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1 NCB Generation Protocol
Structures for the novel nicotinamide cofactor biomimetics (NCBs) studied in this work were 

created systematically using RDKit version 2022.02.21  with Python 3.9.7. The pyridinium core 

present in the oxidized cofactors was created from SMARTS. We also generated possible R1, R2, 

and R3 substituents as lists of SMILES representations to add to the core. The substituents were 

combinatorically added to the pyridinium core at each designated position to create 132 distinct 

NCBs.

We then performed further “reactions” in RDKit to reach the reduced, or 1,4-dihydropyridine, 

forms of the cofactors, which were the forms primarily studied in this work (Figure S1). This was 

done by altering the bond types and atomic charges, as well as adding explicit hydrogen atoms 

where necessary to the core structure of the NCBs to reach the final desired structure. We followed 

a similar procedure to generate degraded forms, analogous to Int I (Figure 4 in the main text). To 

finally create the library of NCB structures, all molecules created in RDKit were saved as SMILES 

representations to be used for the remainder of this work.
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Figure S1. Structures of each reduced NCB in our library, labeled based on substituent identity.
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Figure S1 cont. Structures of each reduced NCB in our library, labeled based on substituent 

identity.

S4



Figure S1 cont. Structures of each reduced NCB in our library, labeled based on substituent 

identity.
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Figure S1 cont. Structures of each reduced NCB in our library, labeled based on substituent 

identity.
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Figure S1 cont. Structures of each reduced NCB in our library, labeled based on substituent 

identity.
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Using the SMILES representations of our NCB library, we then used OpenBabel version 3.1.12 to 

convert the SMILES representation into an xyz-coordinate file of each structure. Then, all 

structures underwent the conformation sampling protocol as detailed above before density 

functional theory (DFT) geometry optimization, vibrational frequency calculations, and single-

point energy corrections. The QPREP and QCORR modules of AQME version 1.5.13 were used 

to create DFT input files and ensure that all DFT computations finished properly.

2 Experimental Stability Data for Comparison
Experimental barriers were calculated from reported rate constants for the decomposition of NCBs 

in 0.1 M potassium phosphate buffer at pH 7.4 These effective rate constants were converted to 

reaction barrier heights with the Eyring equation:

𝑘 = Κ
𝑘𝐵𝑇

ℎ
𝑒

‒ ∆𝐺 ‡

𝑅𝑇

where kB is the Boltzmann constant, T is the temperature of the system (298.15 K), h is Planck’s 

constant, R is the gas constant, ∆G‡ is the energy barrier for the reaction,  is the transmission Κ

coefficient (1.0), and k is the rate constant, calculated by:

𝑘 =
𝑘'

0.1 𝑀

where k’ is the effective rate constant reported in literature and 0.1 M is the concentration of 

potassium phosphate buffer. Using these equations, we were able to convert reported rate constants 

into reaction free energy barriers and compare with our computed DFT barrier values.

3 Representing NCB Stability
This work examined three possible degradation pathways based on the proposed mechanism by 

Alivisatos et al. (Scheme S1).5 This reaction could occur in a stepwise manner, beginning with a 

proton transfer to the C5 carbon followed by C–O bond formation between phosphate at the C6 

carbon (Pathway A). These steps could also occur in the reverse order (Pathway B). Degradation 

could also be a concerted process, where both events happen simultaneously (Pathway C). Pathway 

A is the most likely pathway for NCB degradation according to our DFT studies. Geometry 
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optimizations of Int B naturally relaxed to the reactant or product species, likely due to instability 

of the carbanion formed at the C5 carbon. Thus, pathway B was not a reasonable pathway for NCB 

degradation to follow. Similarly, TS C could not be isolated, instead relaxing to TS A-I or A-II. 

Scheme S1. Possible degradation pathways for NCBs. Pathway A (black) is followed, starting 

with a proton transfer to C5 followed by a C–O bond formation at C6.

The results of our mechanistic study show that these 4 NCBs behave similarly, showing the same 

patterns of degradation (Figure S2). Each NCB degradation pathway shows TS A-I is higher in 

energy than TS A-II, so the first step of degradation is key. Additionally, since each NCB 

degradation pathway follows the same trend, this is likely to translate to other NCBs for which we 

do not have experimental degradation barrier. In this study, the reactants were optimized at infinite 

separation, while Int A was treated as a complex. The structures for the complexes were optimized 

from the appropriate endpoint of the intrinsic reaction coordinate (IRC) pathway from each 

transition state.
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Figure S2. Potential energy surface showing the degradation reaction for 4 sample NCBs. DFT 

calculations were done using ωB97M-V/def2-TZVP/SMD(water)//PBE0-D3(BJ)/6-

31+G(d)/SMD(water).6–29 

Because the high-energy first step of degradation (TS A-I) is key to degradation, it reasons that 

the kinetic barrier of TS A-I (∆G‡) is an appropriate measure of stability. However, finding the 

transition state structures necessary to obtain this kinetic information is time consuming and costly, 

making this stability metric not feasible for a high-throughput study. Thus, we turned to the free 

energy difference between Int A and the reactants (∆G). 

To ensure using ∆G to represent stability is acceptable for our NCB library, we measured the 

correlation between ∆G and ∆G‡ for a representative subset of our library (Table S1). These 34 

structures were selected using a binning procedure based on the f(-) value for the C3 atom, the first 

atom of the R2 substituent (that bound to the C3 carbon), and the C4 hydrogens (C4H), as well as 

NBO partial charges at the C2, C3, C5, N1, and C4H atoms (Figure S3). These NCB features were 

chosen as they are shown to be important to NCB stability. We used 2 bins for each of the 8 

descriptors and sampled uniformly from them. The NCBs selected for this analysis were: A1a, 

A3b, A5a, A5b, B2b, B3a, B6b, C1b, C3b, C6a, D3a, D5b, D6a, E1a, E1b, E2a, E2b, E3a, 

E3b, F1a, F3b, G3b, G4a, J1a, J1b, J4a, J5a, J5b, J6a, K1b, K3a, K3b, K4b, and K6b.

Table S1. Values of ∆G and ∆G‡ for a representative subset of our expanded NCB library. ∆G 

values are at PBE0-D3(BJ)/def2-TZVP/SMD(water)//PBE0-D3(BJ)/6-31+G(d)/SMD(water). 

