Supplementary Information

Transition metal/photocatalyst-free synthesis of geminal diamines via

a sandwich-like photoactive donor-acceptor-donor complex

Ziyi Xu^{a‡}, Ziyang Chen^{a‡}, Shuyang Liu^{a‡}, Jinglan Lei^a, Yonggiang Zhang^a, Ziyu Gan^a, Limei Yu^{a*}, Shu-Xin Liu^{b*}, and Yunhe Jin^{a*}

^aState Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.

^bDepartment of Nephrology, Dalian Municipal Central Hospital affiliated with Dalian University of Technology, Dalian Key Laboratory of Intelligent Blood Purification, No. 826 Xinan Road, Dalian, 116033, China.

Corresponding author: jinyh18@dlut.edu.cn

Table of Contents

I. General Information	1
II. Optimization of the reaction conditions	2
III. General procedure for the synthesis of starting materials and compounds	3
IV. Mechanistic studies	5
V. Characterization data of compounds $1c - 41c$	10
VI. References	24
VII. The ¹ H and ¹³ C NMR spectra of compounds $1c - 41c$	25

I. General Information

Magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on Bruker Avance NEO 400 or Bruker Avance NEO 500 with CDCl3 or DMSO-d6 as the solvent, and chemical shifts were internally referenced to TMS and residual portion solvent signals (note: TMS referenced at 0.00 ppm; CDCl₃ referenced at 7.26 and 77.16 ppm respectively; DMSO-d6 referenced at 2.50 and 39.52 ppm respectively). Data are shown as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, h = heptet, m = multiplet, dd = doubletof doublets, dt = doublet of triplets, br = broad), coupling constant (*J* Hz). The HRMS analysis was performed on a Q Exactive plus mass spectrometer (Thermo Fisher Scientific, Germany) equipped with an electrospray ionization (ESI) source. Commercially available reagents and solvents were purchased from Energy Chemical, Bide Pharmatech and Shanghai Macklin Biochemical, and used as received unless otherwise specified. Chromatographic purification of products was accomplished by column chromatography on silica gel (Qingdao Haiyang, 100-200 mesh). Thin layer chromatography (TLC) was performed on Qingdao Haiyang 0.2 mm silica gel plates. Analytical balances Mettler Toledo ME204E /02 and MS205DU/A were used to weigh samples. UV-vis spectra were measured on a TU-1900 UV-visible spectrophotometer. Electron spin-resonance (ESR) spectra were measured on CIQTEK ESR200-plus (CIQTEK Co., Ltd.) with continuous-wave X band frequency.

II. Optimization of the reaction conditions

Table S1. Tra	ansition metal/photocata	lyst-free sy	nthesis of gem	inal	diam	ines <i>via</i> a
photoactive	donor-acceptor-donor	complex:	optimization	of	the	reaction
conditions ^a						

	\frown	0		C)	\square
	N +		base, solvent		N	N
		N H	light, N ₂ , rt, 48 h		н	
	1a	b			1c	
Entry	Base	Solvent	Light	LG		Yield % ^b
1 ^{<i>c</i>, <i>d</i>}	Cs ₂ CO ₃	MeCN	405 nm	OMe		22
2 ^{<i>c</i>, e}	Cs ₂ CO ₃	MeCN	405 nm	OMe		17
3 ^{<i>c</i>, <i>f</i>}	Cs_2CO_3	MeCN	405 nm	OMe		24
4 ^{<i>c</i>}	Cs ₂ CO ₃	MeCN	405 nm	OMe		26
5 ^c	KO ^t Bu	MeCN	405 nm	OMe		45
6 ^{<i>c</i>}	КОН	MeCN	405 nm	OMe		50
7	КОН	MeCN	405 nm	OMe		76
8 ^c	LiOH	MeCN	405 nm	OMe		40
9 ^c	NaOH	MeCN	405 nm	OMe		38
10 ^c	K ₃ PO ₄	MeCN	405 nm	OMe		6
11 ^c	DIPEA	MeCN	405 nm	OMe		14
12	КОН	DCE	405 nm	OMe		trace
13	КОН	acetone	405 nm	OMe		15
14	КОН	MeOH	405 nm	OMe		trace
15	КОН	DMSO	405 nm	OMe		42
16	КОН	MeCN	365 nm	OMe		68
17	КОН	MeCN	395 nm	OMe		92
18	КОН	MeCN	455 nm	OMe		N.D.
19	КОН	MeCN	395 nm	OEt		78 (90 ^g)
20	КОН	MeCN	395 nm	OPh		trace
21	КОН	MeCN	395 nm	OBz		N.R.
22^{h}	КОН	MeCN	395 nm	OMe		78
23 ^{<i>i</i>}	КОН	MeCN	395 nm	OMe		65
24	-	MeCN	395 nm	OMe		trace

^aReaction conditions: 1a (0.1 mmol), 1b (3 equiv.), base (2 equiv.) and solvent (2 mL) under N₂ and 30 W LEDs for 48 h. ^bIsolated yield. ^c1 equiv. of base was added. ^d0.2 mol% of fac-Ir(ppy)₃ and 20 mol% of CuCl was added. ^e0.2 mol% of fac-Ir(ppy)₃ was added. ^{*f*}20 mol% of CuCl was added. ^{*g*}96 h. ^{*h*}100 µL of H₂O was added. ^{*i*}Under air. LG = Leaving group. N.D. = not detected. N.R. = no reaction.

III. General procedure for the synthesis of starting materials and compounds

i. General procedure for the synthesis of amides¹

To a solution of the carboxylic acid (1.0 equiv.) in DCM (0.3 M) at 0 °C under N₂ was added dropwise oxalyl chloride (1.2 equiv.) followed by a catalytic amount of DMF (2 drops). The reaction was allowed to stir at room temperature until completion (typically 4 h). The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Alkoxyamine hydrochloride (1.2 equiv.) was added to a biphasic mixture of K₂CO₃ (2 equiv.) in a 2: 1 mixture of EtOAc: H₂O (0.2 M). The resulting solution was cooled to 0 °C followed by the addition of a solution of unpurified acid chloride in a minimum amount of EtOAc dropwise. The flask containing the acid chloride was then rinsed with additional EtOAc. The mixture was allowed to stir for 4–8 hours (monitored by TLC) and slowly warmed up to room temperature. Upon completion, the mixture was extracted with EtOAc three times. The combined organic layer was washed with brine, dried over MgSO₄, and removed under reduced pressure. The residue was purified by silica gel flash column chromatography to give the desired product.

