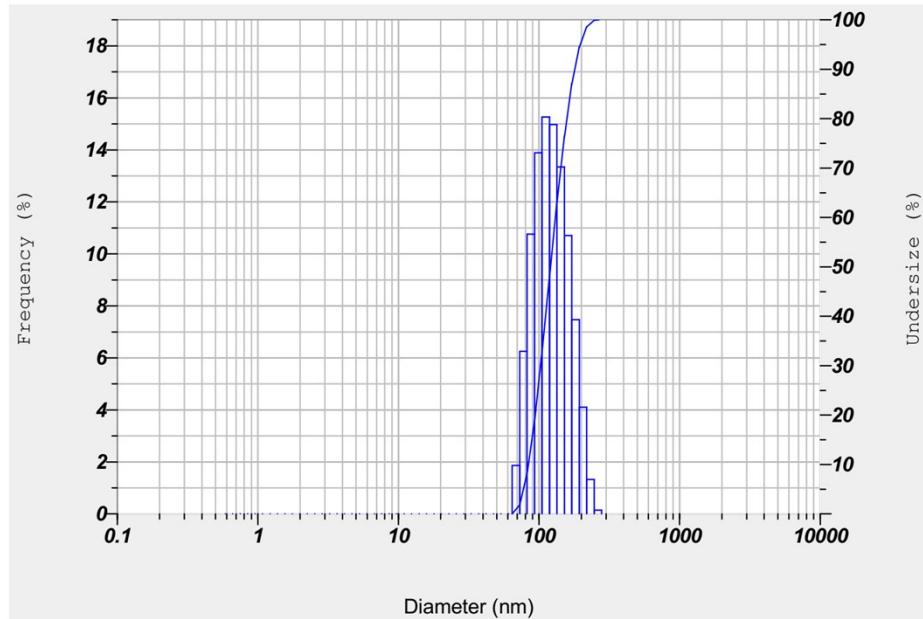
Cumulant Operations

Z-Average	:	117.2 nm
PI	:	0.216

Figure S12: Particle size of the double nanoemulsion system at SOR 20% measured by DLS (first measurement).

SZ-100

SOWR 20.1.nsz Measurement Results


Date	:	February 26, 2024
Measurement Type	:	Particle Size
Sample Name	:	SOWR 20.1
Scattering Angle	:	173
Temperature of the Holder	:	24.9 °C
Dispersion Medium Viscosity	:	0.897 mPa·s
Transmission Intensity before Meas.	:	29416
Distribution Form	:	Standard
Distribution Form(Dispersity)	:	Monodisperse
Representation of Result	:	Scattering Light Intensity
Count Rate	:	1816 kCPS

Calculation Results

Peak No.	S.P.Area Ratio	Mean	S. D.	Mode
1	1.00	126.8 nm	36.6 nm	112.2 nm
2	---	--- nm	--- nm	--- nm
3	---	--- nm	--- nm	--- nm
Total	1.00	126.8 nm	36.6 nm	112.2 nm