∆G‡ values are at ωB97M-V/def2-TZVP/SMD(water)//PBE0-D3(BJ)/6-31+G(d)/SMD(water).
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NCB ∆G (kcal/mol) ∆G‡ (kcal/mol)

A1a -134.7 22.2

A3b -128.2 26.6

A5a -140.9 19.5

A5b -137.8 21.6

B2b -128.2 25.8

B3a -133.1 22.3

B6b -129.9 24.8

C1b 130.1 23.6

C3b -127.9 27.0

C6a -132.3 22.8

D3a -132.2 26.1

D5b -138.4 22.4

D6a -133.1 23.7

E1a -129.4 24.6

E1b -126.1 27.1

E2a -125.9 26.7

E2b -122.8 29.0

E3a -127.5 25.4

E3b -124.9 27.0

F1a -133.3 23.3

F3b -128.4 26.0

F6a -131.5 24.9

G3b -129.0 25.5

G4a -126.7 26.4

J1a -130.7 24.6

J1b -127.0 27.0

J4a -124.4 30.7

J5a -136.0 21.7

J5b -133.2 22.8
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K1b -129.7 24.6

K3a -132.1 25.6

K3b -128.5 26.1

K4b -124.6 27.5

K6b -129.9 26.0

Figure S3. Principal component analysis (PCA) showing the NCB scope of this study with 

structures used to determine the correlation between ∆G and ∆G‡ shown as blue stars.

After determining a stability metric that works for our system, we were also able to examine the 

stability of our library relative to a mononucleotide biomimetic cofactor, nicotinamide 

mononucleotide (NMNH-). This cofactor, with a stability of -134.1 kcal/mol, was among the less 

stable in our library (Figure S4).
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Figure S4. Representation of the stability (∆G) of the NCBs in our library (grey) compared to that 

of NMNH- (blue star). Less negative ∆G values indicate higher NCB stability.

4 Conformational Sampling Protocol
Conformational sampling was performed using the Conformer-Rotamer Ensemble Sampling Tool 

(CREST), version 3.030,31 using the GFN-FF force field32 and the GFN2-xTB33 semi-empirical 

level of theory through xTB version 6.7.0.34 

4.1 Ground State Structure Conformational Sampling
Ground-state structural conformations were sampled without any constraints, starting from 

SMILES strings of the molecules and converting to xyz coordinate files with the use of Open Babel 

version 3.1.12 before performing a CREST conformation search on the structures. Default settings 

were used except altering the energy window from 6 kcal/mol to 12 kcal/mol to obtain a broad 

range of structures in the initial conformational sampling. Following the initial CREST search, the 

CREGEN module was used to filter duplicate structures and those too high in energy. This 

reduction of sample space was done using CREGEN default settings aside from the duplicate 

energy threshold (0.1 kcal/mol), the root mean square deviation threshold (0.125 Å), and the lower 

bound threshold for the rotational constant between molecules (0.1).

Using the ensemble output from CREGEN, we then used Commandline Energetic Sorting 

(CENSO) version 1.2.035 to further refine the conformational ensemble for each ground-state 

structure. Orca version 5.0.336 was used for low-level DFT single point energy calculations within 

CENSO used to refine the ensembles. Only Part 0 and Part 1 were used in this study. Part 0, the 

cheap prescreening, calculated conformer energies at the B97-3C/def2-mTZVP level of theory.37,38 

Structures more than 6 kcal/mol higher in energy than the lowest energy structure were filtered out 

of the ensemble at this point. Next, Part 1, prescreening, calculated single point energies of the 

remaining conformers at the r2SCAN-3c/def2-mTZVPP level of theory.38 Modified rigid-rotor-

harmonic-oscillator approximation (mRRHO) contributions were calculated using at the GFN2 

level with a constraint to input geometry. Structures more than 4 kcal/mol higher in energy than 

the lowest energy structure were filtered out of the structural ensembles at this point. No solvent 

effects were considered when using CENSO. 
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Following CENSO calculations, each conformational ensemble was then clustered into 10 

representative structures based on dihedral angles using principal component analysis (PCA) and 

k-Means clustering in the CREGEN module of CREST. The final number of structures for this 

clustering was selected to be 10 due to the range of energies from DFT-optimized structures, as 

well as the ability to capture multiple low-energy conformation in a sample structure, C1a 

(BuOHNAH), compared with clustering to 5, 10, 15, and 20 structures (Figure S5). All calculations 

associated with conformational sampling of ground-state structures were done at 298.15 K.

Figure S5. DFT-optimized energies of structural ensembles of sample NCB C1a. This analysis 

was performed by clustering before (blue, left) and after (red, right) the use of CENSO ensemble 

refinement. DFT was performed at PBE0-D3(BJ)/6-31+G(d)/SMD(water).6–15,19,20,25–28

4.2 Transition State Structure Conformational Sampling
Transition state structures underwent conformational sampling using a similar procedure. First, 

constrained CREST calculations using a force constant of 1.0 Hartree/Bohr2 were run to sample 

conformational space without losing the transition state structure. For all structures representing 

TS A-I, constraints were placed on the C5–H, O1–H, and O2–C6 bond distances. Structures 

representing TS A-II included constraints on the O2–C6 bond distance. Other intramolecular 

constraints not involved in the transitions state were added as needed to ensure the final ensembles 

represented the correct transition state. For example, the C–H bonds at the C4 carbon and all P–O 

bonds were fixed to maintain connectivity. 
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After the initial CREST conformer search (performed with default settings), the CREGEN module 

of CREST was utilized to cluster the transition state structural conformers into 10 (or fewer) 

representative structures. These clustered structures underwent a constrained geometry 

optimization in Gaussian 16, Revision C.0139 with the same constraints used during CREST. 

Finally, unrestrained transition state geometry optimizations were performed to give a 

conformational ensemble of transition state structures. 

After visual inspection of the 4 NCBs in the mechanistic study, it was determined that this process 

was to be repeated. The initial sample did not include the dihedral angle N–C3–C4–C5 at both ~0° 

and ~180°, so a search was started with each angle to ensure a representative ensemble. This 

analysis was not deemed necessary for high-throughput analysis of transition state structures or 

for any ground state structures. 

5 Quantum Mechanical (QM) Calculation Details

5.1 Geometry Optimization and Vibrational Frequencies

All geometry optimizations and vibrational frequency calculations in this work were performed at 

the PBE0-D3(BJ)/6-31+G(d)/SMD(water) level of theory6–15,19,20,25–28 using Gaussian 16, 

Revision C.01.39 The basis set used, 6-31+G(d), included diffuse functions which helped 

accurately model the negatively charged buffer and cofactors. This basis set is also common for 

these types of systems and was deemed appropriate for this work. Water was chosen as the solvent 

for optimization because the experimental barriers that we are comparing our results with were 

obtained using a 0.1 M solution of buffer, thus the reaction solution was primarily water. 

