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1. List of all abbreviations in the paper 

Table S1. List of all abbreviations used in the paper 
Full name Abbreviation 
Dry reforming of methane DRM 
Oxidative CO2 reforming of methane OCRM 
Bi-reforming of methane BRM 
Syngas ratio SR 
Energy cost EC 
Atmospheric pressure glow discharge APGD 
Confined APGD cAPGD 
Machine learning ML 
Supervised learning SL 
Reinforcement learning RL 
Unsupervised learning UL 
Artificial neural network ANN 
Backpropagation BP 
Coefficient of determination R2 
Mean square error MSE 
Support vector regression SVR 
Regression trees RT 
Pearson’s Correlation Coefficient PCC 
Proximal Policy Optimization PPO 
Actor-Critic AC 
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2. Experimental setup  
A schematic overview of the experimental setup is shown in Fig. S1. For DRM and 
OCRM,1,2 the same, so-called confined APGD (cAPGD) reactor was used, which yields 
superior performance compared to a basic APGD reactor. It contains a cathode pin and 
anode plate, and the space in-between is encapsulated by a ceramic tube, so that the 
plasma is filling most of the reactor, and thus, most of the gas passes through the plasma. 
N2 was employed as internal standard to describe the impact of gas expansion and was 
added to the gas mixture after the reactor. For BRM, an upgraded version of the cAPGD 
reactor was used, but it leads to consistent performance compared with the previous 
cAPGD reactor.3 The new reactor could be used with higher flow rates and higher power. 
In addition, the ceramic tube material was a bit different, to be more resistant to thermal 
shock, and the distance between the electrodes can be changed, allowing plasma 
ignition at lower voltages (i.e., shorter distances), followed by longer distances for 
plasma operation, allowing to apply higher power, and thus increasing the performance. 
More detail about the reactor design can be found in the SI of Ref.3  

 
Fig. S1. Schematic overview of the experimental setup. (a) DRM and OCRM;1,2 (b) BRM.3 
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3. Database for the ML model development 

Table S2. Operating parameters for the plasma-based CO2 and CH4 conversion process 

No. 
CO2/CH4 molar 

ratio 
O2 fraction 

 (%) 
H2O fraction  

(%) 
Total flow rate  

(L/min) 
Plasma power 

 (W) 
1 3 0 0 1 96 
2 3 0 0 1 98.7 
3 3 0 0 1 117.5 
4 3 0 0 1 122.5 
5 3 0 0 1 138 
6 3 0 0 1 140 
7 3 0 0 1 147 
8 3 0 0 0.5 72.5 
9 3 0 0 0.5 95 

