Supplementary information

Production of High-Carbon-Number Hydrocarbon Bio-Aviation Fuels via Catalytic Hydrogenation of Vanillin and Non-Catalytic Condensation: A Mechanistic Study with DFT and Experimental Insights

Table of contents

NMR spectra (¹H, ¹³C, COSY, HSQC, HMBC) of compound 1

Supplementary Tables

Table S1 Effects of catalyst-to-substrate ratio on yield in vanillin hydrogenation depicted in Fig. 1(a).

Table S2 Effects of catalyst-to-substrate ratio on yield in vanillin hydrogenation depicted in Fig. 1(b).

Table S3 Effects of Ru metal loading on yield in vanillin hydrogenation depicted in Fig. 3(a).

Table S4 Effect of catalyst-to-substrate ratio on yield in vanillin hydrogenation depicted in Fig. 3(b).

Table S5 Effect of reaction pressure and time on yield in vanillin hydrogenation and condensation depicted in Fig. 4,6.

Table S6 Effect of reaction temperature on yield in vanillin hydrogenation and condensation depicted in Fig. 5.

Table S7 Effect of reaction pressure and temperature on yield in vanillin hydrogenation and condensation depicted in Fig. 5.

Table S8 Non-catalytic condensation of vanillyl alcohol and creosol on yield depicted in Fig. 8.

Table S9 Py-FTIR-measured acidity of catalysts.

Table S10 Texture and physicochemical properties of Ru catalysts.

Supplementary Figures

Fig. S1 Hydrogenation results using different carbon-supported metal catalysts (Ru, Pd, Pt, Ni, Co) exhibiting products of VANOL (1), CRSOL (2), dimer **1** (4). (Reaction conditions: 2 mmol of VAN, a mixed solvent of 30 mL of DI water and 15 mL of n-octane, 150 °C of reaction temperature, 1 h of reaction time, 0.05 g of 1 wt% Ru/C, catalyst/substrate = 0.17 w/w, 5 MPa of H₂ pressure measured at room temperature)

Fig. S2 HAADF-STEM images of (A) 1 wt% Ru/C, (B) 3 wt% Ru/C, and (C) 5 wt% Ru/C.

Fig. S3 GC-MS results for condensation of VAN, VANOL, and CRSOL depicted in Table 1. Reaction conditions: 2 mmol of reactant (VAN, VANOL, or CRSOL) each or a mixture 1 mmol VANOL and 1 mmol CRSOL, a mixed solvent of DI water (30 mL) and n-octane (15 mL), 0 or 0.05 g of 1 wt% Ru/C, 50 bar H₂ measured at room temperature, 200 °C of reaction temperature, 1 h of reaction time.

Fig. S4 Reusability of Ru/C catalyst over multiple reaction cycles exhibiting products of VANOL (1), CRSOL (2), dimer 1 (4). (Reaction conditions: 2 mmol of VAN, a mixed solvent of 30 mL of DI water and 15 mL of n-octane, 150 °C of reaction temperature, 1 h of reaction time, 0.05 g of 1 wt% Ru/C, catalyst/substrate = 0.17 w/w, 50 bar of H₂ pressure measured at room temperature)

Fig. S5 DFT-calculated structures of reactants and intermediates on Ru surface depicted in Fig. 7.

Fig. S6 GC-MS results for the second reaction for hydrodeoxygenation of a mixture containing dimer **1**. The first reaction (R1) is hydrogenation and condensation of VAN. (Reaction conditions: 2 mmol of VAN, a mixed solvent of 30 mL of DI water and 15 mL of n-octane, 0.05 g of 1 wt% Ru/C catalyst, 30 bar of H₂ pressure (measured at room temperature), 150 °C of reaction temperature, 3 h of reaction time.) The second reaction (R2) is hydrodeoxygenation of the product of R1. (Reaction conditions: a product mixture of R1 as a reactant, 0.3 g of 3 wt% Ru/HZSM-5 catalyst, 50 bar of H₂ pressure (measured at room temperature), 200 °C of reaction temperature, 3 h of reaction time.)

Fig. S7 XRD results of 3 wt% Ru/HZSM-5.