After geometry optimizations, vibrational frequency calculations were performed to determine the 

nature of all structures. Transition state structures were examined to ensure there was one and only 

one imaginary vibrational frequency mode. The identity of each transition state was also verified 

through IRC calculations. Ground state structures had no imaginary vibrational modes. 

We performed benchmarking of different functionals to ensure that we were using an appropriate 

level of theory in this study. To ensure high quality results, we selected three different functionals 
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to benchmark our results: M06-2X(D3),20,40 PBE0-D3(BJ),19,20,25–27 and PW6B95-D3(BJ).19,20,41 

We optimized the reactants, TS A-I, and TS A-II for this benchmarking study. By comparing the 

barriers of each step with experimental stability data, we were able to determine the best functional 

to use for our system (Table S2). Based on these data, we selected PBE0-D3(BJ) as the functional 

which performs best for this system due to the low energy barriers. Energy barriers increased for 

all functionals after single point energy corrections using a larger basis set, so the lowest energy 

barriers after optimization signified the best functional to use for this work.

Table S2. Energy barriers for the degradation of sample NCBs optimized with various functionals 

using the 6-31+G(d) basis set and SMD solvation in water.

NCB Functional
TS A-I Barrier 

(kcal/mol)

TS A-II Barrier 

(kcal/mol)

Experimental Barrier 

(kcal/mol)a

PBE0-D3(BJ) 19.5 15.6

M06-2X(D3) 21.6 16.0
A1a 

(MNAH)
PW6B95-D3(BJ) 21.9 15.4

21.1

PBE0-D3(BJ) 19.9 16.6

M06-2X(D3) 23.0 18.7
 F1a 

(BNAH)
PW6B95-D3(BJ) 22.7 16.3

21.6

PBE0-D3(BJ) 19.1 15.7

M06-2X(D3) 22.6 17.4
G1a 

(P2NAH)
PW6B95-D3(BJ) 21.7 15.9

21.6

PBE0-D3(BJ) 18.0 17.4

M06-2X(D3) 21.3 18.8
H1a 

(P3NAH)
PW6B95-D3(BJ) 20.4 16.2

21.1

aExperimental values calculated from Nowak et. al, 2017.4

5.2 Single Point Energy Corrections

To obtain more accurate energy barriers, additional single point energy corrections were performed 

on all structures. These calculations were performed using Orca version 5.0.3 built with support 

for libXC version 5.1.0.21,36,42–44,46,47 Structures obtained from lower-level geometry optimization 

calculations were used as a starting point, then energies were recalculated at a higher level of 
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theory to obtain more accurate energy values. For this work, we used the larger def2-TZVP basis 

set21–24 for these single point energy corrections. Additionally, we tested various functionals for 

these single point energy corrections. The functionals examined for energy corrections were PBE0-

D3(BJ), ωB97M-V,29 and M06-2X(D3) (Table S3).

Table S3. Energy barriers for the degradation of sample NCBs with single point energy corrections 

calculated at various functionals using the def2-TZVP basis set and SMD water solvation after 

optimization at PBE0-D3(BJ)/6-31+G(d)/SMD(water).

NCB Functional
TS A-I Barrier 

(kcal/mol)

TS A-II Barrier 

(kcal/mol)

Experimental Barrier 

(kcal/mol)a

PBE0-D3(BJ) 22.4 19.8

M06-2X(D3) 25.1 19.4MNAH

ωB97M-V 23.9 19.3

21.1

PBE0-D3(BJ) 23.0 22.6

M06-2X(D3) 26.3 23.9BNAH

ωB97M-V 24.6 21.0

21.6

PBE0-D3(BJ) 22.3 21.6

M06-2X(D3) 26.0 21.7P2NAH

ωB97M-V 24.6 19.6

21.6

PBE0-D3(BJ) 21.3 22.6

M06-2X(D3) 24.1 22.1P3NAH

ωB97M-V 22.9 20.3

21.1

aExperimental values calculated from Nowak et. al, 2017.4

Based on these data, we selected the ωB97M-V functional to use for single point energy 

corrections for the mechanistic study portion of this work. The absolute errors relative to 

experimental values is slightly higher than with PBE0-D3(BJ), but all values using ωB97M-V are 

within DFT uncertainty levels (~3 kcal/mol), 47  and the trend is more consistent with experimental 

results. The barriers for F1a and G1a are identical in the calculations with ωB97M-V and the 

barrier heights for A1a and H1a are also similar. This trend is apparent in the experimental results, 

suggesting ωB97M-V is the best functional for our system. Due to the limited availability of 

S17



experimental stability values and complexity of the system, following experimental trends the most 

important comparison to ensure for accurate DFT modeling. 

While ωB97M-V was determined to be the most accurate functional for energy corrections during 

mechanistic modeling, we made the decision to perform single point corrections at the PBE0-

D3(BJ)/def2-TZVP/SMD(water) level of theory during high-throughput analysis due to 

computational cost. The functional ωB97M-V is too expensive and time-consuming to realistically 

use for the high throughput study, which includes over 2,000 structures. Thus, we chose to continue 

with the PBE0-D3(BJ) functional to find ∆G and calculate DFT-level descriptors. Calculations of 

∆G‡ were still done using the functional ωB97M-V because of the small subset of structures.

6 High-Throughput Calculation Details

6.1 Key Atom Determination

There were 10 atoms which were determined to be key, shared atoms between all NCBs in our 

library: all 6 atoms within the core ring of the cofactor (N1, C2, C3, C4, C5, and C6), the first atom 

bound to the ring of the R1, R2, and R3 substituents (R1, R2, and R3, respectively), and the mean 

value for the two H atoms at the C4 position (C4H). Key atom indices were isolated using 

SMARTS substructure matching of the 1,4-dihydropyridine core in RDKit. The indices of key 

atoms for each NCB in the library can be found at https://github.com/aplatt22/ncb_stability.

6.2 Natural Bonding Orbital Partial Charge Calculations

Natural bonding orbital (NBO) charges were calculated for the reduced structures of all NCBs. 

These calculations were done using NBO version 7.0.5 48  to calculate the partial charges on key 

atoms of the reduced NCB species at the PBE0-D3(BJ)/def2-TZVP/SMD(water)//PBE0-

D3(BJ)/6-31+G(d)/SMD(water) level of theory. Partial charges at only the 10 key atoms were used 

as descriptors for predictive modeling.

