Supplementary Section

Fully Electric Hydrogen-Driven Direct Reduction Process for Zero-Carbon Green Steel Production

Zeng Liang¹, Jianliang Zhang^{1*}, Kejiang Li^{1*}, Lei Shao², Zhengjian Liu¹, Zonghao Yang¹, Chunhe Jiang³, Shan Ren⁴, Alberto N. Conejo¹

¹ School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China.

² School of Metallurgy, Northeastern University, Shenyang 110819, China

³ Technical Support Center for Prevention and Control of Disastrous Accidents in Metal Smelting, University of Science and Technology Beijing, Beijing 100083, China
⁴ State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China

*Corresponding author: Jianliang Zhang (zhang.jianliang@hotmail.com) and Kejiang Li (<u>likejiang@ustb.edu.cn</u>)

Address: 30 Xueyuan Rd., Haidian District, Beijing 100083, PR China.

This PDF file includes:

Figs. S1 to S4

Table. S1, S2 and S3

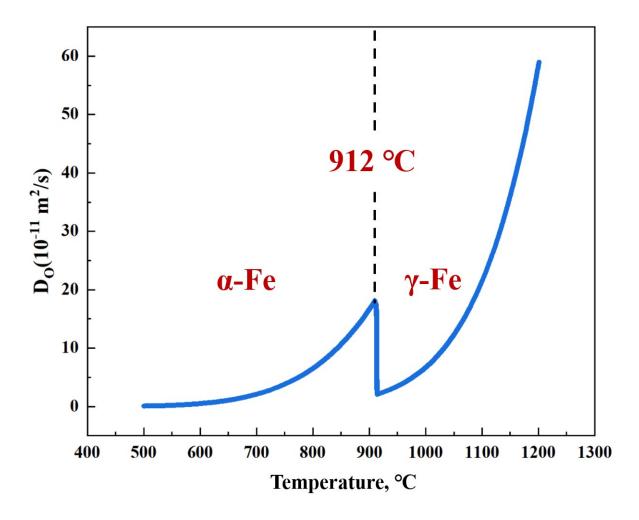


Fig. S1. Evolution of Diffusion Coefficients Due to Iron Phase Changes

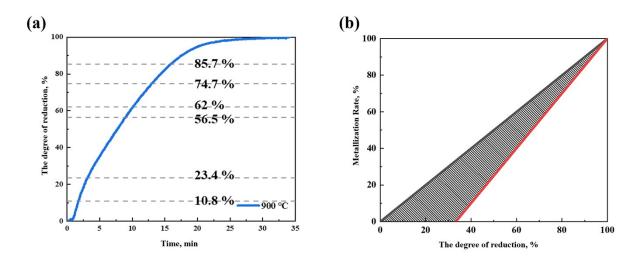
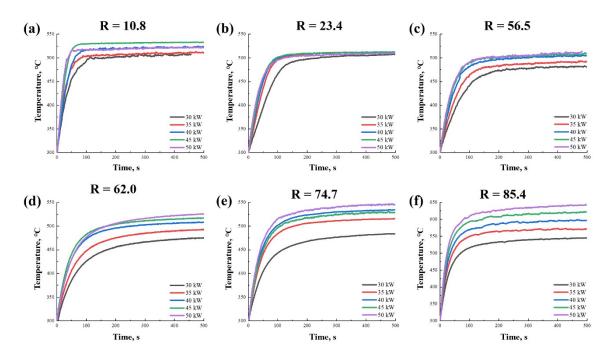
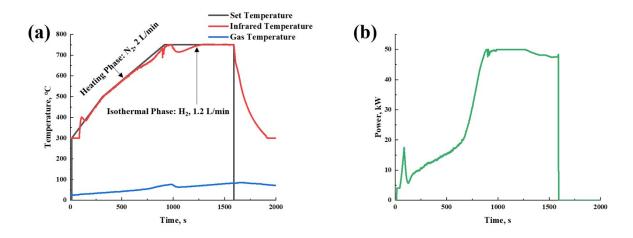




Fig. S2. (a) Sampling at Different Degrees of Reduction for Induction Heating Comparison;(b) Approximate Relationship Between Degree of Reduction and Metallization Rate

Fig. S3. Temporal Evolution of Induction Heating Temperature for Samples at Different Reduction Degrees: (a) 10.8%; (b) 23.4%; (c) 56.5%; (d) 62.0%; (e) 74.7%; (f) 85.4%

Fig. S4. (a) Temperature and Gas Control during Induction Heating-Hydrogen Reduction Experiments; (b) Variation of Equipment Power

No.	Temperature (°C)	Gas Flow Rate (L/min)
1	850	0.5
2	850	1
3	850	1.5
4	850	2
5	850	3
6	800	1.5
7	900	1.5
8	950	1.5
9	1000	1.5

Table S1. Temperature and Gas Flow Control Scheme for Hydrogen Reduction Experiments

Table S2. Initial Mass, Reaction Time, Final Mass, and Weight Loss of Samples in Induction

No.	Temperature (°C)	Initial Weight (g)	Reaction Time (min)	Final Weight (g)	Weight Loss (g)	Weight Loss Rate (%)	Degree of Reduction (%)
1	750	7.589	5	7.075	0.514	0.06773	0.2479
2	750	7.619	10	6.798	0.821	0.107757	0.3967
3	750	7.547	15	6.381	1.166	0.154498	0.5684
4	750	7.252	20	5.547	1.705	0.235108	0.8645
5	750	7.075	40	5.227	1.848	0.261201	0.9604
6	700	7.423	5	7.132	0.291	0.039202	0.1449
7	700	7.610	10	6.865	0.745	0.097898	0.3605
8	700	7.369	15	6.465	0.904	0.122676	0.4515
9	700	7.4171	20	6.086	1.3311	0.179464	0.5567
10	700	7.664	40	5.976	1.688	0.220251	0.8099
11	650	7.398	5	7.293	0.105	0.014193	0.053
12	650	7.597	10	7.297	0.3	0.039489	0.1474
13	650	7.382	15	7.035	0.347	0.047006	0.1736
14	650	7.309	20	6.721	0.588	0.080449	0.2964
15	650	7.113	40	6.177	0.936	0.131590	0.4843

Heating-Hydrogen Reduction Experiments

Table S3 Comparative Analysis of CO2 Emissions, Renewable Energy Utilization, and
Hazard Risks Across Direct Reduction Ironmaking Processes

Green Chemistry Metric	IH-DR	H2-DR	MIDREX
CO ₂ Emissions (t/t Fe)	0.05	0.05	0.45-0.90
Energy Source	100% Renewable	90-94% Renewable	13-17% Renewable
Hazard Risk	Low (300°C H ₂)	High (1050°C H2)	Moderate (900°C NG)