NMR spectra (¹H, ¹³C, COSY, HSQC, HMBC) of compound 1

5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol (1)

¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 8.5 Hz, 1H), 6.72 – 6.59 (m, 4H), 5.51 – 5.37 (m, 2H), 3.86 (s, 3H), 3.84 – 3.79 (m, 5H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.6, 144.8, 143.9, 143.5, 132.6, 132.2, 127.9, 121.5, 116.2, 114.3, 113.1, 111.4, 56.2, 56.0, 38.6, 19.4

Supplementary Tables

Catalyst/substrate	Product yield (%)						
	Vanillyl	Creasel	1 b	2-Methoy-4-methyl	4-Methyl	Methyl	conversion
(w/w)	alcohol	Creosol	1	cyclohexanol	cyclohexanol	cyclohexane	(%)
0.00	16 ± 2.3						23 ± 1.3
0.10	28 ± 1.3	28 ± 1.0	3 ± 0.3		0		91 ± 0.8
0.17	21 ± 0.5	45 ± 0.5	13 ± 0.8		0		100
0.25	10 ± 0.5	65 ± 2.9	2 ± 0.3		0		100
0.29	0	62 ± 2.2	0	6 ± 0.8	3 ± 0.4	2 ± 0.1	100
0.33	0	55 ± 2.4	0	6 ± 0.6	4 ± 0.6	3 ± 0.2	100
0.50	0	55 ± 4.8	0	11 ± 2.5	10 ± 3.1	4 ± 0.1	100

Table S1. Effects of catalyst-to-substrate ratio on yield in vanillin hydrogenation at 150 °C depicted in Fig. 1(a).^{a, c}

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water 30 mL, 15 mL of n-octane 15 mL, 0.03-0.15 g of 1 wt% Ru/C catalyst,

50 bar of H₂ pressure (measured at room temperature), 150 °C of reaction temperature, 1 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

^c Data are presented as mean \pm standard deviation from three independent experiments.

Catalyst/substrate				Product yield (%)			Vanillin
	1	C · 1	∎b	2-Methoy-4-methyl	4-Methyl	Methyl	conversion
(w/w)	Creosol	Gualacol	1	cyclohexanol	cyclohexanol	cyclohexane	(%)
0.00	16 ± 1.3						29 ± 0.8
0.10	58 ± 3.7	2	7 ± 0.1	0	0		100
0.17	72 ± 0.3	2	5 ± 0.1	0	0		100
0.25	73 ± 0.2	1	3 ± 0.1	0	0		100
0.29	0	0	0	48 ± 1.0	28 ± 0.2	2	100
0.33	0	0	0	49 ± 0.3	29 ± 0.2	3 ± 0.1	100
0.50	0	0	0	51 ± 0.1	31 ± 0.1	4 ± 0.3	100

Table S2 Effects of catalyst-to-substrate ratio on yield in vanillin hydrogenation at 200 °C depicted in Fig. 1(b).^{a, c}

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water 30 mL, 15 mL of n-octane 15 mL, 0.03-0.15 g of 1 wt% Ru/C catalyst, 50 bar of H₂ pressure (measured at room temperature), 200 °C of reaction temperature, 1 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

 $^{\rm c}$ Data are presented as mean \pm standard deviation from three independent experiments.

Motal loading				Product yield (%)			Vanillin
	Vanillyl	Cara 1	1 b	2-Methoy-4-methyl	4-Methyl	Methyl	conversion
(Wt%)	alcohol	Creosol	1	cyclohexanol	cyclohexanol	cyclohexane	(%)
1	21 ± 1.0	45 ± 1.0	13 ± 1.5	0	0	0	100
3	0	80 ± 2.3	3 ± 0.5	0	0	0	100
5	0	64 ± 1.8	2	7 ± 0.5	5 ± 1.0	2 ± 2.0	100

Table S3 Effects of Ru metal loading on yield in vanillin hydrogenation at 150 °C depicted in Fig. 3(a).^{a, c}

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water 30 mL, 15 mL of n-octane 15 mL, 0.05 g of Ru/C catalyst, 50 bar of H₂ pressure (measured at room temperature), 150 °C of reaction temperature, 1 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

^c Data are presented as mean \pm standard deviation from three independent experiments.