NBO partial charges at select atoms demonstrated a categorical nature (Figure S6). Thus, it was 

not necessary to include steric descriptors as part of the DFT-level dataset. The NBO partial charge 
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of the C5 carbon is a prime example of this behavior, displaying a bimodal distribution 

corresponding to the identity of the R3 substituent.

Figure S6. Representation of select NBO partial charges of NCBs within our virtual library. These 

features of the NCBs demonstrate a somewhat categorical nature, eliminating the need for steric 

descriptors when training predictive models for NCB stability.

6.3 Fukui Index Calculations

Electrophilic (f(-)) and nucleophilic (f(+)) Fukui indices 49  were calculated from optimized 

geometries, adjusting the charge and multiplicity to reflect the addition or removal of a single 

electron, respectively. Structures were not reoptimized using these updated charges and 

multiplicities. The NBO partial charges for these species were calculated with NBO version 7.0.5. 

48  An in-house python script was then used to extract the partial charges at each atom and calculate 

f(+) and f(-) following:

𝑓( + ) = 𝑃(𝑛 + 1) ‒ 𝑃(𝑛)

and

𝑓( ‒ ) = 𝑃(𝑛) ‒ 𝑃(𝑛 ‒ 1)
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where P(n) is the NBO partial charge of an atom of the original structure, P(n+1) is the NBO 

partial charge of the atom after the addition of one electron, and P(n-1) is the NBO partial charge 

of the atom after the subtraction of one electron. Fukui indices were only isolated for key atoms.

6.4 Semi-Empirical Descriptor Calculation

In addition to calculating DFT-level descriptors, we also calculated descriptors at lower levels of 

theory using xTB, RDKit, and cclib version 1.7.2. 50,51  These descriptors were used to train a 

separate model than DFT-level descriptors to reduce the computational cost of future predictions. 

Creating a model with these low-level descriptors removes the need for DFT calculations when 

predicting NCB stability.

These descriptors were calculated using the CSEARCH and QDESCP modules of AQME.3 

Conformational sampling was not done using the already-established conformational sampling 

protocol since the calculations can become costly with the use of CREST and CENSO. The 

CSEARCH module of AQME was implemented using RDKit, and the QDESCP module utilized 

xTB to generate descriptors for each reduced NCB. In addition to the default keywords, we also 

used --qdescp_atoms [‘C1=C[N]C=CC1’] to calculate atomic descriptors at the N1 position of the 

1,4-dihydropyridine ring. Atomic descriptors calculated at C were discarded since there were 

multiple present and it the physical meaning of these descriptors was unclear.

When all descriptors were calculated, we filtered them to ensure that all descriptors were 

meaningful. We removed categorical descriptors, such as those which count the number of 

instances of functional groups and any van der Waals Surface Area (VSA) descriptors. VSA 

descriptors include only information about what type of atom is present, something which is 

reflected in other descriptors already. 

There were 63 descriptors which were given as input to the predictive model. Gasteiger partial 

charges 52  from RDKit, as well as Mulliken 53  and CM5 54  partial charges on the N1 atom of the 

1,4-dihydropyridinium ring from xTB were included. Also calculated were the nucleophilic (f(+)), 

electrophilic (f(-)), and radical (f(rad)) Fukui indices at the N1 atom of the NCBs. 49  The 

coordination number for the N1 atom were also calculated, representing how many bonds there 
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are to nitrogen in the ring. The dispersion coefficient C6 was also calculated at the N1 position of 

each NCB, as was the polarizability α. The polarizability α of an atom is the tendency of an atom 

to acquire a dipole in an electric field. 55  Also calculated in this workflow is the fractional 

occupation density (FOD) 56  on the N1 atom. FOD is given by:

𝜌𝐹𝑂𝐷(𝑟) =  
𝑁

∑
𝑖

(𝛿1 ‒ 𝛿2𝑓𝑖)|𝜑𝑖(𝑟)|2

where  are molecular spin orbitals, fi are the fractional orbital occupation numbers ( ), 𝜑𝑖 0 ≤ 𝑓𝑖 ≤ 1

 and  are constants, and the sum is taken over all electronic single-particle levels in the system. 𝛿1 𝛿2

57  The FOD of an atom represents the static electron correlation that is localized on an atom. The 

values are also broken down into the s and p orbital proportions, or how the FOD is distributed 

among these orbital types. Also calculated for the s, p, and d orbitals on this atom are the 

proportions of electron population partitioned to each of these orbital types.

Molecular descriptors were also calculated while gathering these semi-empirical descriptors. 

Similar to how partial charges were calculated for the N1 atom, there are also descriptors which 

encapsulate the charge descriptions of the full molecule. These include the total charge of the 

molecule, the minimum and maximum values of the partial charges for the molecule, and the 

minimum and maximum values for the absolute partial charge. The difference between the 

minimum/maximum partial charge and the minimum/maximum absolute partial charge is that the 

partial charge considers the sign of the charge while the absolute partial charges only account for 

magnitude of the charge. For example, a molecule the minimum partial charge -0.9 could also be 

the maximum absolute partial charge with a value of 0.9. The E-State Index of an atom represents 

the electrotopological state index for atoms in molecules, combining electronic character and 

topological environment of each atom. 58  The minimum/maximum E-State Index and the 

minimum/maximum absolute E-State Index of the molecule are included as descriptors. HOMO 

and LUMO represent the energies in eV for the HOMO and LUMO of the molecule, respectively. 