Cumulant Operations

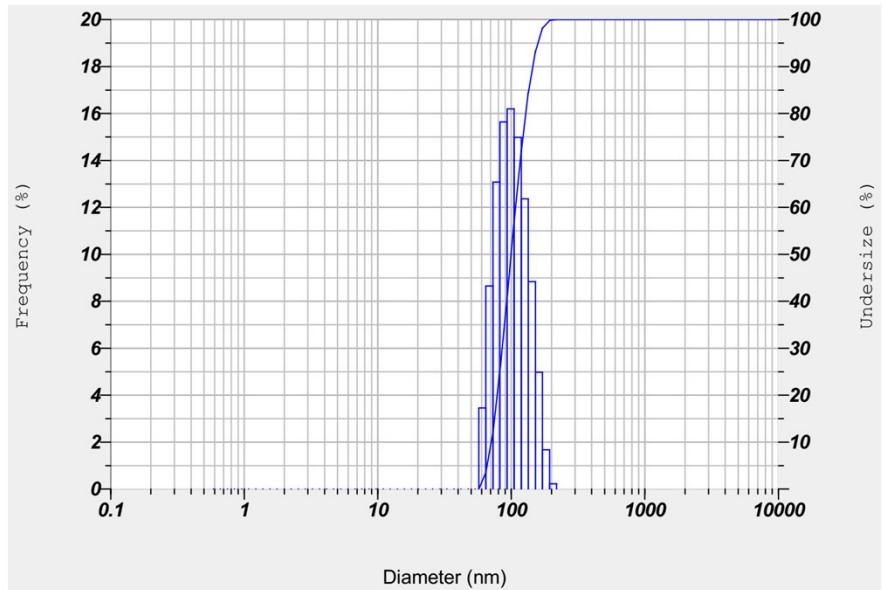
Z-Average	:	121.2 nm
PI	:	0.199

Figure S13: Particle size of the double nanoemulsion system at SOWR 20% measured by DLS (first measurement).

SZ-100

PU 350W.1.nsz

Measurement Results


Date	:	February 29, 2024
Measurement Type	:	Particle Size
Sample Name	:	PU 350W.1
Scattering Angle	:	173
Temperature of the Holder	:	25.0 °C
Dispersion Medium Viscosity	:	0.897 mPa·s
Transmission Intensity before Meas.	:	28780
Distribution Form	:	Standard
Distribution Form(Dispersity)	:	Monodisperse
Representation of Result	:	Scattering Light Intensity
Count Rate	:	2337 kCPS

Calculation Results

Peak No.	S.P.Area Ratio	Mean	S. D.	Mode
1	1.00	104.2 nm	28.3 nm	98.6 nm
2	---	--- nm	--- nm	--- nm
3	---	--- nm	--- nm	--- nm
Total	1.00	104.2 nm	28.3 nm	98.6 nm

Cumulant Operations

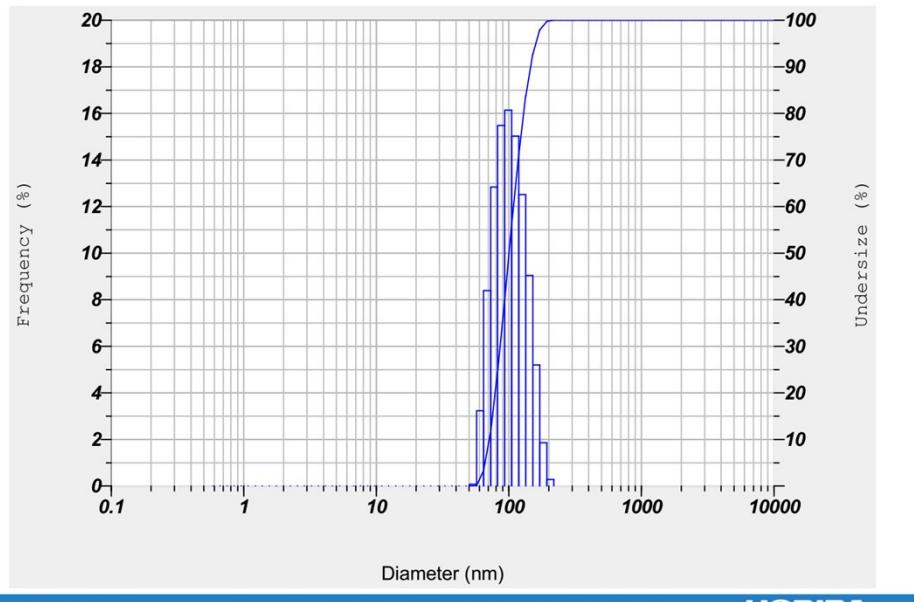
Z-Average	:	101.1 nm
PI	:	0.188

Figure S14: Particle size of the double nanoemulsion system at ultrasonic power 350 W measured by DLS (first measurement).

