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Chemical vapour transport (CVT) in closed experimental setups 
 

Table S1: Parameters and results of the closed Bi2Te3/S temperature gradient investigations. 

System T1 / 
°C 

T2 / 
°C 

Te:S molar ratio t / 
h 

Transport rate (Te) / 
mg ⋅ h−1 

Recovery rate (Te) / 
% ⋅ h−1 

Recovery yield / 
% 

Bi2Te3/S 325 425 1:2 72 4.0 1.3 96.6 

Bi2Te3/S 325 425 1:2 72 4.0 1.4 97.5 

Bi2Te3/S 325 425 1:2 72 4.1 1.4 99.8 

Bi2Te3/S 350 425 1:2 72 3.9 1.3 94.1 

Bi2Te3/S 350 425 1:2 72 3.6 1.2 86.9 

Bi2Te3/S 350 425 1:2 72 4.1 1.4 98.7 

Bi2Te3/S 300 400 1:2 72 3.9 1.3 95.0 

Bi2Te3/S 300 400 1:2 72 4.0 1.3 95.6 

Bi2Te3/S 300 400 1:2 72 3.6 1.2 86.3 

Bi2Te3/S 325 400 1:2 72 4.1 1.4 99.0 

Bi2Te3/S 325 400 1:2 72 3.9 1.3 94.4 

Bi2Te3/S 325 400 1:2 72 3.4 1.1 81.6 

Bi2Te3/S 350 400 1:2 72 2.2 0.7 53.3 

Bi2Te3/S 350 400 1:2 72 3.0 1.0 72.6 

Bi2Te3/S 350 400 1:2 72 3.5 1.2 83.4 

Bi2Te3/S 300 375 1:2 72 3.5 1.2 84.5 

Bi2Te3/S 300 375 1:2 72 2.2 0.7 51.9 

Bi2Te3/S 300 375 1:2 72 2.4 0.8 56.6 

Bi2Te3/S 325 375 1:2 72 2.0 0.7 48.0 

Bi2Te3/S 325 375 1:2 72 2.9 1.0 68.7 

Bi2Te3/S 325 375 1:2 72 2.3 0.8 54.9 

Bi2Te3/S 350 375 1:2 72 1.1 0.4 26.4 

Bi2Te3/S 350 375 1:2 72 1.7 0.6 39.8 

Bi2Te3/S 350 375 1:2 72 1.7 0.6 40.5 

 

 

Table S2: Parameters and results of the closed Sb2Te3/S temperature gradient investigations. 