The HOMO-LUMO gap is also given. Additionally, the number of valence electrons of the 

molecule were included. The descriptor FractionCSP3 represents the fraction of the molecule made 

up by sp3 carbon atoms. The molecular weight of the NCB, the molecular weight of only the heavy 

atoms, and the exact molecular weight (including isotope contributions) were calculated for each 

NCB. Also calculated was the dipole moment of the molecule in units of Debye. The Fermi level 
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is a descriptor representing the highest occupied energy level occupied at absolute zero and is 

given in eV. 59  The SPS term is a scoring system to tell how complex a molecule is, accounting 

for proportions of sp3 carbon atoms and stereogenic carbon atoms. 60  This value is normalized by 

the number of heavy atoms to help account for size as well. SPS is given by:

𝑆𝑃𝑆 =  ∑(ℎ ∗ 𝑠 ∗ 𝑟 ∗  𝑛2)

where h is the atom’s hybridization term, s is the stereoisomeric term, r is the non-aromatic ring 

term, and n is the number of heavy atoms. Kappa values give details about the shape of the 

molecule. 61  These values are focused around 4 quantities, the number of atoms, the number of 

paths of length 1, the number of paths of length 2, and the number of paths of length 3. A path is 

how many atoms are bound without any substituents. For example, octane has a path of length 8 

while 6-methylheptane has a path length of only 7. Kappa1 tells about the complexity of acyclic 

molecules, Kappa2 stores information about the spatial density of atoms in a molecule, and Kappa3 

encodes information about the centrality of branching in a molecule. The Chi values are used to 

characterize different structural attributes of molecules and are a weighted count of a given type 

of subgraph, or molecular representation. 61  Chi indices represent a summation of the whole graph 

and focus on simple subgraphs. The number of a Chi index represent different types of subgraph 

corresponding to the number of connecting bonds present. For example, Chi0 has no edges present 

in the subgraph, or represents only an atom. Chi1 represents one bond, Chi2 represents paths, 

where there are two bonds presents, Chi3 and Chi4 also represent paths, but can give more detail 

about the arrangement of these bonds since they focus on molecular graph paths of lengths 3 and 

4, respectively. There are three types of Chi index associated with each Chi number given in 

RDKit. ChiN is the Chi index of length N which does not account for the number of valence 

electrons, only the number of neighbors. ChiNν is the Chi index of length N which does account 

for the number of valence electrons. Finally, ChiNn is the Chi index of length N which accounts 

for the number of valence electrons, but does not include a heavy atom correction. The Balaban J 

value is a topological index which works to translate the chemical constitution of a molecule into 

numerical values. This descriptor has low degeneracy, meaning that multiple different isomers can 

give the same value, and increases with the number of rings present in a molecule. The Balaban J 

value is given by:

𝐽 =  
𝑞

𝜇 + 1 ∑
𝑒𝑑𝑔𝑒𝑠 𝑖,𝑗

(𝑠𝑖𝑠𝑗)
‒ 1

2
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where q is the number of edges in the molecular graph, si and sj are given by the sums over rows 

or columns of the topological distance matrix of the molecule, respectively, and  is given by:𝜇

𝜇 = 𝑞 ‒ 𝑛 ‒ 𝑥

where n is the number of atoms in the molecular graph and x is the cyclomatic number of the 

molecular graph. 62,63  The Morgan fingerprint is a popular method of vectorizing molecular 

properties. 64  The number associated with this fingerprint is the radius considered. For example, 

the FpDensityMorgan1 descriptor represents the density of the Morgan fingerprint at only the 

starting atom. FpDensityMorgan2 represents the density of the Morgan fingerprint at the starting 

atom and any heavy atoms bound to your starting atom. FpDensityMorgan3 goes one bond further 

and represents anything within 2 bonds of the starting atom. The density of a Morgan fingerprint 

represents the number of unique atomic environments in the molecule within the radius specified. 

The IPC index of a molecule gives details on the structural complexity of the molecule, represented 

by the information content of the coefficients of the characteristic polynomial of the molecule’s 

adjacency matrix. 65  The AvgIpc descriptor gives the IPC index divided by the total population, 

normalizing for molecular weight. The BertzCT descriptor is a topological descriptor of the 

molecule also meant to quantify the complexity of the molecule. 66  This descriptor is a sum of the 

complexity of bonds and the complexity of the heteroatoms in the molecule. The Hall-Kier α of a 

molecule is used to modify the atom count in a molecule. 61  Because it is likely that non-sp3 carbon 

atoms make more or less of an impact on the shape of a molecule than sp3 carbons, this descriptor 

is meant to adjust the atom count to reflect these differences, given by:

𝛼 = ( 𝑟 𝑟
𝐶𝑠𝑝3) ‒ 1

where  is the covalent radius of the atom and  is the covalent radius of an sp3 carbon atom. 𝑟 𝑟
𝐶𝑠𝑝3

Labute’s approximate surface area (ASA) is the surface area of an atom not included in any other 

atoms by Van der Waal radii. 67  The MolMR descriptor is a measure of the molar refractivity of a 

molecule, or the total polarizability of a mole of the molecule. 68  This value is dependent on the 

temperature, index of refraction, and pressure of the system. MolLogP is the LogP value, or the 

octanol-water partition coefficient, of a molecule used as a measure of lipophilicity. 68  Both 

MolMR and MolLogP are calculated from SMARTS representations of the molecules. TPSA 

stands for the topological polar surface area of a molecule and is calculated by the sum of surface 
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areas of polar fragments in the molecule. 69  Finally, the QED value of a molecule is a quantitative 

estimate of druglikeness, calculated by:

𝑄𝐸𝐷 = (1
𝑛

∗  
𝑛

∑
𝑖 = 1

ln (𝑑𝑖))
where n is the number of desirability functions d represented by molecular descriptors. 70 

7 Predictive Modeling of NCB Stability with ROBERT
Predictive modeling of the stability of NCBs was done using ROBERT version 1.0.6. 71  Starting 

with the DFT-level descriptors, different model architectures were used to train a series of 

predictive models and find the one with the highest performance (Figure S7). In partitioning the 

data, 10% of the data became the test set, while the remaining 90% of the data were partitioned 

into training and validation sets. All splits were done randomly. The different models included 

train:validation proportions of 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, and 90:10 for the 90% of 

data points which were not included in the test set. There were also 4 different kinds of regression 

models considered: multivariate linear (MLR), neural network (NN), gradient-boosted (GB), and 

random forest (RF). A total of 28 models were trained to determine which combination gives the 

best model. Aside from selecting a larger range of train:validation:test splits to be used, ROBERT 

was run with all default settings. The final model architecture was selected based on the lowest 

RMSE values from the full array of models trained at the DFT-level after default permutation 

feature importance (PFI) analysis. The best model was an MLR model with a 101:18:13 

train:validation:test split. This architecture was also used for the semi-empirical model to ensure 

proper comparisons between the two models.
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Figure S7. Heatmap showing the performance of varying model architectures following default 

permutation feature importance analysis in ROBERT. The highest-performing model is shown in 

the blue box.