SZ-100

TU 6.1.nsz

Measurement Results


Date	:	February 29, 2024
Measurement Type	:	Particle Size
Sample Name	:	TU 6.1
Scattering Angle	:	173
Temperature of the Holder	:	25.0 °C
Dispersion Medium Viscosity	:	0.897 mPa·s
Transmission Intensity before Meas.	:	28780
Distribution Form	:	Standard
Distribution Form(Dispersity)	:	Monodisperse
Representation of Result	:	Scattering Light Intensity
Count Rate	:	2419 kCPS

Calculation Results

Peak No.	S.P.Area Ratio	Mean	S. D.	Mode
1	1.00	104.9 nm	28.6 nm	98.7 nm
2	---	---	---	---
3	---	---	---	---
Total	1.00	104.9 nm	28.6 nm	98.7 nm

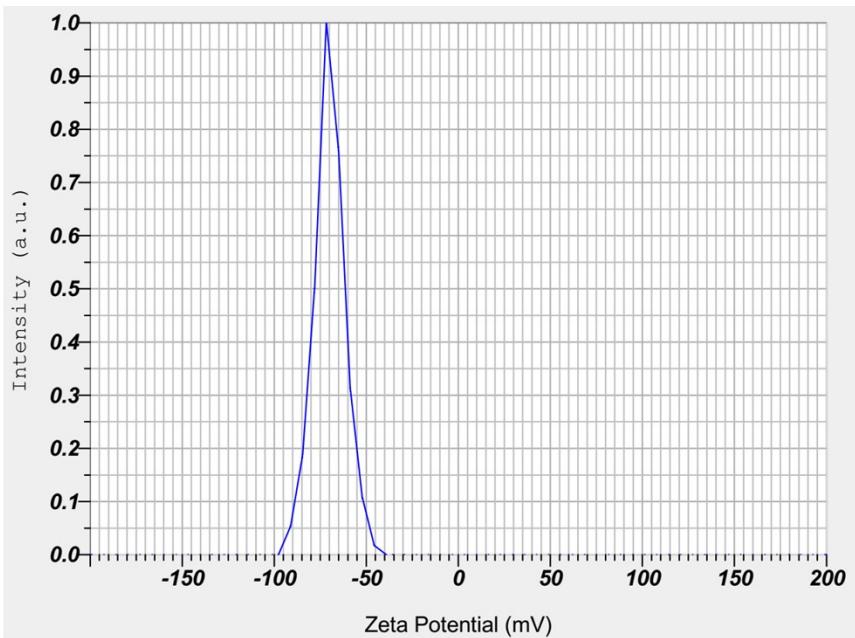
Cumulant Operations

Z-Average	:	99.4 nm
PI	:	0.186

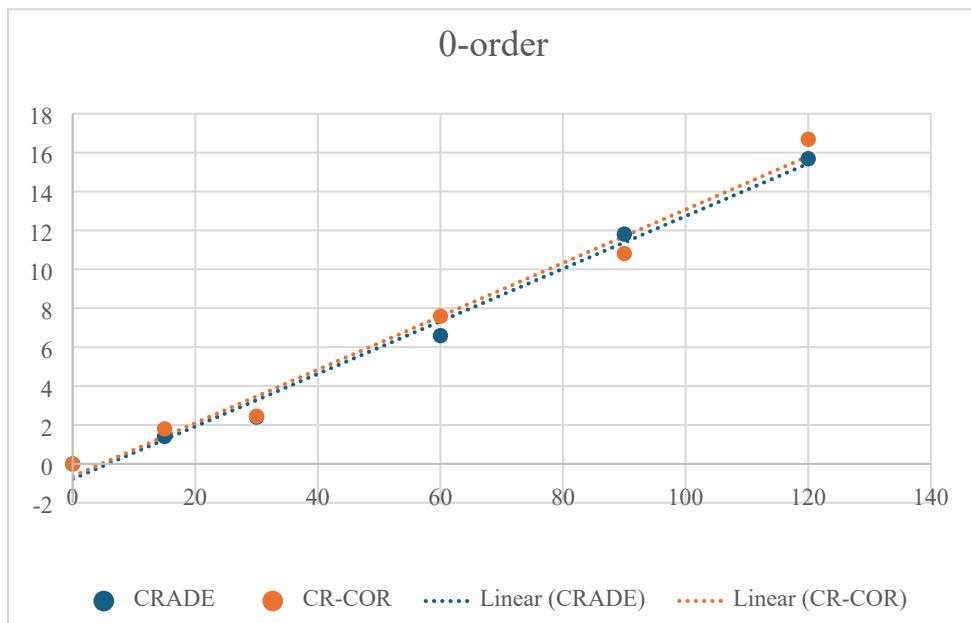
Figure S15: Particle size of the double nanoemulsion system at ultrasonication time (6 minutes) measured by DLS (first measurement).