10 3 0 0 0.5 100 
11 3 0 0 0.5 102.5 
12 3 0 0 0.5 105 
13 3 0 0 0.5 139 
14 3 0 0 2 110 
15 3 0 0 2 115 
16 5.67 0 0 1 92 
17 5.67 0 0 1 96 
18 5.67 0 0 1 129.5 
19 5.67 0 0 0.5 102.5 
20 5.67 0 0 0.5 105 
21 1.86 0 0 1 94 
22 1.86 0 0 1 95.3 
23 1.86 0 0 1 103.3 
24 1.86 0 0 1 140 
25 1.86 0 0 1 147 
26 1.86 0 0 0.5 103.3 
27 1.86 0 0 0.5 104.2 
28 1.86 0 0 0.5 105 
29 1.9 0 0 1 80 
30 1.9 3.31 0 1 96.7 
31 1.9 6.38 0 1 96.7 
32 1.9 6.41 0 1 98.3 
33 1.9 9.45 0 1 96.7 
34 1.9 9.60 0 1 97.5 
35 1.9 9.57 0 1 97.5 
36 1.9 12.76 0 1 95 
37 1.9 12.80 0 1 100.5 
38 1.9 15.81 0 1 92.5 
39 1.9 15.84 0 1 94.2 
40 1.39 15.79 0 1 89.5 
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41 1.39 15.86 0 1 95 
42 1.39 15.91 0 1 100.5 
43 1 16.06 0 1 85.8 
44 1 16.03 0 1 95 
45 0.75 16.21 0 1 71.7 
46 0.75 16.20 0 1 74.2 
47 0.75 16.09 0 1 75.8 
48 1.86 0 34.77 3 300 
49 1.86 0 36.08 3 301.5 
50 1.86 0 36.74 3 302.5 
51 1.86 0 45.17 3 299.7 
52 1.86 0 45.17 3 300.9 
53 1.86 0 46.12 3 303.8 
54 1 0 27.65 3 301.8 
55 1 0 28.47 3 304.2 
56 1 0 27.45 3 308.3 
57 1 0 35.86 3 298.3 
58 1 0 36.52 3 299.3 
59 1 0 35.86 3 301.8 
60 1 0 44.93 3 299.4 
61 1 0 45.17 3 300 
62 1 0 45.41 3 301 
63 0.54 0 36.08 3 302.1 
64 0.54 0 36.96 3 302.9 
65 0.54 0 36.08 3 303.5 
66 0.54 0 44.93 3 300.6 
67 0.54 0 44.93 3 302.3 
68 0.54 0 44.93 3 303.5 
69 0.33 0 46.12 3 299.7 
70 0.33 0 45.17 3 302.4 
71 0.33 0 45.17 3 302.6 
72 0.33 0 46.59 3 398 
73 0.33 0 45.17 3 400.4 
74 0.33 0 45.17 3 401.4 
75 5.67 0 0 3 212 
76 3 0 0 3 214 
77 1.86 0 0 3 217 
78 1.86 0 0 3 122.5 
79 3 0 0 3 122.5 
80 3 0 0 3 141 
81 3 0 0 3 148 
82 3 0 0 3 209 
83 3 0 0 3 217 
84 3 0 0 3 224 
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Table S3. Experimental results for the plasma-based CO2 and CH4 conversion process 

No. 
CO2  

conversion (%) 
CH4  

conversion (%) 
CO yield 

(%) 
H2 yield 

(%) 
Syngas 

ratio 
Energy cost 
(eV/molec) 

1 36.3 62.3 40.1 31.7 0.398 2.56 
2 36.4 58.4 38.3 27.9 0.367 2.65 
3 44.9 71.5 46.9 33.0 0.355 2.69 
4 47.0 74.7 48.7 34.8 0.360 2.72 
5 51.2 80.4 46.9 33.1 0.342 2.75 
6 53.3 83.4 56.6 38.5 0.345 2.75 
7 55.5 86.3 60.8 39.3 0.328 2.91 
8 46.9 73.8 52.5 36.1 0.351 3.04 
9 61.1 91.7 68.1 42.2 0.316 3.21 