Among all models tested, the MLR models out-performed other model types. This can, in part, be 

explained by the relatively low number of data points used in the training of these models. Large 

model types, such as neural networks, tend to be data hungry and require a large number of events 

per variable to perform well. 72  Because our NCB library has only 132 total cofactors, or events, 

it was unlikely that a large neural network model would perform well. Gradient boosted regressors 

tend to be better than neural networks when dealing with small datasets, but they are not without 

issues. With small quantities of training data, the loss gradient used in making the next decision 

tree relies more on each individual datapoint, making this type of model more sensitive to outliers 

than other methods, such as random forest regression models. These qualities of gradient boosted 

regressors may explain the higher RMSE values compared to those of random forest or MLR 

models. 73  Better performance of MLR models compared to random forest regressors likely stems 

from the linear correlation between many of the descriptors and the predicted stability values. For 

the features selected as most important for the final model, many demonstrate a linear correlation 

with NCB stability (Figure S8). The shape of these distributions suggests that a linear regression 
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model would be most appropriate for this data, likely leading to the reduced RMSE values 

compared to random forest models.

Figure S8. Univariate relationships between descriptors used to select model architecture and 

NCB stability. R2 values are calculated using r2_score from SciKit Learn. 74 

To ensure that our model was robust and generalizable, we conducted further model evaluation 
using the VERIFY module within ROBERT software (Table S4). This testing includes 5-fold 
cross-validation, y-mean, y-shuffle, and one-hot encoding tests and compares model performance 
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to the original validation RMSE with a 25% buffer. In this case, the RMSE of the validation set 
was 0.76, so 0.96 was the RMSE threshold used to determine if a test passed or failed. The 5-fold 
cross-validation splits the data into 5 groups, then uses 4 as the training set and 1 as the test set. 
This process is then repeated until all groups have been used as both training and testing data. This 
test is passed if the new RMSE is lower than the threshold, representing that the original model 
had an appropriate train:validation:test split. The y-mean test looks at the error of our model if all 
predicted values were equal to the mean y-value and is passed if the RMSE is higher than the 
threshold, showing that the model can predict values far from the mean y-value. The y-shuffle test 
shuffles the y-values so they are no longer associated with the original x-values and tests model 
performance. This test is passed if the RMSE is higher than the threshold, showing that the x-
values are meaningful in making predictions in the model. Finally, the one-hot encoding test 
replaces x-values with 1 or 0 to test if the values of descriptors used in the model are meaningful, 
or if categorization is as effective. This test is passed if the RMSE if higher than the threshold, 
since the model performed better with the true x-values than with categorical assignments.

Table S4. VERIFY testing results from ROBERT to evaluate model generalizability. 

VERIFY Test RMSE Pass/Fail

5-Fold Cross-Validation 0.89 Pass

Y-Mean 3.7 Pass

Y-Shuffle 6.0 Pass

One-Hot Encoding 3.7 Pass

Furthermore, to ensure an appropriate train:validation:test split for this data, we have visualized 

the data using principal component analysis, coloring points by which set they belong to (Figure 

S9). This analysis shows that the validation and test sets are well distributed among the chemical 

space of our NCB library, supporting the results from the 5-fold cross-validation that our data 

splits are appropriate in our predictive model.
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Figure S9. Principal component analysis (PCA) showing the NCB scope of this study with 

structures colored by which set (train:validation:test) they belong to for model training. The 

training set is shown in grey stars, the validation set in green circles, and the test set in blue 

diamonds.

In addition to training a model with DFT-level descriptors, we also trained a model using 

computationally cheaper semi-empirical descriptors (Figure S10). This allows predictions to be 

made faster than DFT allows and starts with only a SMILES representation as input. The stability 

metric, ∆G, used to train this model was still obtained from our DFT study to ensure accurate 

predictions. We used ROBERT software to train a second model to predict NCB stability, this time 

using the semi-empirical descriptors. 71  To ensure our ability to compare the two models, we only 

trained the lower-level model using the same model architecture as was found to perform best for 

the DFT-level model, a MLR model with a 101:18:13 train:validation:test split. 
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Figure S10. Parity plot and results for the best-performing predictive model trained with semi-

empirical descriptors, a MLR with a 101:18:13 train:validation:test split using the 12 most 

important descriptors. Model performance metrics are shown at the bottom right of the graph for 

the validation and test sets. 

The model trained with semi-empirical descriptors was also a high-performing model. While the 

MAE and RMSE were higher than those of the DFT-level model, these values are still within 

accepted computational accuracy, thus suggesting a strong predictive model. The quality of this 

model was assessed on the same metrics as the DFT-level model, those which ROBERT 

automatically performs. Details on these tests can be found in the documentation for ROBERT. 

Overall, the model results of the semi-empirical model were lower compared to the model trained 

with DFT-level descriptors, but it is encouraging that we were able to train such a high-quality 

model using descriptors that are much faster/cheaper to calculate. Lower accuracy is to be expected 

when using only semi-empirical descriptors, but the MAE and RMSE still being within typical 

DFT accuracy means that stability predictions can be more easily obtained in the future. It is also 

worth noting that this was only performed using the same model architecture as performed best 

S29



for the DFT-level model; there may be another model type or train:validation:test split that would 

yield even more accurate predictions.

To train the final models, we used a variation of the default PFI implemented in ROBERT. After 

descriptors were filtered with default settings by the CURATE module of ROBERT, we further 

examined the PFI scores assigned to each descriptor (Table S5), then trained models using 12 or 

less of the most important descriptors to maintain a 10:1 training data point to descriptor ratio. The 

final number of descriptors to use for the DFT-level model was determined based on model 

performance metrics (Table S6). This analysis led us to use the 8 most important descriptors, as 

any fewer descriptors results in substantial loss of accuracy for the model. 

Table S5. PFI Scores and Errors for DFT-level and semi-empirical descriptors.

DFT-Level Model Semi-Empirical Model

Descriptor PFI Score Descriptor PFI Score

C4H f(-) 2.421 ± 0.807 Number of valence electrons 8.858 ± 0.797

C3 f(-) 1.109 ± 0.185 Kappa1 8.416 ± 1.841

R2 f(-) 1.104 ± 0.337 LUMO 4.643 ± 0.473

C2 NBO partial charge 0.720 ± 0.139 SPS 4.582 ± 0.823

C3 NBO partial charge 0.456 ± 0.043 Minimum E-State Index 4.541 ± 1.080

C5 NBO partial charge 0.454 ± 0.113 Chi4n 2.387 ± 0.420

N1 NBO partial charge 0.428 ± 0.065 Balaban J 1.568 ± 0.454

C4H NBO partial charge 0.319 ± 0.030 Dipole moment 1.360 ± 0.277

C4 f(+) 0.288 ± 0.055 Kappa3 0.950 ± 0.219

N1 f(-) 0.208 ± 0.028 HOMO-LUMO gap 0.843 ± 0.290

C6 f(+) 0.202 ± 0.052
Dispersion coefficient C6 of 

the N1 atom
0.513 ± 0.203

C3 f(+) 0.153 ± 0.051 Fraction of sp3 carbon atoms 0.409 ± 0.038

C6 f(-) 0.133 ± 0.031
Maximum absolute E-State 

Index
0.389 ± 0.140

C5 f(-) 0.105 ± 0.010 TPSA 0.241 ± 0.038
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C4H f(+) 0.064 ± 0.012 N1 f(-) 0.200 ± 0.050