ii. General procedure for the synthesis of arylpyrrolidines²

$$R \stackrel{\text{II}}{\square} + \binom{N}{H} \stackrel{\text{Cul, } L\text{-proline, } K_2CO_3}{\text{DMSO, } N_2, 65 \text{ °C, overnight}} \underset{R \stackrel{\text{II}}{\square} \xrightarrow{N} \xrightarrow{N}$$

Aryl iodide (5 mmol), CuI (0.5 mmol, 0.1 equiv., 95 mg), *L*-proline (1 mmol, 0.2 equiv., 115 mg), K₂CO₃ (10 mmol, 2 equiv., 1.38 g), pyrrolidine (15 mmol, 3 equiv., 1.25 mL) and DMSO (3 mL) was added into a 10 mL Schlenk tube with a magnetic stir bar in sequence. The mixture was allowed to stir under N₂ at 65 °C overnight. Upon completion, the mixture was cooled to room temperature, and 30 mL of H₂O was added. The solution was extracted with EtOAc (10 mL ×3). The combined organic layer was washed with brine, dried over MgSO₄, and removed under reduced pressure. The residue was purified by silica gel flash column chromatography to give the desired product.

iii. General procedure for the synthesis of N, N-dimethylanilines

To a solution of arylamine (1.0 equiv.) in THF (0.2 M) at 0 °C, NaH (5 equiv.) was

added carefully and the mixture was stirred at 0 °C for 30 minutes, then iodomethane (3 equiv.) was added dropwise and the mixture was allowed to stir at room temperature overnight. Upon completion, H₂O was added and the solution was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄, and removed under reduced pressure. The residue was purified by silica gel flash column chromatography to give the desired product.

iv. General procedure I

Amine **b** (0.1 mmol), amide **a** (0.3 mmol, 3.0 equiv.), KOH (0.2 mmol, 2.0 equiv., 11.2 mg) and MeCN (1 mL) were added into a 10 mL reaction tube with a magnetic stir bar in sequence. The mixture was allowed to stir under N_2 with irradiation of a 30 W 395 nm LED (1 cm away, with circulating water to keep the reaction at room temperature) for 48 hours. Upon completion, the reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel flash column chromatography to give the desired product.

Figure S1. The photoreaction device.

IV. Mechanistic studies

i. Control experiments

Control experiments were performed to investigate the mechanism of the reaction further. 5 equiv. of 2, 2, 6, 6-tetramethylpiperidinooxy (TEMPO) or 2, 6-di-*tert*-butyl-4-methylphenol (BHT) or 1, 1-diphenylethylene was added to the reaction system, and the yields of **1c** obviously decreased. Some radical adducts were observed in HR-MS analyses, which suggested the reaction could undergo a radical process.

Figure S2. Control experiments with TEMPO, BHT, and 1, 1-diphenylethylene.

Figure S3. Control experiments with different types of substrates.

Different amines and amides such as 1-methylpyrrolidine (42a), *tert*-butyl pyrrolidine-1-carboxylate (43a), *N*-methoxy-3-phenylpropanamide (44b), and *N*-methoxy-*N*methylbenzamide (45b) were employed as substrates respectively. The results showed that no product was observed, which suggested the interaction between the aromatic rings of the two substrates and the *in-situ* deprotonation of amide is important for the formation of photosensitive species.

ii. UV-VIS absorption spectroscopy experiments

The UV-visible absorption spectra of *N*-phenylpyrrolidine (**1a**) (10 mM) and *N*-methoxybenzamide (**1b**) (10 mM) were determined in the absence or presence of KOH (10 mM), and no absorption peak was observed in the visible light range. When KOH was added to the **1a** and **1b** mixture at the model equivalence ratio, a new absorption band between 350 and 500 nm was observed, implying the formation of the photosensitive species.

Figure S4. UV-VIS absorption spectra of the single 1a, 1b, and the mixture of 1a and 1b in the absence or presence of KOH. (Solvent: MeCN)

iii. Electron spin-resonance (ESR) spectroscopy experiments

Electron spin-resonance (ESR) spectra were recorded on a CIQTEK ESR200-plus. The reactions were performed in a 20 mL quartz tube under different conditions. Then small amount of the sample was transferred to a capillary, and ESR spectra were recorded.

Figure S5. ESR spectrum of the mixture of DMPO (0.5 mmol), **11a** (0.1 mmol), **1b** (0.3 mmol) and KOH (0.2 mmol) in MeCN (1 mL) under dark and light irradiation (a 30 W 365 nm LED) at room temperature. ESR conditions: center field (3390.734 G), sweep width (200 G), frequency (9.487596 GHz), Attenuation (23 dB), MW Power (1.002374 mW), No. of Points (1024), No. of Sweeps (1), Modulation Amplitude (1.000 G), Modulation Frequency (100.00 kHz), Receiver Gain (0), Receiver Harmonic (1), Time Constant (100 ms), Convert Time (100 ms). Simulation software: CIQTEK ESR-ProPr.

iv. Competition experiments.

An experiment was carried out following procedure with **3a** (0.1 mmol, 1 equiv.) and **46a** (0.1 mmol, 1 equiv.), **1b** (0.6 mmol, 6 equiv.) under standard conditions. Upon completion, the reaction solution was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography, and only 62% of **3c** was observed. Another experiment was carried out following the procedure with **22b** (0.3 mmol, 3 equiv.) and **37b** (0.3 mmol, 3 equiv.), **1a** (0.2 mmol, 2 equiv.) under standard conditions. Upon completion, the reaction solution was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography, and only 56% of **22c** was observed.

Figure S6. Competition experiments.

V. Characterization data of compounds 1c – 41c

N-(1-phenylpyrrolidin-2-yl) benzamide (1c)

According to general procedure I, **1c** was obtained in 92% yield (24.5 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.4 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.22 (m, 2H), 6.77 (t, *J* = 7.1 Hz, 1H), 6.74 (d, *J* = 8.3 Hz, 2H), 6.26 (d, *J* = 6.8 Hz, 1H), 5.84 (t, *J* = 6.3 Hz, 1H), 3.63 – 3.54 (m, 1H), 3.23 (q, *J* = 8.9, 8.5 Hz, 1H), 2.25 – 2.07 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.88, 145.89, 134.25, 131.80, 129.59, 128.72, 127.06, 117.72, 112.60, 67.29, 48.08, 34.39, 23.05. HR-MS (ESI) [M–H][–] m/z calcd for C₁₇H₁₈N₂O 265.1346, found 265.1346.