Motal loading	Product yield (%)							
	1	Crucia en 1	1 b	2-Methoy-4-methyl	4-Methyl	Methyl	conversion	
(Wt%)	Creosol	Gualacol	1	cyclohexanol		cyclohexane	(%)	
1	72 ± 0.5	2	5 ± 0.3	0	0	0	100	
3	0	0	0	35 ± 2.0	33 ± 2.5	2 ± 0.4	100	
5	0	0	0	37 ± 1.5	35 ± 1.0	2 ± 0.3	100	

Table S4 Effect of catalyst-to-substrate ratio on yield in vanillin hydrogenation at 200 °C depicted in Fig. 3(b).^{a, c}

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water 30 mL, 15 mL of n-octane 15 mL, 0.05 g of Ru/C catalyst, 50 bar of H₂ pressure (measured at room temperature), 200 °C of reaction temperature, 1 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

^c Data are presented as mean \pm standard deviation from three independent experiments.

Catalyst	$S_{BET} \left(m^2/g \right)$	$S_{micro}(m^2\!/g)^a$	$S_{external} (m^2/g)^b$	Particle size (nm) ^c
1 wt% Ru/C	1029	823	206	0.93 ± 0.35
3 wt% Ru/C	805	631	174	0.98 ± 0.37
5 wt% Ru/C	724	561	163	0.99 ± 0.46
3 wt% Ru/HZSM-5	374	350	24	n.a.

Table S5 Texture and physicochemical properties of Ru catalysts.

^a $S_{micro} = S_{BET} - S_{external}$.

^b Obtained by t-plot analysis with BET surface area.

^c Measured using the HAADF-STEM images.

Ц				Produc	t yield (%)			Vonillin
pressure (bar) ^b	Reaction time (h)	Vanillyl alcohol	Creosol	2-methoxy-4- methyl cyclohexanol	4-methyl cyclohexanol	methyl cyclohexane	1 ^c	conversion (%)
	1	10	30				0	50
10	2	14	28				6	66
10	3	13	33				11	73
	6	20	39				16	95
	1	23	31				7	86
20	2	22	45				9	99
30	3	10	43				19	99
	6		50	7	6		10	99
	1	22	44				14	99
50	2	10	55	4			9	99
30	3	0	60	6	8		8	99
	6	0	0	46	24	4	0	99

Table S6 Effect of reaction pressure and time on yield in vanillin hydrogenation and condensation depicted in Fig. 4(a).^a

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water, 15 mL of n-octane, 0.05 g of 1 wt% Ru/C catalyst, 150° C of reaction temperature, 1–6 h of reaction time.

^b Measured at room temperature.

^c 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

Tomporatura (9C)		Vanillin conversion			
Temperature (°C)	Vanillyl alcohol	Creosol	Guaiacol	1 ^b	(%)
50	26				42 ± 1.9
75	83 ± 1.9	2 ± 1.5			86 ± 2.0
100	56 ± 3.7	9 ± 4.0			83 ± 4.9
150	21 ± 1.0	45 ± 1.0		13 ± 1.5	100
200		73	2 ± 0.5	4 ± 1.0	100

Table S7 Effect of reaction temperature on yield in vanillin hydrogenation and condensation depicted in Fig. 4(b).^a

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water, 15 mL of n-octane, 0.05 g of 1 wt% Ru/C catalyst, 50 bar of H₂ pressure (measured at room temperature), 1 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

Temperature	H ₂ pressure	Product yield (%)				Vanillin	
(°C)	(bar)	Vanillyl alcohol	Creosol	Guaiacol	1 ^b	conversion (%)	
50	10	18				25	
	30	18				30	
	50	26				40	
75	10	70				74	
	30	90				93	
	50	85				88	
100	10	22	3			42	
	30	32	4			53	
	50	60	5			77	
150	10	10	30			50	
	30	23	31		7	86	
	50	22	44		14	99	
200	10		70		7	85	
	30		80		8	99	
	50		73	1	3	99	