Measurement Results

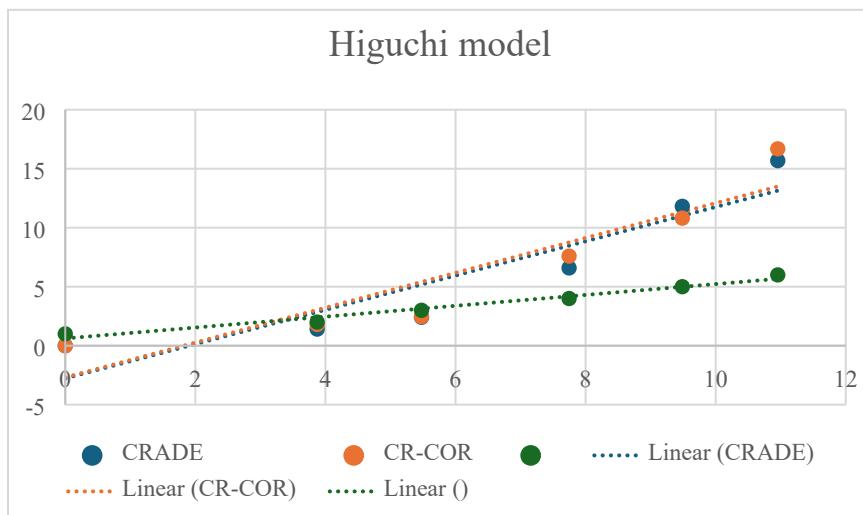
Nano NCMs.1.nzt

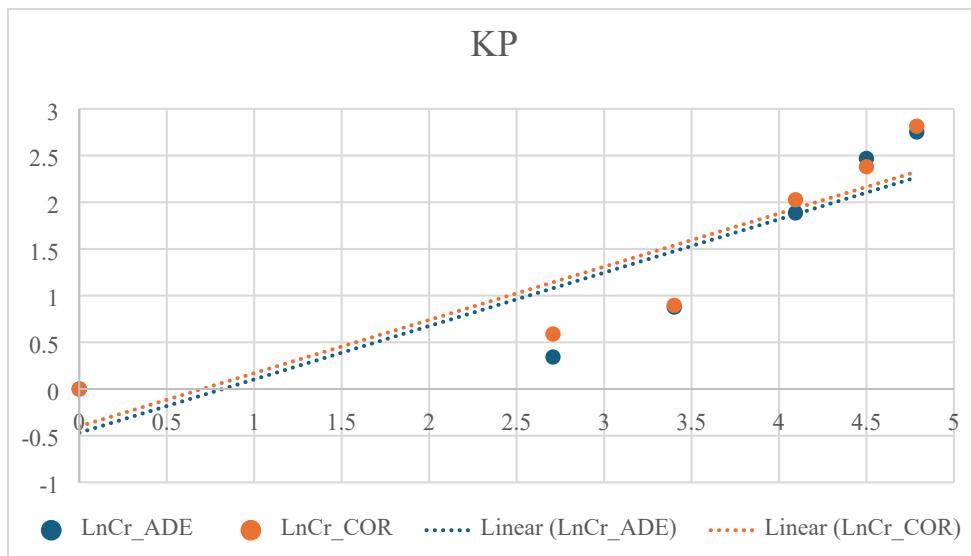

Measurement Results

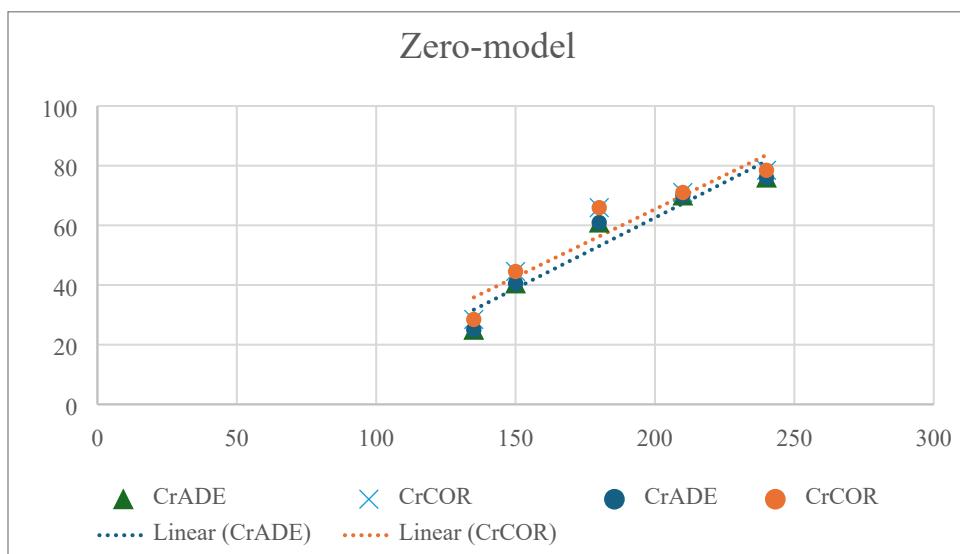
Date : March 3, 2024
Measurement Type : Zeta Potential
Sample Name : Nano NCMs.1
Temperature of the Holder : 25.0 °C
Dispersion Medium Viscosity : 0.945 mPa·s
Conductivity : 0.149 mS/cm
Electrode Voltage : 3.3 V