N-(1-(*p*-tolyl)pyrrolidin-2-yl)benzamide (2c)

According to general procedure I, **2c** was obtained in 75% yield (20.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.7 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.65 (d, *J* = 8.1 Hz, 2H), 6.34 (d, *J* = 6.6 Hz, 1H), 5.80 (t, *J* = 6.4 Hz, 1H), 3.60 – 3.52 (m, 1H), 3.19 (q, *J* = 8.4 Hz, 1H), 2.25 (s, 3H), 2.22 – 2.06 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 166.87, 143.74, 134.24, 131.71, 130.02, 128.65, 127.04, 126.79, 112.53, 67.45, 48.18, 34.33, 23.03, 20.39. HR-MS (ESI) [M–H][–] m/z calcd for C₁₈H₂₀N₂O 279.1503, found 279.1505.

N-(1-(4-(*tert*-butyl)phenyl)pyrrolidin-2-yl)benzamide (3c)

According to general procedure I, **3c** was obtained in 80% yield (25.7 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.5 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 6.72 (d, *J* = 8.3 Hz, 2H), 6.39 (d, *J* = 6.7 Hz, 1H), 5.83 (t, *J* = 6.1 Hz, 1H), 3.65 – 3.55 (m, 1H), 3.22

(q, J = 8.3 Hz, 1H), 2.24 – 2.08 (m, 4H), 1.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.77, 143.65, 140.32, 134.24, 131.66, 128.61, 127.05, 126.31, 112.18, 67.42, 48.12, 34.34, 33.90, 31.61, 23.04. HR-MS (ESI) [M–H][–] m/z calcd for C₂₁H₂₆N₂O 321.1972, found 321.1976.

N-(1-(4-methoxyphenyl)pyrrolidin-2-yl)benzamide (4c)

According to general procedure I, **4c** was obtained in 78% yield (23.1 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 6.67 (d, *J* = 8.7 Hz, 2H), 6.40 (d, *J* = 7.3 Hz, 1H), 5.77 (t, *J* = 6.7 Hz, 1H), 3.73 (s, 3H), 3.57 – 3.50 (m, 1H), 3.16 (q, *J* = 8.3 Hz, 1H), 2.23 – 2.05 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 166.79, 152.04, 140.50, 134.24, 131.68, 128.63, 127.03, 115.13, 113.31, 67.66, 55.89, 48.46, 34.40, 23.10. HR-MS (ESI) [M–H][–] m/z calcd for C₁₈H₂₀N₂O₂ 295.1452, found 295.1455.

N-(1-(4-(methylthio)phenyl)pyrrolidin-2-yl)benzamide (5c)

According to general procedure I, **5c** was obtained in 72% yield (22.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 7.2 Hz, 2H), 7.53 – 7.50 (m, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 8.3 Hz, 2H), 6.34 (s, 1H), 5.85 (t, *J* = 6.7 Hz, 1H), 3.62 – 3.55 (m, 1H), 3.24 (q, *J* = 8.4 Hz, 1H), 2.42 (s, 3H), 2.26 – 2.12 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 166.88, 144.63, 134.12, 131.85, 131.45, 128.75, 128.72, 127.05, 113.31, 67.08, 48.15, 34.35, 23.02, 19.05. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₈H₂₀N₂OS 311.1224, found 311.1225.

N-(1-(4-chlorophenyl)pyrrolidin-2-yl)benzamide (6c)

According to general procedure I, 6c was obtained in 68% yield (20.4 mg). Eluent:

PE/EtOAc (4:1). Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.0 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 9.0 Hz, 2H), 6.30 (d, *J* = 7.3 Hz, 1H), 5.81 (t, *J* = 6.7 Hz, 1H), 3.58 – 3.51 (m, 1H), 3.19 (q, *J* = 8.6, 8.1 Hz, 1H), 2.27 – 2.09 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.89, 144.42, 134.06, 131.90, 129.30, 128.75, 127.04, 122.57, 113.73, 66.99, 48.20, 34.40, 23.05. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₇H₁₇ClN₂O 299.0957, found 299.0958.

N-(1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-yl)benzamide (7c)

According to general procedure I, **7c** was obtained in 58% yield (19.3 mg). Eluent: PE/EtOAc (4:1). Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.53 – 7.37 (m, 5H), 6.74 (d, *J* = 8.3 Hz, 2H), 6.34 (d, *J* = 7.6 Hz, 1H), 5.91 (t, *J* = 6.8 Hz, 1H), 3.65 – 3.55 (m, 1H), 3.26 (q, *J* = 8.3 Hz, 1H), 2.28 – 2.10 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 166.95, 148.07, 133.97, 131.99, 128.78, 127.05, 126.77 (q, *J* = 3.8 Hz), 125.05 (q, *J* = 270.2 Hz), 119.34 (q, *J* = 32.6 Hz), 112.22, 66.56, 48.06, 34.34, 22.96. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₈H₁₇F₃N₂O 333.1220, found 333.1223.

N-(1-(3-(trifluoromethyl)phenyl)pyrrolidin-2-yl)benzamide (8c)

According to general procedure I, **8c** was obtained in 65% yield(21.7 mg). Eluent: PE/EtOAc (4:1). Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 8.1 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.90 (s, 2H), 6.54 (d, *J* = 7.6 Hz, 1H), 5.89 (t, *J* = 6.6 Hz, 1H), 3.63 – 3.55 (m, 1H), 3.26 (q, *J* = 7.9 Hz, 1H), 2.25 – 2.11 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 167.07, 145.93, 134.08, 131.83, 131.63 (q, *J* = 31.6 Hz), 129.89, 128.68, 127.03, 124.44 (q, *J* = 272.6 Hz), 115.80, 113.91 (q, *J* = 3.9 Hz), 108.86 (q, *J* = 4.1 Hz), 66.66, 48.04, 34.32, 22.89. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₈H₁₇F₃N₂O 333.1220, found 333.1224.

N-(1-(3-methoxyphenyl)pyrrolidin-2-yl)benzamide (9c)

According to general procedure I, **9c** was obtained in 75% yield (22.2 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.67 (m, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.13 (t, *J* = 8.1 Hz, 1H), 6.41 (d, *J* = 7.1 Hz, 1H), 6.38 – 6.26 (m, 3H), 5.85 (t, *J* = 6.5 Hz, 1H), 3.75 (s, 3H), 3.59 – 3.50 (m, 1H), 3.27 – 3.16 (m, 1H), 2.25 – 2.05 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 160.9, 147.2, 134.3, 131.7, 130.2, 128.6, 127.0, 105.5, 103.1, 98.8, 67.0, 55.2, 48.1, 34.3, 22.9. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₈H₂₀N₂O₂ 295.1452, found 295.1454.