10 63.1 93.8 70.3 43.6 0.310 3.22 
11 64.1 93.9 70.4 43.1 0.315 3.30 
12 64.2 94.9 70.8 43.7 0.316 3.37 
13 66.8 98.2 73.3 45.9 0.319 4.09 
14 18.3 34.6 21.7 21.0 0.477 2.44 
15 21.7 38.9 23.2 22.7 0.482 2.51 
16 28.4 66.7 32.5 18.4 0.176 3.30 
17 28.5 70.3 35.0 19.4 0.170 3.45 
18 38.5 88.6 45.5 21.2 0.143 4.01 
19 44.9 97.9 53.0 22.9 0.136 5.02 
20 44.7 97.4 53.1 23.3 0.138 5.12 
21 35.6 54.4 38.4 39.2 0.720 2.09 
22 36.3 54.3 36.7 37.5 0.719 2.12 
23 35.4 54.5 38.6 39.6 0.723 2.22 
24 53.5 73.2 55.3 51.5 0.652 2.29 
25 53.9 70.6 56.7 48.8 0.603 2.39 
26 65.8 85.1 67.1 57.5 0.604 2.69 
27 66.5 87.1 70.9 60.7 0.602 2.70 
28 67.0 88.1 71.8 61.3 0.602 2.84 
29 31.1 47.2 33.1 34.2 0.707 2.01 
30 41.8 61.6 44.8 39.2 0.601 1.94 
31 42.5 65.9 46.9 38.9 0.571 1.98 
32 42.3 66.1 46.5 39.1 0.579 2.05 
33 45.6 73.7 52.2 39.0 0.511 1.92 
34 45.7 74.1 53.2 38.8 0.503 1.93 
35 45.9 74.3 52.9 38.7 0.506 1.94 
36 46.9 80.9 57.2 37.6 0.458 1.86 
37 47.3 81.5 57.8 38.2 0.461 1.98 
38 47.5 87.7 61.4 36.3 0.412 1.83 
39 48.0 87.4 61.1 36.1 0.411 1.87 
40 49.6 76.5 61.2 40.7 0.560 1.61 
41 50.3 78.8 61.1 40.8 0.559 1.67 
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42 50.6 78.8 62.1 41.5 0.563 1.78 
43 45.7 73.1 54.6 45.5 0.824 1.42 
44 50.1 76.6 59.2 47.4 0.791 1.48 
45 37.5 58.8 44.9 42.1 1.067 1.25 
46 40.9 63.4 47.4 44.5 1.068 1.27 
47 40.2 62.4 45.9 42.5 1.055 1.33 
48 45.8 68.4 51.3 32.7 0.817 2.60 
49 47.0 69.6 52.6 33.6 0.788 2.71 
50 46.9 70.6 52.6 34.6 0.830 2.64 
51 45.1 72.3 52.7 32.3 0.934 3.03 
52 46.1 73.2 53.7 32.4 0.921 3.01 
53 45.5 72.8 53.2 31.8 0.931 3.06 
54 46.4 65.7 50.8 42.3 1.152 2.07 
55 45.3 64.4 49.7 41.0 1.153 2.14 
56 46.0 65.2 50.5 42.3 1.154 2.12 
57 45.9 66.0 51.6 40.2 1.217 2.25 
58 45.7 65.9 51.5 38.9 1.191 2.29 
59 44.8 65.6 50.9 39.7 1.214 2.31 
60 40.3 65.7 49.0 36.2 1.346 2.66 
61 40.4 64.8 48.8 35.7 1.325 2.68 
62 42.3 67.2 50.5 36.1 1.310 2.72 
63 40.5 63.5 48.9 44.9 1.714 1.96 
64 38.1 60.6 45.7 40.2 1.660 2.16 
65 41.1 61.9 46.6 41.7 1.671 2.11 
66 41.4 64.2 50.0 40.8 1.727 2.27 
67 39.5 63.6 49.5 40.2 1.719 2.32 
68 35.3 61.7 46.5 38.6 1.760 2.43 
69 30.9 58.7 44.9 38.8 2.038 2.22 
70 32.6 59.6 44.3 38.9 2.034 2.28 
71 33.6 60.6 46.5 40.4 2.017 2.32 
72 46.2 72.9 57.9 48.1 1.966 2.30 
73 49.1 74.1 59.4 49.2 1.926 2.33 
74 50.0 74.1 59.8 49.5 1.922 2.29 
75 28.2 67.6 33.5 21.4 0.186 2.70 
76 32.3 54.7 36.9 30.9 0.397 2.12 
77 33.3 47.3 37.4 36.8 0.671 1.79 
78 16.0 24.7 19.3 19.9 0.690 1.78 
79 20.6 36 24.2 22.1 0.435 2.15 
80 20.3 35 23.01 21.3 0.441 2.11 
81 20.8 36.7 24.7 22.5 0.435 2.13 
82 30.8 51.2 34.9 29.6 0.405 2.21 
83 31.9 54.2 36.4 30.9 0.397 2.18 
84 33.3 55 37.5 31.4 0.402 2.26 
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4. Hyperparameters optimization 