Table S8 Effect of reaction pressure and temperature on yield in vanillin hydrogenation and condensation depicted in Fig. 5.ª

^a Reaction conditions: 2 mmol of vanillin, 30 mL of DI water, 15 mL of n-octane, 0.05 g of 1 wt% Ru/C catalyst, 10–50 bar of H₂ pressure (measured at room temperature), 50–200 °C of reaction temperature, 1 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol

Tomporatura (°C)	Product yield (%)					
1 emperature (C) =	Vanillyl alcohol	Creosol	1 ^b			
25	50	50				
50	53	43				
100	53	43				
150	22	47				
200		33	34			

Table S9 Non-catalytic condensation of vanillyl alcohol and creosol on yield depicted in Fig. 7.ª

^a Reaction conditions: 1 mmol of vanillyl alcohol and creosol each, 30 mL of DI water, 15 mL of n-octane, 50 bar of N₂ pressure (measured at room temperature), 3 h of reaction time.

^b 1: 5-(4-hydroxy-3-methoxybenzyl)-2-methoxy-4-methylphenol.

Catalyst	Brønsted acid (mmol/g)	Lewis acid (mmol/g)	(Brønsted acid) /(Lewis acid)
HZSM-5	0.12	0.79	0.15
3 wt% Ru/HZSM-5	0.05	0.35	0.14

Table S10 Py-FTIR-measured acidity of catalysts.

Supplementary Figures

Fig. S1 Hydrogenation results using different carbon-supported metal catalysts (Ru, Pd, Pt, Ni, Co) exhibiting products of VANOL (1), CRSOL (2), dimer 1 (4). (Reaction conditions: 2 mmol of VAN, a mixed solvent of 30 mL of DI water and 15 mL of n-octane, 150 °C of reaction temperature, 1 h of reaction time, 0.05 g of 1 wt% Ru/C, catalyst/substrate = 0.17 w/w, 5 MPa of H₂ pressure measured at room temperature)

Fig. S2 HAADF-STEM images of (A) 1 wt% Ru/C, (B) 3 wt% Ru/C, and (C) 5 wt% Ru/C.

Fig. S3 GC-MS results for condensation of VAN, VANOL, and CRSOL depicted in Table 1. Reaction conditions: 2 mmol of reactant (VAN, VANOL, or CRSOL) each or a mixture 1 mmol VANOL and 1 mmol CRSOL, a mixed solvent of DI water (30 mL) and n-octane (15 mL), 0 or 0.05 g of 1 wt% Ru/C, 50 bar H₂ measured at room temperature, 200 °C of reaction temperature, 1 h of reaction time.

Fig. S4 Reusability of Ru/C catalyst over multiple reaction cycles exhibiting products of VANOL (1), CRSOL (2), dimer 1 (4). (Reaction conditions: 2 mmol of VAN, a mixed solvent of 30 mL of DI water and 15 mL of n-octane, 150 °C of reaction temperature, 1 h of reaction time, 0.05 g of 1 wt% Ru/C, catalyst/substrate = 0.17 w/w, 50 bar of H₂ pressure measured at room temperature)

Fig. S5 DFT-calculated structures of reactants and intermediates on Ru surface depicted in Fig. 7.

Fig. S6 GC-MS results for the second reaction for hydrodeoxygenation of a mixture containing dimer **1**. The first reaction (R1) is hydrogenation and condensation of VAN. (Reaction conditions: 2 mmol of VAN, a mixed solvent of 30 mL of DI water and 15 mL of n-octane, 0.05 g of 1 wt% Ru/C catalyst, 30 bar of H₂ pressure (measured at room temperature), 150 °C of reaction temperature, 3 h of reaction time.) The second reaction (R2) is hydrodeoxygenation of the product of R1. (Reaction conditions: a product mixture of R1 as a reactant, 0.3 g of 3 wt% Ru/HZSM-5 catalyst, 50 bar of H₂ pressure (measured at room temperature), 200 °C of reaction temperature, 3 h of reaction time.)

Fig. S7 XRD results of 3 wt% Ru/HZSM-5.