N-(1-(naphthalen-2-yl)pyrrolidin-2-yl)benzamide (10c)

According to general procedure I, **10c** was obtained in 88% yield (27.7 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃). δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.74 – 7.67 (m, 2H), 7.64 (d, *J* = 8.3 Hz, 1H), 7.47 (d, *J* = 7.3 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 3H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 8.9 Hz, 1H), 6.93 (s, 1H), 6.45 (d, *J* = 7.1 Hz, 1H), 5.98 (t, *J* = 6.4 Hz, 1H), 3.81 – 3.63 (m, 1H), 3.32 (q, *J* = 8.2 Hz, 1H), 2.33 – 2.10 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.01, 143.69, 135.01, 134.29, 131.75, 129.33, 128.69, 127.65, 127.32, 127.06, 126.44, 126.35, 122.38, 115.78, 106.49, 67.23, 48.27, 34.38, 23.00. HR-MS (ESI) [M–H][–] m/z calcd for C₂₁H₂₀N₂O 315.1503, found 315.1505.

N-((methyl(phenyl)amino)methyl)benzamide (11c)³

According to general procedure I, **11c** was obtained in 85% yield (20.5 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.4 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.51 (s, 1H), 5.14 (d, *J* = 5.5 Hz, 2H), 3.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.08, 147.92, 134.14, 131.70, 129.49, 128.57, 127.07, 118.16, 113.22, 58.17, 38.03. HR-MS (ESI) [M+H]⁺ m/z calcd for C₁₅H₁₆N₂O 241.1335, found 241.1337.

N-(((4-(*tert*-butyl)phenyl)(methyl)amino)methyl)benzamide (12c)

According to general procedure I, **12c** was obtained in 82% yield (24.3 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.3 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.3 Hz, 2H), 6.77 (s, 1H), 5.11 (d, *J* = 5.6 Hz, 2H), 3.07 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.03, 145.63, 141.03, 134.27, 131.70, 128.60, 127.10, 126.35, 113.12, 58.41, 38.07, 33.90, 31.56. HR-MS (ESI) [M–H][–] m/z calcd for C₁₉H₂₄N₂O 295.1816, found 295.1818.

N-((methyl(4-(trifluoromethyl)phenyl)amino)methyl)benzamide (13c)

According to general procedure I, **13c** was obtained in 65% yield (20.1 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 3H), 7.41 (t, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 6.73 (s, 1H), 5.13 (d, *J* = 5.7 Hz, 2H), 3.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.15, 150.24, 133.92, 132.04, 128.77, 127.12, 126.81 (q, *J* = 3.7 Hz), 124.97 (q, *J* = 270.6 Hz), 119.62 (q, *J* = 32.7 Hz), 112.22, 57.72, 38.33. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₆H₁₅F₃N₂O 307.1064, found 307.1066.

N-((methyl(4-(trifluoromethoxy)phenyl)amino)methyl)benzamide (14c)

According to general procedure I, **14c** was obtained in 75% yield (24.3 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.0 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 3H), 6.81 (d, *J* = 9.2 Hz, 2H), 5.03 (d, *J* = 5.7 Hz, 2H), 3.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.29, 146.76, 141.03 (q, *J* = 2.1 Hz), 134.03, 131.86, 128.63, 127.12, 122.40, 120.76 (q, *J* = 255.5 Hz), 113.68, 58.33, 38.28. HR-MS (ESI) [M–H]⁻ m/z calcd for

N-(((4-chlorophenyl)(methyl)amino)methyl)benzamide (15c)⁴

According to general procedure I, **15c** was obtained in 80% yield (21.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 6.74 (s, 1H), 5.04 (d, *J* = 5.7 Hz, 2H), 3.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.09, 146.60, 134.06, 131.91, 129.32, 128.71, 127.09, 123.22, 114.55, 58.29, 38.29. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₅H₁₅ClN₂O 273.0800, found 273.0802.

N-(((4-bromophenyl)(methyl)amino)methyl)benzamide (16c)⁴

According to general procedure I, **16c** was obtained in 78% yield (24.8 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.7 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.80 – 6.74 (m, 1H), 6.72 (d, *J* = 8.7 Hz, 2H), 5.04 (d, *J* = 5.7 Hz, 2H), 3.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.08, 147.00, 134.03, 132.20, 131.91, 128.71, 127.09, 114.98, 110.37, 58.16, 38.26. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₅H₁₅BrN₂O 317.0295, found 317.0297.

N-(((4-iodophenyl)(methyl)amino)methyl)benzamide (17c)

According to general procedure I, **17c** was obtained in 75% yield (27.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.2 Hz, 2H), 7.47 (dd, *J* = 8.2, 3.8 Hz, 3H), 7.38 (dd, *J* = 8.3, 6.9 Hz, 2H), 6.85 (t, *J* = 5.7 Hz, 1H), 6.62 (d, *J* = 8.9 Hz, 2H), 5.02 (d, *J* = 5.6 Hz, 2H), 3.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.08, 147.54, 138.04, 133.98, 131.88, 128.67, 127.09, 115.50, 79.61, 57.95,

4-methyl-*N*-(1-phenylpyrrolidin-2-yl)benzamide (18c)

According to general procedure I, **18c** was obtained in 85% yield (22.6 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.26 – 7.19 (m, 4H), 6.79 – 6.75 (m, 1H), 6.73 (d, *J* = 8.3 Hz, 2H), 6.22 (d, *J* = 6.8 Hz, 1H), 5.83 (t, *J* = 5.6 Hz, 1H), 3.58 (m, 1H), 3.23 (q, *J* = 8.9 Hz, 1H), 2.38 (s, 3H), 2.25 – 2.08 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.83, 145.95, 142.25, 131.40, 129.57, 129.36, 127.07, 117.69, 112.62, 67.27, 48.09, 34.41, 23.06, 21.58. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₇H₁₈N₂O 265.1346, found 265.1348.