Hyperparameters are configurations set prior to the learning process that govern a 
model’s behavior and performance. In artificial neural networks (ANNs), architectural 
hyperparameters, such as the number of hidden layers and neurons per layer, critically 
influence the model’s capacity. While increasing these parameters enhances the 
network’s ability to capture complex patterns, it also elevates the risk of overfitting—
particularly when the training data is limited. To balance this trade-off, a grid search 
optimization strategy was employed to identify combinations of hyperparameters (e.g., 
layer counts, neuron counts) that maximize the model’s R2 performance on test data. 

For the reinforcement learning (RL) model, hyperparameter optimization was 
conducted via random search, an efficient alternative in high-dimensional parameter 
space. The process involved: 1) Defining search bounds: specifying plausible ranges 
for key hyperparameters (e.g., learning rate, discount factor); 2) Probabilistic sampling: 
randomly selecting configurations from the defined search space; 3) Iterative evaluation: 
training the RL agent under each configuration and assessing performance using a 
validation metric such as cumulative reward over episodes; 4) Configuration 
refinement: selecting the top-performing configuration and conducting additional 
simulations with perturbed hyperparameter values to fine-tune results. This approach 
balances computational efficiency with robust exploration of the hyperparameter 
landscape, ensuring the RL agent converges toward optimal policy learning. 

The hyperparameters for the SL models encompass architecture-specific settings 
for each algorithm. For the artificial neural network (ANN), these include the number 
of hidden layers, neurons per layer, and activation function. The support vector 
regression (SVR) model involves the epsilon parameter (ε), penalty coefficient (C), and 
kernel function, while the regression tree (RT) requires optimization of the maximum 
tree depth. The finalized hyperparameters, along with their respective search ranges, 
are documented in Table S4. Hyperparameters not explicitly listed in this optimization 
process were set to their default values. 

Table S4. Hyperparameters of SL models and optimized ranges. 
SL algorithm Hyperparameter Optimization range Optimized value 

 Hidden layer, nlayer   [2, 3, 4], nlayer ∈ N 4  
ANN Neurons per layer, nneuron  [2, 90], nneuron ∈ N [90, 55, 45, 31] 

 Activation tanh, ReLU, logistic ReLU 
 Kernel function poly, linear, sigmoid, rbf rbf 

SVR Coefficient C C = 10β, β ∈ [-4, 2], β ∈ N 100 
 Epsilon ε [0.01, 0.05, 0.1, 0.2, 0.5, 1.0] 0.01 

RT Max depth, ndepth [2,15], ndepth ∈ N 8 
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5. Supervised learning models 

An ANN model is a widely used SL model,4,5 that operates as a complex mathematical 
function.6 During training, the model iteratively adjusts its weights and biases to 
minimize discrepancies between predicted and actual outputs. This optimization is 
guided by a loss function, which quantifies prediction errors and provides corrective 
feedback to refine the network’s parameters. Training proceeds until the loss stabilizes 
within an acceptable range or a pre-specified number of epochs — defined as one full 
pass of the training data through the algorithm — is reached. Early stopping was 
employed to avoid overfitting. As shown in Fig. S2, the mean squared error (MSE) 
steadily decreases during training and converges after approximately 80 epochs. 
Following loss computation, backpropagation applies the chain rule to calculate partial 
derivatives of the weights, enabling gradient descent to update the network’s parameters 
iteratively.  

 
Fig. S2. MSE of the best fitness value in each epoch for the ANN model 
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6. Reinforcement learning model 

6.1 States, actions, and rewards 

The states and actions are defined by the five operating parameters described in the 
main paper, which remain within the investigated range. The reward function is used to 
guide optimization toward the best possible outcome. In this work, to maximize the 
reaction performance (gas conversion, product yield and SR) while minimizing the EC, 
the reward function is determined by the difference between the current time step and 
the previous time step during the iteration. Specifically, a higher reaction performance 
and lower EC will lead to a higher reward. 