System T1 / 
°C 

T2 / 
°C 

Te:S molar ratio t / 
h 

Transport rate (Te) / 
mg ⋅ h−1 

Recovery rate (Te) / 
% ⋅ h−1 

Recovery yield / 
% 

Sb2Te3/S 325 425 1:2 72 4.1 1.4 97.7 

Sb2Te3/S 325 425 1:2 72 3.8 1.3 91.2 

Sb2Te3/S 325 425 1:2 72 4.0 1.3 96.2 

Sb2Te3/S 350 425 1:2 72 2.5 0.8 60.5 

Sb2Te3/S 350 425 1:2 72 3.1 1.0 75.0 

Sb2Te3/S 350 425 1:2 72 3.0 1.0 73.1 

Sb2Te3/S 300 400 1:2 72 3.1 1.0 74.9 

Sb2Te3/S 300 400 1:2 72 3.5 1.2 85.0 

Sb2Te3/S 300 400 1:2 72 3.9 1.3 94.6 

Sb2Te3/S 325 400 1:2 72 2.6 0.9 62.8 

Sb2Te3/S 325 400 1:2 72 3.4 1.1 81.5 

Sb2Te3/S 325 400 1:2 72 3.5 1.2 83.8 

Sb2Te3/S 350 400 1:2 72 1.6 0.5 38.9 

Sb2Te3/S 350 400 1:2 72 2.1 0.7 51.3 

Sb2Te3/S 350 400 1:2 72 2.2 0.7 53.0 

Sb2Te3/S 300 375 1:2 72 2.5 0.8 59.6 

Sb2Te3/S 300 375 1:2 72 2.4 0.8 57.8 

Sb2Te3/S 300 375 1:2 72 2.5 0.8 60.5 

Sb2Te3/S 325 375 1:2 72 1.9 0.6 44.9 

Sb2Te3/S 325 375 1:2 72 2.3 0.8 54.5 

Sb2Te3/S 325 375 1:2 72 1.9 0.7 47.0 

Sb2Te3/S 350 375 1:2 72 0.9 0.3 21.8 

Sb2Te3/S 350 375 1:2 72 1.1 0.4 26.6 

Sb2Te3/S 350 375 1:2 72 1.2 0.4 28.1 
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Figure S1: Box diagrams of recovery yields in closed experimental setups for both telluride systems (A: Bi2Te3/S, B: Sb2Te3/S). Eight different temperature gradients in the 

range of 300-425 °C were used. Furthermore, each black point represents one ampoule. This data was used to create the heat maps in Figure 3. 

 

 

Table S3: Parameters and results of the closed Bi2Te3/S Te:S molar ratio and reaction time investigations. 

System T1 / 
°C 

T2 / 
°C 

Te:S molar ratio t / 
h 

Transport rate (Te) / 
mg ⋅ h−1 

Recovery rate (Te) / 
% ⋅ h−1 

Recovery yield / 
% 

Bi2Te3/S 325 425 1:2 72 4.0 1.4 97.5 

Bi2Te3/S 325 425 1:2 72 4.1 1.4 99.8 

Bi2Te3/S 325 425 1:1.25 72 4.1 1.4 98.4 

Bi2Te3/S 325 425 1:1.25 72 4.1 1.4 97.8 

Bi2Te3/S 325 425 1:2 48 5.4 1.8 86.7 

Bi2Te3/S 325 425 1:2 48 6.1 2.0 98.1 

Bi2Te3/S 325 425 1:1.25 48 5.3 1.8 84.4 

Bi2Te3/S 325 425 1:1.25 48 5.7 1.9 91.4 

Bi2Te3/S 325 425 1:2 24 6.0 2.0 47.8 

Bi2Te3/S 325 425 1:2 24 7.1 2.4 57.1 

Bi2Te3/S 325 425 1:1.25 24 6.8 2.3 54.4 

Bi2Te3/S 325 425 1:1.25 24 6.2 2.1 50.1 

Bi2Te3/S 325 375 1:2 72 1.9 0.6 45.4 

Bi2Te3/S 325 375 1:2 72 2.7 0.9 65.6 

Bi2Te3/S 325 375 1:1.25 72 2.1 0.7 50.7 

Bi2Te3/S 325 375 1:1.25 72 2.9 1.0 69.6 

Bi2Te3/S 325 375 1:2 48 2.6 0.9 41.8 

Bi2Te3/S 325 375 1:2 48 2.8 0.9 44.7 

Bi2Te3/S 325 375 1:1.25 48 2.7 0.9 43.6 

Bi2Te3/S 325 375 1:1.25 48 2.7 0.9 43.6 

Bi2Te3/S 325 375 1:2 24 2.9 1.0 23.1 

Bi2Te3/S 325 375 1:2 24 2.8 0.9 22.2 

Bi2Te3/S 325 375 1:1.25 24 2.2 0.7 17.4 

Bi2Te3/S 325 375 1:1.25 24 2.6 0.9 20.9 
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Table S4: Parameters and results of the closed Bi2Te3/S recovery rate investigations. 

System T1 / 
°C 

T2 / 
°C 

Te:S molar ratio t / 
h 

Transport rate (Te) / 
mg ⋅ h−1 

Recovery rate (Te) / 
% ⋅ h−1 

Recovery yield / 
% 

Bi2Te3/S 325 425 1:1.25 1 4.1 1.4 1.4 

Bi2Te3/S 325 425 1:1.25 1 6.5 2.2 2.2 

Bi2Te3/S 325 425 1:1.25 2 5.6 1.9 3.8 

Bi2Te3/S 325 425 1:1.25 2 5.4 1.8 3.6 

Bi2Te3/S 325 425 1:1.25 4 7.2 2.4 9.6 

Bi2Te3/S 325 425 1:1.25 4 5.4 1.8 7.3 

Bi2Te3/S 325 425 1:1.25 8 5.4 1.8 14.4 

Bi2Te3/S 325 425 1:1.25 8 6.9 2.3 18.4 

Bi2Te3/S 325 425 1:1.25 24 6.2 2.1 50.1 

Bi2Te3/S 325 425 1:1.25 24 6.8 2.3 54.4 

Bi2Te3/S 325 425 1:1.25 48 5.3 1.8 84.4 

Bi2Te3/S 325 425 1:1.25 48 5.7 1.9 91.4 

Bi2Te3/S 325 375 1:1.25 72 4.1 1.4 98.4 

Bi2Te3/S 325 375 1:1.25 72 4.1 1.4 97.8 

 