4-isopropyl-N-(1-phenylpyrrolidin-2-yl) benzamide (19c)

According to general procedure I, **19c** was obtained in 84% yield (25.6 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.25 (dd, *J* = 7.9, 4.2 Hz, 4H), 6.76 (t, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 2H), 6.30 (d, *J* = 6.9 Hz, 1H), 5.82 (t, *J* = 6.3 Hz, 1H), 3.57 (dt, *J* = 9.1, 4.0 Hz, 1H), 3.21 (q, *J* = 8.4 Hz, 1H), 2.93 (hept, *J* = 6.9 Hz, 1H), 2.25 – 2.07 (m, 4H), 1.24 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.79, 153.05, 145.90, 131.70, 129.52, 127.17, 126.73, 117.60, 112.56, 67.17, 48.03, 34.38, 34.19, 23.88, 23.01. HR-MS (ESI) [M–H][–] m/z calcd for C₂₀H₂₄N₂O 307.1816, found 307.1818.

4-(*tert*-butyl)-N-(1-phenylpyrrolidin-2-yl)benzamide (20c)

According to general procedure I, **20c** was obtained in 85% yield (27.3 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.26 (t, *J* = 8.0 Hz, 2H), 6.78 (m, 3H), 6.29 (s, 1H), 5.86 (t, *J* = 6.0 Hz, 1H), 3.61 (m, 1H), 3.25 (q, *J* = 8.9 Hz, 1H), 2.26 – 2.10 (m, 4H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.79, 155.32, 145.94, 131.36, 129.54, 126.91, 125.62, 117.66, 112.62, 67.21, 48.07, 35.05, 34.41, 31.27, 23.04. HR-MS (ESI) [M–H][–] m/z calcd for C₂₁H₂₆N₂O 321.1972, found 321.1975.

4-pentyl-*N*-(1-phenylpyrrolidin-2-yl)benzamide (21c)

According to general procedure I, **21c** was obtained in 82% yield (27.5 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.28 – 7.21 (m, 4H), 6.81 – 6.74 (m, 3H), 6.26 (s, 1H), 5.86 (t, *J* = 6.4 Hz, 1H), 3.63 – 3.58 (m, 1H), 3.25 (q, *J* = 8.9 Hz, 1H), 2.68 – 2.62 (m, 2H), 2.26 – 2.09 (m, 4H), 1.66 – 1.59 (m, 2H), 1.37 – 1.29 (m, 4H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.88, 147.24, 145.95, 131.61, 129.56, 128.73, 127.08, 117.66, 112.62, 67.23, 48.07, 35.91, 34.41, 31.50, 31.02, 23.05, 22.61, 14.12. HR-MS (ESI) [M–H]⁻ m/z calcd for C₂₂H₂₈N₂O 335.2129, found 335.2133.

4-methoxy-N-(1-phenylpyrrolidin-2-yl)benzamide (22c)

According to general procedure I, **22c** was obtained in 77% yield (22.7 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.26 (t, *J* = 7.7 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.81 – 6.72 (m, 3H), 6.31 (d, *J* = 6.1 Hz, 1H), 5.85 (t, *J* = 6.3 Hz, 1H), 3.85 (s, 3H), 3.64 – 3.56 (m, 1H), 3.24 (q, *J* = 8.2 Hz, 1H), 2.24 – 2.09 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.39, 162.39, 145.95, 129.50, 128.88, 126.50, 117.57, 113.82, 112.58, 67.16, 55.50, 48.03, 34.39, 22.99. HR-MS (ESI) [M–H][–] m/z calcd for C₁₈H₂₀N₂O₂ 295.1452, found 295.1455.

N-(1-phenylpyrrolidin-2-yl)-4-(trifluoromethyl)benzamide (23c)

According to general procedure I, **23c** was obtained in 58% yield (19.3 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (t, *J* = 9.0 Hz, 2H), 7.70 (t, *J* = 9.0 Hz, 2H), 7.33 – 7.25 (m, 2H), 6.86 – 6.72 (m, 3H), 6.47 – 6.34 (m, 1H), 5.88 (t, *J* = 5.4, 4.3 Hz, 1H), 3.68 – 3.56 (m, 1H), 3.29 (q, *J* = 8.8, 8.2 Hz, 1H), 2.30 – 2.11 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.48, 145.63, 137.36, 133.38 (q, *J* = 32.7 Hz), 129.53, 127.46, 125.65 (q, *J* = 3.7 Hz), 123.63 (q, *J* = 272.5 Hz), 117.81, 112.46, 67.37, 47.99, 34.20, 22.91. HR-MS (ESI) [M–H][–] m/z calcd for C₁₈H₁₇F₃N₂O 333.1220, found 333.1223.

4-fluoro-N-(1-phenylpyrrolidin-2-yl)benzamide(24c)

According to general procedure I, **24c** was obtained in 61% yield (17.3 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 2H), 7.27 – 7.20 (m, 2H), 7.08 (t, *J* = 8.6 Hz, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 2H), 6.26 (d, *J* = 6.9 Hz, 1H), 5.82 (t, *J* = 6.3 Hz, 1H), 3.64 – 3.55 (m, 1H), 3.23 (q, *J* = 8.7, 8.2 Hz, 1H), 2.26 – 2.08 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.83, 164.92 (d, *J* = 252.1 Hz), 145.82, 130.38 (d, *J* = 3.1 Hz), 129.59, 129.42 (d, *J* = 8.9 Hz), 117.75, 115.72 (d, *J* = 21.9 Hz), 112.56, 67.33, 48.06, 34.34, 23.01. HR-MS (ESI) [M–H][–] m/z calcd for C₁₇H₁₇FN₂O 283.1252, found 283.1256.

3-cyano-*N*-(1-phenylpyrrolidin-2-yl)benzamide (25c)

According to general procedure I, **25c** was obtained in 75% yield (21.8 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.26 – 7.21 (m, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 8.1 Hz, 2H), 6.38 (d, *J* = 6.8 Hz, 1H), 5.84 (t, *J* = 6.4 Hz, 1H), 3.64 – 3.55 (m, 1H), 3.24 (q, *J* = 8.9 Hz, 1H), 2.25 – 2.11 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 164.70, 145.67, 135.47, 134.92, 131.37, 130.90, 129.70, 129.65, 118.05, 117.96, 113.10, 112.57, 67.48, 48.08, 34.29, 22.99. HR-MS (ESI) [M–H][–] m/z calcd for C₁₈H₁₇N₃O 290.1299, found 290.1296.