C5 f(+) 0.053 ± 0.011 MolLogP 0.080 ± 0.024

R2 NBO partial charge 0.029 ± 0.006 Partial charge on N1 atom 0.078 ± 0.077

C2 f(-) 0.028 ± 0.011 N_FOD p proportion 0.045 ± 0.031

R1 NBO partial charge 0.026 ± 0.013
Minimum absolute E-State 

Index
0.026 ± 0.013

R1 f(-) 0.026 ± 0.011 Minimum Partial Charge 0.012 ± 0.005

N1 f(+) 0.014 ± 0.006
Morgan Fingerprint 

Density 1
0.008 ± 0.016

C6 NBO partial charge 0.012 ± 0.006 Maximum Partial Charge 0.003 ± 0.008

LUMO molecular orbital 

value
0.003 ± 0.003

FOD s proportion of the N1 

atom
0.000 ± 0.000

R1 f(+) 0.002 ± 0.003 --- ---

C4 f(-) 0.002 ± 0.002 --- ---

C2 f(+) 0.001 ± 0.002 --- ---

C4 NBO partial charge -0.001 ± 0.002 --- ---

Table S6. Model performance metrics for DFT-level models varying number of descriptors.

Metric
N=16 

(default)
N=12 N=10 N=8 N=6 N=5 N=4

Test R2 0.97 0.97 0.97 0.98 0.91 0.78 0.77

Test MAE 0.68 0.67 0.70 0.61 1.20 1.70 1.80

Test RMSE 0.81 0.79 0.81 0.70 1.40 2.10 2.20

Valid. R2 0.96 0.96 0.96 0.96 0.95 0.89 0.75

Valid. MAE 0.59 0.58 0.80 0.50 0.79 1.30 1.60

Valid. RMSE 0.73 0.77 0.70 0.76 1.10 1.80 1.90

We then trained another MLR model with a 101:18:13 train:validation:test split using only semi-

empirical descriptors, as mentioned above. We used the same procedure for selecting the final 

descriptors in this model as for the DFT-level model, which led us to selecting the 12 most 
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important descriptors (Table S7). Any fewer than 12 descriptors showed a drop in model 

performance. The final equations for the MLR models are shown in Table S8 and S9.

Table S7. Model performance metrics for semi-empirical models varying number of descriptors.

Metric
N=17

(default)
N=12 N=10 N=8 N=6 N=5 N=4

Test R2 0.88 0.84 0.72 0.69 0.78 0.65 0.59

Test MAE 1.40 1.40 1.80 1.80 1.90 2.40 2.50

Test RMSE 1.70 2.00 2.40 2.60 2.40 3.00 3.10

Valid. R2 0.87 0.85 0.83 0.85 0.83 0.53 0.52

Valid. MAE 1.10 1.20 1.30 1.10 1.10 2.10 1.90

Valid. RMSE 1.40 1.40 1.50 1.30 1.30 2.40 2.30

Table S8. Descriptors and associated (standardized) coefficients for the final DFT and semi-

empirical MLR models.

DFT Semi-Empirical

Descriptor Coefficient Descriptor Coefficient

Constant -130.43 Constant -130.58

C4H NBO Partial Charge 2.70 NumValenceElectrons -8.91

C5 NBO Partial Charge 2.24 Kappa1 5.93

C3 f(-) -1.60 LUMO (eV) -5.62

C2 NBO Partial Charge 1.44 Chi4n 3.26

R2 f(-) -0.98 Kappa3 3.14

C4H f(-) 0.73 BalabanJ 2.36

N1 NBO Partial Charge 0.67 FractionCSP3 -2.19

C3 NBO Partial Charge 0.37 Dipole Module (Debye) 1.86

-- -- N1 Dispersion Coefficient C6 -1.65

-- -- SPS 1.53

-- -- HOMO-LUMO gap (eV) 1.33

-- -- MinEStateIndex -1.24
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Table S9. Descriptors and associated (unstandardized) coefficients for the final DFT and semi-

empirical MLR models.

DFT Semi-Empirical

Descriptor Coefficient Descriptor Coefficient

C4H NBO Partial Charge 479.90 Constant -168.27

Constant -209.86 Chi4n 15.01

C4H f(-) 157.92 FractionCSP3 -13.10

C3 f(-) -97.69 Kappa1 7.62

R2 f(-) -70.25 BalabanJ 4.96

C2 NBO Partial Charge 51.72 LUMO (eV) -3.30

N1 NBO Partial Charge 47.13 Kappa3 2.91

C3 NBO Partial Charge 19.71 MinEStateIndex -2.45

C5 NBO Partial Charge 19.34 HOMO-LUMO gap (eV) 1.76

-- -- NumValenceElectrons -0.57

-- -- N1 Dispersion Coefficient C6 -0.56

-- -- SPS 0.27

-- -- Dipole Module (Debye) 0.27

Another metric that we used to test the accuracy of our models was the Spearman correlation 

(Table S10). 75  This statistical test gives information into the rank-ordering of datapoints. Because 

we do not need information about the actual value of ∆G from these models, but rather stability 

relative to other structures, the Spearman correlation is a key test to ensure model success. The 

high correlation values and low p-values from the comparisons with our DFT-calculated stabilities 

show that both models do well in determining the correct ranking of the stabilities of our NCB 

library and are therefore good models for this purpose.

Table S10. Spearman correlation results comparing our DFT-calculated stability values with 

model predictions.

Model Spearman Correlation T-Test p-Value

DFT 0.974 1.80e-85
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Semi-Empirical 0.915 5.80e-53

8 Mean Stabilities of Each Substituent
After models were trained, we also examined the trends that we saw in the descriptors and models. 

Based on the different relationships present with different substituents in Figure 7 (main text), we 

decided to find the mean stability of each substituent in our library (Table S11). These data show 

that E is the most stable R1 substituent (followed by F), 4 is the most stable substituent at the R2 

position, and b is the most stable R3 substituent. We used these analyses to aid in the design of 

stable, out-of-sample NCBs. 