 

 

Figure S2: Recovery rates in closed experimental setups in dependence on different reaction times (1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 72 h) for the system Bi2Te3/S with a 
Te:S ratio of 1:1.25 at a temperature gradient of 425 °C → 325 °C.  
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Differential scanning calorimetry (DSC) 
 

 

Figure S3: Heat flow determined by DSC (A: Heating and B: Cooling) of a bismuth telluride reference sample.  

 

 

 

Figure S4: Heat flow determined by DSC (A: Heating and B: Cooling) of an antimony telluride reference sample.  Additionally, eutectic temperature of antimony and 
tellurium (5) and crystallisation (8) of this melt is marked as in Figure 3 in the main article. 
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Figure S5:Heat flow determined by DSC (A: Heating and B: Cooling) of a sulfur reference sample. Additionally, transition of orthorhombic α-sulfur to monoclinic β-sulfur 
(1), melting (2), polymerization (3) and crystallisation (6) of sulfur is marked as in Figure 3 in the main article. 

 

 

 

Figure S6: Heat flow determined by DSC (A: Heating and B: Cooling) of a tellurium reference sample.  Additionally, melting (4) and crystallisation (7) of tellurium is 
marked as in Figure 3 in the main article. 
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Figure S7: Heat flow determined by DSC (A&B: Heating, C&D: Cooling) of bismuth telluride and sulfur mixtures with two different Te:S molar ratios (Black: 1:2, Red: 
1:1.25). 

 

 

Figure S8: Two DSC-cycles (red: First cycle, blue: Second cycle) of bismuth telluride and sulfur mixtures with two different Te:S molar ratios (A:1:2, B: 1:1.25). 
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Figure S9: Heat flow determined by DSC (A&B: Heating, C&D: Cooling) of antimony telluride and sulfur mixtures with two different Te:S molar ratios (Black: 1:2, Red: 
1:1.25). 

 

 

Figure S10: Two DSC-cycles (red: First cycle, blue: Second cycle) of antimony telluride and sulfur mixtures with two different Te:S molar ratios (A:1:2, B: 1:1.25). 
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Figure S11: DSC-cycles of antimony sulfide and sulfur mixtures with two different Sb2S3:S molar ratios (red: 1:1, blue: 1:0.25). 
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Powder X-ray diffractometry (PXRD) 
 

In all shown PXRDs of the source, lower tellurium recovery rates are the reason why tellurium reflections are still observable. 

 

 

Figure S12: One exemplary PXRD-data for each closed experimental Bi2Te3/S setup (A: Sink and B: Source) with varying temperature gradient. Additionally, reference 
patterns are shown for tellurium1 and bismuth sulfide2. 

 

 

 

Figure S13: One exemplary PXRD-data for each closed experimental Sb2Te3/S setup (A: Sink and B: Source) with varying temperature gradient. Additionally, reference 
patterns are shown for tellurium1 and antimony sulfide3. 
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Figure S14: One exemplary PXRD-data for each closed experimental Bi2Te3/S setup (A, B: Sink and C, D: Source) with varying Te:S molar ratio (A, C: 1:1.25 or B, D: 1:2) 
at different temperature gradients (325 → 425 or 325 → 375) and reaction times (24 h, 48 h, 72 h). Additionally, reference patterns are shown for tellurium 1 and 
bismuth sulfide2. 

 

 

Figure S15: One exemplary PXRD-data for each closed experimental Bi2Te3/S setup (A: Sink and B: Source) with varying reaction time (1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 72 h). 
Additionally, reference patterns are shown for tellurium1 and bismuth sulfide2. 
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Figure S16: PXRD-data of four different open experimental setups (A: Sink and B: Source) for the Bi2Te3/S system. Additionally, reference patterns are shown for 
tellurium1 and bismuth sulfide2. 