3-phenoxy-*N*-(1-phenylpyrrolidin-2-yl)benzamide (26c)

According to general procedure I, **26c** was obtained in 93% yield (33.2 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.36 – 7.31 (m, 3H), 7.25 – 7.21 (m, 2H), 7.15 – 7.08 (m, 2H), 7.01 – 6.98 (m, 2H), 6.76 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 7.8 Hz, 2H), 6.31 (d, J = 6.9 Hz, 1H), 5.81 (t, J = 6.3 Hz, 1H), 3.62 – 3.50 (m, 1H), 3.20 (q, J = 8.7, 8.2 Hz, 1H), 2.24 – 2.03 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.22, 157.78, 156.70, 145.81, 136.16, 130.04, 129.55, 123.89, 121.87, 121.48, 119.34, 119.22, 117.70, 117.56, 112.56, 67.25, 48.03, 34.31, 22.99. HR-MS (ESI) [M–H][–] m/z calcd for C₂₃H₂₂N₂O₂ 357.1609, found 357.1606.

3-fluoro-*N*-(**1-phenylpyrrolidin-2-yl**)benzamide (27c)

According to general procedure I, **27c** was obtained in 65% yield (18.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.39 – 7.33 (m, 1H), 7.26 – 7.21 (m, 2H), 7.21 – 7.14 (m, 1H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 8.2 Hz, 2H), 6.32 (d, *J* = 8.7 Hz, 1H), 5.82 (t, *J* = 6.4 Hz, 1H), 3.63 – 3.53 (m, 1H), 3.23 (q, *J* = 8.7, 8.2 Hz, 1H), 2.26 – 2.07 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.61, 162.88 (d, *J* = 247.9 Hz), 145.80, 136.53 (d, *J* = 6.6 Hz), 130.35 (d, *J* = 7.8 Hz), 129.60, 122.51 (d, *J* = 3.2 Hz), 118.77 (d, *J* = 21.2 Hz), 117.82, 114.51 (d, *J* = 22.9 Hz), 112.58, 67.37, 48.07, 34.32, 23.00. HR-MS (ESI) [M–H][–] m/z calcd for C₁₇H₁₇FN₂O 283.1252, found 283.1255.

2-methyl-N-(1-phenylpyrrolidin-2-yl)benzamide (28c)

According to general procedure I, **28c** was obtained in 80% yield (22.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 7.24 – 7.15 (m, 2H), 6.84 – 6.77 (m, 3H), 5.98 (d, *J* = 7.6 Hz, 1H), 5.88 (t, *J* = 6.8 Hz, 1H), 3.59 – 3.51 (m, 1H), 3.25 (q, *J* = 9.3 Hz, 1H), 2.49 (s, 3H), 2.28 – 2.07 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 169.59, 145.64, 136.18, 136.15, 131.14, 130.09, 129.52, 126.76, 125.83, 117.59, 112.61, 66.34, 47.81, 34.45, 22.99, 19.96. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₈H₂₀N₂O 279.1503, found 279.1503.

N-(1-phenylpyrrolidin-2-yl)-2,3-dihydrobenzo[b][1,4]dioxine-6-carboxamide (29c) According to general procedure I, **29c** was obtained in 78% yield (25.2 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 2.1 Hz, 1H), 7.25 – 7.19 (m, 3H), 6.84 (d, J = 8.4 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 6.71 (d, J = 8.1Hz, 2H), 6.20 (d, J = 6.9 Hz, 1H), 5.80 (t, J = 6.3 Hz, 1H), 4.27 – 4.22 (m, 4H), 3.59 – 3.51 (m, 1H), 3.20 (q, J = 8.6, 8.2 Hz, 1H), 2.20 – 2.06 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.09, 146.66, 145.88, 143.46, 129.50, 127.51, 120.45, 117.57, 117.30, 116.61, 112.55, 67.15, 64.63, 64.27, 48.00, 34.36, 22.99. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₉H₂₀N₂O₃ 323.1401, found 323.1404.

N-(1-phenylpyrrolidin-2-yl)-2-naphthamide (30c)

According to general procedure I, **30c** was obtained in 90% yield (28.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.92 – 7.83 (m, 4H), 7.58 – 7.51 (m, 2H), 7.27 – 7.24 (m, 2H), 6.80 – 6.75 (m, 3H), 6.42 (d, *J* = 6.9 Hz, 1H), 5.90 (t, *J* = 6.0 Hz, 1H), 3.66 – 3.60 (m, 1H), 3.26 (q, *J* = 8.4 Hz, 1H), 2.27 – 2.12 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.91, 145.95, 134.94, 132.70, 131.39, 129.63, 129.06, 128.63, 127.89, 127.87, 127.54, 126.94, 123.65, 117.75, 112.62, 67.45, 48.14, 34.44, 23.10. HR-MS (ESI) [M–H][–] m/z calcd for C₂₁H₂₀N₂O 315.1503, found 315.1504.

N-(1-phenylpyrrolidin-2-yl)thiophene-2-carboxamide (31c)

According to general procedure I, **31c** was obtained in 55% yield (14.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.26 – 7.22 (m, 2H), 7.07 – 7.02 (m, 1H), 6.80 – 6.71 (m, 3H), 6.11 (d, *J* = 6.8 Hz, 1H), 5.81 (t, *J* = 6.2 Hz, 1H), 3.62 – 3.55 (m, 1H), 3.22 (q, *J* = 8.5 Hz, 1H), 2.22 – 2.08 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 161.29, 145.83, 138.84, 130.35, 129.59, 128.26, 127.74, 117.79, 112.63, 67.24, 48.09, 34.40, 23.00. HR-MS (ESI) [M–H][–] m/z calcd for C₂₁H₂₀N₂O 271.0911, found 271.0912.

N-(1-phenylpyrrolidin-2-yl)benzo[b]thiophene-2-carboxamide (32c)

According to general procedure I, **32c** was obtained in 67% yield (21.6 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.70 (m, 4H), 7.46 – 7.30 (m, 3H), 7.26 – 7.19 (m, 2H), 6.81 – 6.70 (m, 3H), 6.46 (d, *J* = 6.9 Hz, 1H), 5.88 – 5.80 (m, 1H), 3.63 – 3.53 (m, 1H), 3.21 (q, *J* = 8.2, 7.7 Hz, 1H), 2.24 – 2.07 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 161.80, 145.77, 141.04, 139.14, 138.39, 129.58, 126.47, 125.33, 125.14, 125.00, 122.81, 117.79, 112.61, 67.36, 48.07, 34.36, 22.97. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₉H₁₈N₂OS 321.1067, found 321.1062.