6.2 Proximal policy optimization algorithm  

Proximal Policy Optimization (PPO) is an advanced reinforcement learning algorithm 
developed within the Actor-Critic (AC) framework, specifically engineered to enhance 
training stability and policy performance. The AC architecture comprises two core 
neural networks: the actor, which determines action selection by defining the policy, 
and the critic, which assesses the value of those actions to guide policy updates. PPO 
retains the critic’s role in evaluating actions, mirroring traditional AC methods, but 
introduces a dual-policy mechanism in the actor: a target policy and a current policy. 
During training, the current policy generates batches of trajectories (sequences of states, 
actions, and rewards), while the target policy computes gradient updates based on these 
trajectories. At the end of each iteration cycle, the current policy is synchronized with 
the target policy to refine the strategy. PPO’s objective function is designed to maximize 
cumulative rewards while imposing a proximity constraint, ensuring the target policy 
remains closely aligned with the current policy. This constraint prevents abrupt policy 
changes, enabling stable and incremental improvements during optimization. 

6.3 Network structure for RL agent training 

Figure S3 illustrates the block diagram of the PPO algorithm. In each iteration cycle, a 
batch of training data is generated through N = 200 policy roll-outs, where the number 
of time steps (T) varies based on the output variable. The current actor policy is used to 
update network weights during this process. At the start of every roll-out, a new setpoint 
(χₛₚ) is randomly sampled from a uniform distribution χsp ~ u.7,8 to initialize the 
environment. During actor training, the critic network undergoes iterative optimization: 
the critic target values are recalculated 10 times per training step, with the critic network 
itself updated via one gradient step per target recalibration. Following critic 
optimization, the target actor network is refined with an additional gradient step. 

The RL agent’s architecture and hyperparameters are detailed in Table S4. The 
neural network comprises an input layer followed by a single hidden layer with 16 
neurons. The actor network’s output layer consists of five nodes, representing the 
probability distribution over the five discrete action parameters. Actions are sampled 
from this distribution and subsequently clipped to the range [0, 1] to enforce constraints. 
Both the actor and critic networks employ the ReLU activation function to introduce 
non-linearity into the model. 
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Fig. S3. Block diagram representation of the network structure. 

Table S5. Detailed parameters of the RL agent  

Parameter Actor network Critic network 
Number of input layers 5 5 
Number of hidden layer  16 16 
Number of output layers 5 1 
Activation function ReLU ReLU 
Learning rate α 10-4 10-3 
Discount γ 0.98 
Scaling factor  0.95 
Clipped factor ε 0.2 
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7. Evaluation of the ANN model’s generalizability 
Unseen data is not seen by the model during training or testing phases. It is crucial for 
assessing the robustness and adaptability of the model, i.e., whether the model can 
handle variations in input data. In practice, we used 84 data for model development, 
while three additional experiments (new operating parameters within the investigated 
range) were used for model validation on generalizability. 

 
Fig. S4. Comparison of predicted values and unseen experimental data for evaluation of the ANN 
model generalization (CO2/CH4 ratio = 1.9, H2O fraction = 0%, plasma power = 89 W and total flow 
rate = 1 L/min): (a) CO2 and CH4 conversion; (b) CO and H2 yield; (c) syngas ratio and energy cost.  
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8. RL agents training results 

The maximum training iterations for the SR agent and EC agent are 500 and 700, 
respectively. Prior to training, the two agents will generate one random number from a 
uniform distribution within their specified range, and each random number will be 
trained for 200 rounds. As a result, 200 data are used to train the critic network in every 
iteration cycle. The training results of SR and EC are presented in Figure S5. The 
average return of SR agents in each iteration converges to the maximum value of 10.4 
after around 300 iterations, while the EC agent converges to the maximum value of 77 
after around 100 iterations. 

 
Fig. S5. Trainning curve of the RL model for syngas ratio (a) and energy cost (b). 
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