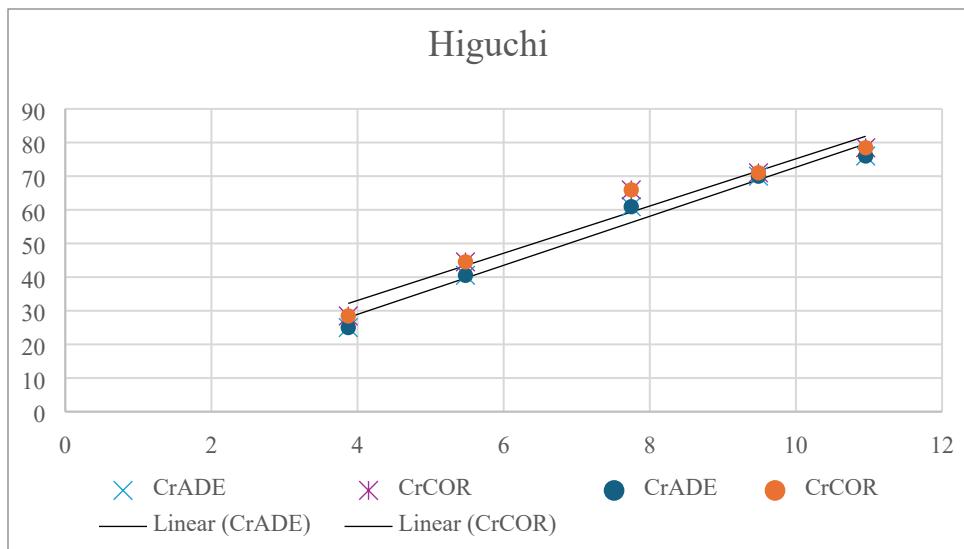

Calculation Results

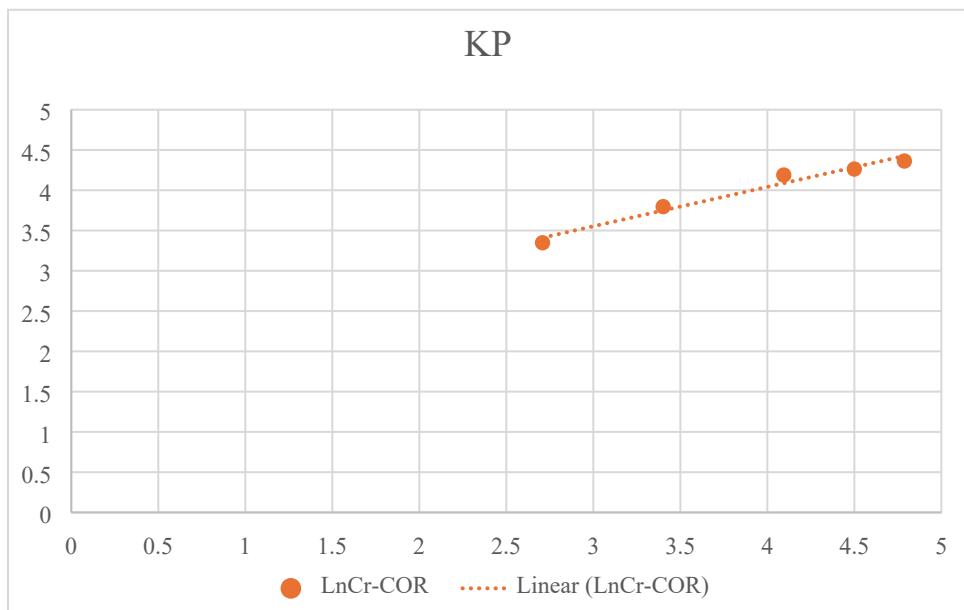
Peak No.	Zeta Potential	Electrophoretic Mobility
1	-70.0 mV	-0.000541 cm ² /Vs
2	---	---
3	---	---


Zeta Potential (Mean) : -70.0 mV
Electrophoretic Mobility Mean : -0.000541 cm²/Vs