1-methyl-N-(1-phenylpyrrolidin-2-yl)-1H-indole-2-carboxamide (33c)

According to general procedure I, **33c** was obtained in 72% yield (22.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.7 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 9.3 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.83 – 6.76 (m, 4H), 6.37 (d, *J* = 7.1 Hz, 1H), 5.86 (t, *J* = 5.7 Hz, 1H), 4.13 (s, 3H), 3.66 – 3.59 (m, 1H), 3.27 (q, *J* = 8.8 Hz, 1H), 2.29 – 2.12 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 162.17, 145.86, 139.23, 131.63, 129.57, 126.05, 124.31, 121.92, 120.64, 117.75, 112.62, 110.25, 104.22, 66.77, 48.02, 34.44, 31.71, 23.04. HR-MS (ESI) [M–H][–] m/z calcd for C₂₀H₂₁N₃O 318.1612, found 318.1614.

4-chloro-N-((methyl(phenyl)amino)methyl)benzamide(34c)³

According to general procedure I, **34c** was obtained in 85% yield (23.3 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 7.4 Hz, 1H), 6.81 (s, 1H), 5.10 (d, *J* = 5.5 Hz, 2H), 3.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.04, 147.87, 137.98, 132.54, 129.57, 128.85, 128.55, 118.36, 113.27, 58.37, 38.10. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₅H₁₅ClN₂O 273.0800, found 273.0802.

4-bromo-N-((methyl(phenyl)amino)methyl)benzamide (35c)³

According to general procedure I, **35c** was obtained in 80% yield (25.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.08 (t, *J* = 5.4 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 2H), 6.85 (t, *J* = 7.2 Hz, 1H), 5.07 (d, *J* = 5.9 Hz, 2H), 3.07 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.21, 147.78, 132.92, 131.68, 129.46, 128.69, 126.31, 118.21, 113.17, 58.29, 38.04. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₅H₁₅BrN₂O 317.0295, found 317.0298.

N-((methyl(phenyl)amino)methyl)-[1,1'-biphenyl]-4-carboxamide (36c)³

According to general procedure I, **36c** was obtained in 90% yield (28.4 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 2H), 7.65 – 7.55 (m, 4H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 6.85 (t, *J* = 7.3 Hz, 1H), 6.80 (t, *J* = 5.7 Hz, 1H), 5.15 (d, *J* = 5.6 Hz, 2H), 3.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.76, 148.01, 144.54, 139.97, 132.83, 129.59, 128.99, 128.11, 127.65, 127.27, 127.25, 118.30, 113.33, 58.29, 38.11. HR-MS (ESI) [M–H]⁻ m/z calcd for C₂₁H₂₀N₂O 315.1503, found 315.1506.

4-acetyl-*N*-((methyl(phenyl)amino)methyl)benzamide (37c)

According to general procedure I, **37c** was obtained in 60% yield (16.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.32 (t, *J* = 5.4 Hz, 1H), 7.25 (t, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.80 (t, *J* = 7.3 Hz, 1H), 5.09 (d, *J* = 5.6 Hz, 2H), 3.06 (s, 3H), 2.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.57, 167.19, 147.75, 139.04, 138.05, 129.38, 128.33, 127.39, 118.12, 113.12, 58.32, 38.03, 26.71. HR-MS (ESI) [M–H][–] m/z calcd for C₁₇H₁₈N₂O₂ 281.1296, found 281.1298.

methyl 4-(((methyl(phenyl)amino)methyl)carbamoyl)benzoate (38c)

According to general procedure I, **38c** was obtained in 67% yield (19.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 7.8 Hz, 2H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.78 (s, 1H), 5.14 (d, *J* = 5.3 Hz, 2H), 3.94 (s, 3H), 3.10 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.22, 166.32, 147.82, 138.10, 132.92, 129.90, 129.63, 127.17, 118.44, 113.29, 58.42, 52.52, 38.18. HR-MS (ESI) [M–H][–] m/z calcd for C₁₇H₁₈N₂O₃ 297.1245, found 297.1246.

2-methoxy-*N*-((methyl(phenyl)amino)methyl)benzamide (39c)³

According to general procedure I, **39c** was obtained in 82% yield (22.1 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.34 (s, 1H), 8.20 (d, *J* = 8.1 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.92 – 6.86 (m, 3H), 6.82 (t, *J* = 7.3 Hz, 1H), 5.13 (d, *J* = 5.6 Hz, 2H), 3.75 (s, 3H), 3.06 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.69, 157.47, 148.30, 132.99, 132.19, 129.36, 121.30, 121.28, 118.08, 113.50, 111.41, 57.77, 55.88, 38.18. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₆H₁₈N₂O₂ 269.1296, found 269.1299.

2,6-dichloro-*N*-((methyl(phenyl)amino)methyl)benzamide (40c)

According to general procedure I, **40c** was obtained in 74% yield (22.7 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 4H), 7.22 – 7.16 (m, 1H), 6.86 (d, *J* = 8.3 Hz, 2H), 6.82 (t, *J* = 7.4 Hz, 1H), 6.77 (s, 1H), 5.04 (d, *J* = 3.9 Hz, 2H), 3.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.80, 147.64, 135.51, 131.78, 130.36, 129.13, 127.75, 118.14, 113.42, 57.53, 37.84. HR-MS (ESI) [M–H]⁻ m/z calcd for C₁₅H₁₄Cl₂N₂O 307.0410, found 307.0411.

4-(*N*, *N*-dipropylsulfamoyl)-*N*-((methyl(phenyl)amino)methyl)benzamide (41c)

According to general procedure I, **41c** was obtained in 42% yield (16.9 mg). Eluent: PE/EtOAc (4:1). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (s, 4H), 7.30 (t, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.84 (t, *J* = 7.2 Hz, 1H), 6.56 (s, 1H), 5.15 (d, *J* = 5.4 Hz, 2H), 3.09 (s, 3H), 3.06 (t, *J* = 7.6 Hz, 4H), 1.55 – 1.50 (m, 4H), 0.86 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 166.70, 147.79, 143.31, 137.70, 129.75, 127.85, 127.44, 118.63, 113.36, 58.53, 50.06, 38.30, 22.06, 11.30. HR-MS (ESI) [M–H]⁻ m/z calcd for C₂₁H₂₉N₃O₃S 402.1857, found 402.1856.