 

 

 

Figure S17: PXRD-data of four different open experimental setups (A: Sink and B: Source) for the Sb2Te3/S system. Additionally, reference patterns are shown for 
tellurium1 and antimony sulfide3. 
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Figure S18: PXRD-data of source (blue diffractogram) and sink (green diffractogram) products of (A) best closed and (B) best open  experimental Sb2Te3/S setup. 
Additionally, references for tellurium1, sulfur4 and antimony sulfide3 are shown. 

 

 

Figure S19: PXRD-data of source (blue diffractogram) and sink (green diffractogram) products of upscaling of open experimental Bi2Te3/S setup. Additionally, references 
for tellurium1, sulfur4 and bismuth sulfide2 are shown. 
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Figure S20: PXRD-data of source (blue diffractogram) and sink (green diffractogram) products of the Sb2Te3/S experimental setup with a reaction of 48 h and a Te:S 
molar ratio of 1:1.25 at a temperature gradient of 425 °C → 325 °C. Additionally, references for tellurium1, sulfur4 and antimony sulfide3 are shown. 
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Raman spectroscopy 
 

 

Figure S21: Raman spectra for tellurium recovered in (A) best closed and (B) best open experimental Bi2Te3/S setup. A reference measurement of sulfur is also shown, 
and the specific Raman modes of tellurium are marked. 
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Energy dispersive X-ray analysis (EDX) 
 

 

Figure S22: EDX-data of tellurium recovered in (A) the best-performing closed Sb2Te3/S experimental setup and (B) the best-performing open Sb2Te3/S experimental 
setup. For each sample, an average wt% value is given. It is calculated from three different measuring spots. X -ray emission lines are also shown for tellurium, sulfur, 
antimony, oxygen, and carbon as references.5 

 

 

 

Figure S23: EDX-data of tellurium recovered in (A) the open Bi2Te3/S upscaling setup and (B) the open Sb2Te3/S upscaling setup. For each sample, an average wt% value 
is given. It is calculated from three different measuring spots. X-ray emission lines are also shown for tellurium, sulfur, bismuth, antimony, oxygen, and carbon as 
references.5 
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Figure S24: Elemental Mapping of a tellurium sample recovered in the best-performing open Bi2Te3/S experimental setup. Image (A) shows the electron image, image 
(B) shows the elemental mapping of the tellurium Lα1 X-ray emission line and image (C) shows the elemental mapping of the sulfur Kα1 X-ray emission line. 

 

 

 

Figure S25: Elemental Mapping of a tellurium sample recovered in the best-performing closed Sb2Te3/S experimental  setup. Image (A) shows the electron image, image 
(B) shows the elemental mapping of the tellurium Lα1 X-ray emission line and image (C) shows the elemental mapping of the sulfur Kα1 X-ray emission line. 

 

 

 

Figure S26: Elemental Mapping of a tellurium sample recovered in the best-performing open Sb2Te3/S experimental setup. Image (A) shows the electron image, image 
(B) shows the elemental mapping of the tellurium Lα1 X-ray emission line and image (C) shows the elemental mapping of the sulfur Kα1 X-ray emission line. 
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Figure S27: Elemental Mapping of a tellurium sample recovered in the open Bi2Te3/S upscaling setup. Image (A) shows the electron image, image (B) shows the elemental 
mapping of the tellurium Lα1 X-ray emission line and image (C) shows the elemental mapping of the sulfur Kα1 X-ray emission line. 

 

 

 

Figure S28: Elemental Mapping of a tellurium sample recovered in the open Sb2Te3/S upscaling setup. Image (A) shows the electron image, image (B) shows the 
elemental mapping of the tellurium Lα1 X-ray emission line and image (C) shows the elemental mapping of the sulfur Kα1 X-ray emission line. 

 

 

 

 

Figure S29: Elemental Mapping of a tellurium sample after a purification step at 425 °C. Image (A) shows the electron image, image (B) shows the elemental mapping 
of the tellurium Lα1 X-ray emission line and image (C) shows the elemental mapping of the sulfur Kα1 X-ray emission line. 
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Figure S30: Elemental Mapping of a tellurium sample after a purification step at 500 °C. Image (A) shows the electron image, and image (B) shows the elemental mapping 
of the tellurium Lα1 X-ray emission line. 
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