Figure S16: Zeta potential of the NCMs double nanoemulsion system (first measurement).


Figure S17. Zero- order model in SGF


Figure S18. Higuchi model in SGF


Figure S19. Korsmeyer-Peppas model in SGF

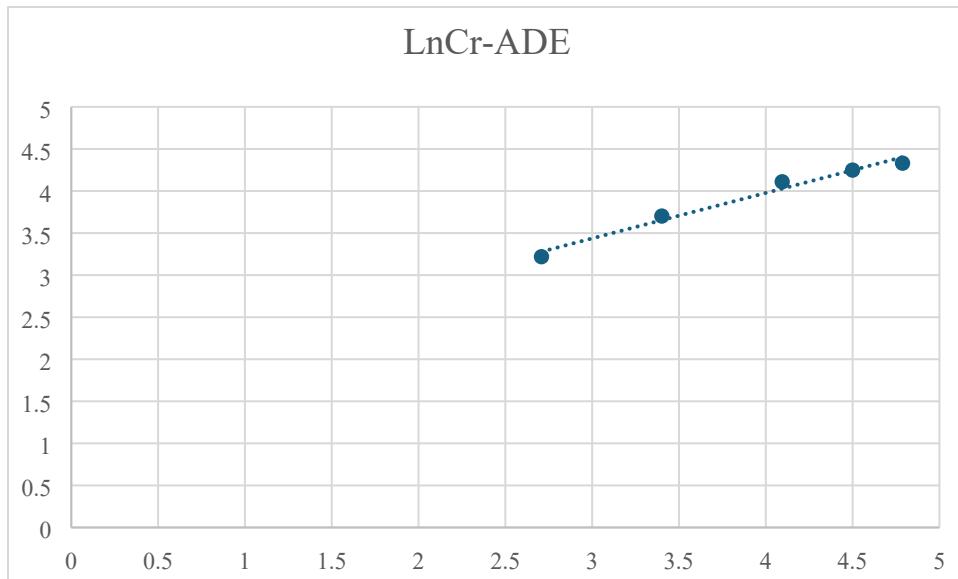

Figure S20. Zero-model in SIF

Figure S21. Higuchi model in SIF

Figure S22. COR_KP model in SIF

Figure S23. ADE_KP model in SIF