VI. References

1. Lei, J.; Li, M.; Zhang, Q.; Liu, S.; Li, H.; Shi, L.; Jiang, W.-F.; Duan, C.; Jin, Y., Visible-Light-Induced Radical Cascade Cross-Coupling via $C(sp^3)$ -H Activation and *C*-*N*/*N*-*O* Cleavage: Feasible Access to Methylenebisamide Derivatives. *Org. Lett.* **2023**, *25*, 2300-2305.

2. Zhang, H.; Cai, Q.; Ma, D., Amino Acid Promoted CuI-Catalyzed *C*–*N* Bond Formation between Aryl Halides and Amines or *N*-Containing Heterocycles. *J. Org. Chem.* **2005**, *70*, 5164-5173.

3. Lin, B.; Shi, S.; Cui, Y.; Liu, Y.; Tang, G.; Zhao, Y., Oxidative C(sp³)–H amidation of *tert*iary arylamines with nitriles. *Organic Chemistry Frontiers* **2018**, *5*, 2860-2863.

4. Wusiman, A.; Hudabaierdi, R., Iron-catalyzed aerobic oxidative cross-coupling amidation of *N*, *N*-dimethylanilines. *Tetrahedron Lett.* **2019**, *60*, 681-683.

¹H NMR for **2c** (500 MHz, CDCl₃)

f1 (ppm) - ¹H NMR for **3c** (500 MHz, CDCl₃)

¹³C NMR for **3c** (125 MHz, CDCl₃)

- 166.77 - 166.77 - 143.65 - 134.24 - 134.24 - 134.26 - 112.18 - 112.18	67.42 48.12	< 34.34 33.90 31.61
--	----------------	---------------------------

¹H NMR for **4c** (500 MHz, CDCl₃)

¹H NMR for **5c** (500 MHz, CDCl₃)

¹H NMR for **6c** (400 MHz, CDCl₃)

¹H NMR for 7c (500 MHz, CDCl₃)

¹H NMR for 8c (500 MHz, CDCl₃)

¹H NMR for **9c** (400 MHz, CDCl₃)

166.84	160.90	147.21	134.26 131.67 130.22 128.62 127.01	105.51 103.06 98.77	66.98	55.22	48.09	34.26	22.94
1	1		~~~~	17.1	I.	1	1	1	

¹H NMR for **10c** (400 MHz, CDCl₃)

¹H NMR for **11c** (400 MHz, CDCl₃)

¹³C NMR for **11c** (100 MHz, CDCl₃)

- 58.17

- 38.03

¹H NMR for **12c** (400 MHz, CDCl₃)

¹³C NMR for **12c** (100 MHz, CDCl₃)

¹H NMR for **13c** (400 MHz, CDCl₃)

¹³C NMR for **13c** (100 MHz, CDCl₃)

- 168.15 - 150.24 - 150.24 - 13.322 - 13.322 - 13.322 - 13.322 - 13.204 - 13.204 - 12.675 - 12.6	- 57.72	38.33
--	---------	-------

¹H NMR for **14c** (400 MHz, CDCl₃)

¹³C NMR for 14c (100 MHz, CDCl₃)

¹H NMR for **15c** (400 MHz, CDCl₃)

¹H NMR for **16c** (400 MHz, CDCl₃)

¹H NMR for **17c** (400 MHz, CDCl₃)

¹H NMR for **18c** (400 MHz, CDCl₃)

¹³C NMR for **18c** (100 MHz, CDCl₃)

¹³C NMR for **19c** (100 MHz, CDCl₃)

— 166.79	- 153.05	— 145.90	131.70 129.52 127.17 126.73	- 117.60	— 112.56	- 67.17	48.03	$< \frac{34.38}{34.19}$	23.88 23.01

¹H NMR for **20c** (400 MHz, CDCl₃)

S44

¹H NMR for **21c** (400 MHz, CDCl₃)

¹H NMR for **22c** (400 MHz, CDCl₃)

¹³C NMR for **22c** (100 MHz, CDCl₃)

166.39	162.39	145.95	129.50	128.88	117.57 113.82	112.58	67.16	55.50	48.03	34.39	22.99	
L	1	1	5	12	20	57	1	1		1	1	

¹H NMR for **23c** (400 MHz, CDCl₃)

f1 (ppm) 150 140 130 120 · -: ¹H NMR for **24c** (400 MHz, CDCl₃)

¹H NMR for **25c** (400 MHz, CDCl₃)

S49

¹H NMR for **26c** (400 MHz, CDCl₃)

¹H NMR for **27c** (400 MHz, CDCl₃)

¹H NMR for **28c** (400 MHz, CDCl₃)

f1 (ppm) -

¹³C NMR for **29c** (100 MHz, CDCl₃)

- 166.09 - 146.66 - 145.88 - 145.88 - 145.88 - 145.88 - 113.46 - 117.51 - 117.51 - 117.51 - 117.51 - 117.51 - 117.51	67.15 64.63 64.27		34.36	- 22.99	
--	-------------------------	--	-------	---------	--

¹H NMR for **30c** (400 MHz, CDCl₃)

¹H NMR for **31c** (400 MHz, CDCl₃)

¹H NMR for **32c** (400 MHz, CDCl₃)

¹H NMR for **33c** (400 MHz, CDCl₃)

¹³C NMR for **33c** (100 MHz, CDCl₃)

162.17	145.86	139.23	131.63 129.57 129.57 124.30 12.92 112.62 110.25 104.22	66.77	48.02	34.44 31.71	23.04
I.	I.		1111111111111111	I.		N I	I

¹H NMR for **34c** (400 MHz, CDCl₃)

¹³C NMR for **34c** (100 MHz, CDCl₃)

— 167.04	— 147.87	137.98 132.54 129.57 128.85 128.55	- 118.36		- 58.37	38.10
----------	----------	--	----------	--	---------	-------

¹H NMR for **35c** (500 MHz, CDCl₃)

¹³C NMR for **35c** (125 MHz, CDCl₃)

¹H NMR for **36c** (400 MHz, CDCl₃)

¹³C NMR for **36c** (100 MHz, CDCl₃)

- 167.76 148.01 139.57 139.59 139.59 132.83 127.25 127.25 - 113.33 - 113.33	5 28
--	-------------

- 38.11

¹H NMR for **37c** (400 MHz, CDCl₃)

¹H NMR for **38c** (500 MHz, CDCl₃)

¹³C NMR for **38c** (125 MHz, CDCl₃)

|--|

¹H NMR for **39c** (500 MHz, CDCl₃)

¹H NMR for **40c** (400 MHz, CDCl₃)

¹H NMR for **41c** (500 MHz, CDCl₃)