Table S11. Mean stability of each substituent at R1, R2, and R3 positions.

R1 Substituent R2 Substituent R3 Substituent

ID Stability ID Stability ID Stability

A -131.6 ± 4.2 1 -131.8 ± 2.5 a -132.2 ± 4.3

B -131.9 ± 4.4 2 -128.3 ± 2.4 b -128.7 ± 4.4

C -130.3 ± 4.6 3 -129.4 ± 2.1 -- --

D -131.7 ± 4.7 4 -125.1 ± 2.9 -- --

E -126.6 ± 3.6 5 -138.1 ± 2.8 -- --

F -130.0 ± 4.5 6 -130.2 ± 2.5 -- --

G -131.1 ± 4.4 -- -- -- --

H -131.3 ± 4.6 -- -- -- --

I -131.4 ± 4.7 -- -- -- --

J -127.8 ± 3.9 -- -- -- --

K -131.6 ± 4.8 -- -- -- --

9 Generation and Testing of Out-of-Sample NCBs
The descriptors used to train the final DFT-level predictive model were further analyzed for trends 

in the data. The DFT-level model descriptors were used rather than the semi-empirical descriptors 

due to stronger model performance. Inspecting the correlation between each descriptor and the 
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stability metric, we were able to determine that some substituents stood out as more stable than 

the rest at each position. Methyl R3 substituents are more stable than their hydrogen counterparts, 

aldehydes as the R2 substituents show high stability, and aryl R1 substituents tend to show the 

highest stability on average (Figure 6 in the main text). Using these trends, we proposed new 

substituents at each position and analyzed each new structure. Stabilities for these novel NCBs 

were calculated using the same procedure as those in our library. We found that these novel 

structures were among the most stable in our library, with some showing higher stability than any 

structures already in the library (Figure S11).

Figure S11. Representation of NCB stabilities from this study. Grey circles represent structures 

which were in our original library, blue stars represent the novel NCBs designed for improved 

stability.

We also modeled TS A-I for each novel structure verify the higher stabilities demonstrated in our 

designed NCBs. Examining the correlation between ∆G and ∆G‡
 for the new cofactor structures 

in conjunction with the existing structures still shows a high correlation, evidenced by an R2 value 

of 0.91 (Figure S12, Table S12). 
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Figure S12. Correlation between ∆G and ∆G‡
 for the first step of NCB degradation. Values for 

∆G were obtained with PBE0-D3(BJ)/def2-TZVP/SMD(water)//PBE0-D3(BJ)/6-

31+G(d)/SMD(water).6–15,19–28 Values for ∆G‡ were computed with ωB97M-V/def2-

TZVP/SMD(water)//PBE0-D3(BJ)/6-31+G(d)/SMD(water).6–15,19–29 Structures from our original 

library are shown as grey circles while our new NCBs are shown as blue stars.

Table S12. Values of ∆G and ∆G‡ for the new NCBs designed in this work. ∆G values are at 

PBE0-D3(BJ)/def2-TZVP/SMD(water)//PBE0-D3(BJ)/6-31+G(d)/SMD(water). ∆G‡ values are 

at ωB97M-V/def2-TZVP/SMD(water)//PBE0-D3(BJ)/6-31+G(d)/SMD(water).

NCB ∆G (kcal/mol) ∆G‡ (kcal/mol)

R1sub-I -122.0 30.8

R1sub-II -120.8 30.9

R1sub-III -121.3 30.9

R1sub-IV -117.3 34.6

R1sub-V -122.4 31.6

R1sub-VI -121.7 29.2

R2sub-I -124.8 30.9

R2sub-II -125.2 27.8

R2sub-III -127.5 26.4

R2sub-IV -120.0 33.8

R3sub-I -122.9 25.3

R3sub-II -117.1 30.8

Finally, we gathered DFT and semi-empirical descriptors for these novel NCBs using the same 

procedure as we did for structures in our library. This allowed us to test our models’ performance 

against out-of-sample structures to ensure that our models are generalizable within NCBs. This 

was done by implementing only the PREDICT module of ROBERT, allowing us to make 

predictions without retraining the model, and we obtained stability predictions for all novel NCBs 

(Table S13). The semi-empirical model had more low-accuracy predictions than the DFT model. 
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Of the 6 structures which had low-accuracy predictions, 5 of them had descriptor values outside 

the range seen in the full library for at least one of the 5 most important descriptors. This is likely 

what led to the poor predictions for these structures, explained by differences in the general 

structure and properties from molecules in the original library and the model’s lack of ability to 

extrapolate. 

Table S13. Novel NCB stabilities and predicted stabilities with values in kcal/mol.

Cofactor
Calculated 

Stability

DFT Predicted 

Stability

Prediction 

Error

Semi-Empirical 

Predicted Stability

Prediction 

Error

R1sub-I -122.0 -120.9 1.1 -128.3 -6.3

R1sub-II -120.8 -120.3 0.5 -122.8 -2.0

R1sub-III -121.3 -120.5 0.8 -120.6 0.7

R1sub-IV -117.3 -114.9 2.4 -115.4 1.9

R1sub-V -122.4 -121.2 1.2 -125.1 -2.7

R1sub-VI -121.7 -120.6 1.1 -88.7 33.0

R2sub-I -124.8 -111.0 13.8 -125.2 -0.4

R2sub-II -125.2 -117.2 8.0 -122.7 2.5

R2sub-III -127.5 -126.6 0.9 -115.7 11.8

R2sub-IV -120.0 -109.9 10.1 -118.5 1.5

R3sub-I -122.9 -122.3 0.6 -108.4 14.5

R3sub-II -117.1 -120.0 -2.9 -104.0 13.1

In an effort to ensure that these predictions are within the scope of our model, we visualized the 

out-of-sample NCB structures in the chemical space of the library (Figure S13). Showing the new 

out-of-sample NCBs in chemical space relative to our existing library, the structures fall within 

the chemical space we would expect our model to predict. It is important to note that should future 

studies design new NCBs and wish to predict stability, it is important to consider whether the new 

NCB structures fall within the chemical space of our library which our model is trained on.
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Figure S13. Principal component analysis (PCA) showing the full NCB scope of this study. Grey 

circles represent structures which were in our expanded library of 132 NCBs and blue stars 

represent the new out-of-sample NCBs designed following predictive modeling. The PCs were 

calculated only from our library to match the other representations of the data.
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