Supporting Information

N-Heterocyclic Carbene/Photoredox-Catalyzed Regioselective Carbonylation of Alkenes

Mao-Lin Yang^a, Xiao-Feng Wu^{a,b*}

^{a.} Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059 Rostock (Germany), E-mail: xiao-feng.wu@catalysis.de

^{b.} Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning (China)

Table of Contents

1. General informationS2
2. Preparation of substrates
2.1 General procedure for the synthesis of acyl imidazoles 2
2.2 Preparation of Hantzsch Ester 3S3
3. Complementary reaction optimization Data
4. Characterization and procedure of 1,4-dione products 4 and
synthetic transformations products 6
4.1 General diacylation procedure for the synthesis of 1,4-diones 4
4.2 General procedure for the synthesis of 5-cyclohexyl-2,3-diphenylfuran 6a ^[6] S10
4.3 General procedure for the synthesis of 5-cyclohexyl-1,2,3-triphenyl-1H-pyrrole
6b ^[7]
4.4 General procedure for the synthesis of 4-cyclohexyl-1,2-diphenylbutane-1,4-diol 6c ^[8]
4.5 General procedure for the synthesis of 6-cyclohexyl-3,4-diphenylpyridazine 6d ^[9]
4.6 General procedure for the synthesis of 5-cyclohexyl-2,3-diphenyl-1H-pyrrole $6e^{[10]}$
5 Mark
5. Mechanistic investigation
5.1 Radical trapping experiment by 2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO).S37
5. ReferencesS39
7. NMR SpectraS40

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 300 or 400 MHz spectrophotometers. Chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃: $\delta = 7.26$ ppm). ¹³C NMR was recorded at 75 MHz or 101 MHz: chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃: $\delta = 77.00$ ppm). Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). High resolution mass spectra (HR-MS) were recorded on Agilent 6210. The data were given as mass units per charge (m/z). Gas chromatography analysis was performed on an Agilent HP-5890 instrument with an FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 µm film thickness) using argon as carrier gas.

The light source was positioned approximately 23 cm from the reaction vial, placed atop a manufactured autoclave (see **Figure 1**). For every reaction, the powerful light source, Portable Lumatec SUPERLITE S $04^{[3]}$, was utilized with different set filters: UV-A ($\lambda = 400 - 500 \text{ nm}$) at maximum intensity (100% power). **Figures 2** and **3** illustrate the relevant photophysical properties of the lamps.

Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

Figure 1. Apparatus for the Photoinduced Diacylation of Styrenes with Carboxylic Acids Using Carbon Monoxide as a Carbonyl Source to Form 1,4-Diketones

Figure 2. Emission Spectrums of the Portable Lumatec SUPERLITE S 04

OPTISCHE	LEISTUNG
----------	----------

Spektrum		Leistung	Intensität
UVA	320-400 nm	2.100 mW	10.500 mW/cm ²
UVA + Blau	320-500 nm	6.900 mW	34.500 mW/cm ²
Blau	400-500 nm	4.800 mW	24.000 mW/cm ²
Weiß	400-700 nm	9.700 mW	48.500 mW/cm ²
Violett	415 nm	2.000 mW	10.000 mW/cm ²
Blau 440	440 nm	2.300 mW	11.500 mW/cm ²
Blau 460	460 nm	2.000 mW	10.000 mW/cm ²
Türkis	490 nm	1.200 mW	6.000 mW/cm ²
Grün	550 nm	1.400 mW	7.000 mW/cm ²
Gelb	570 nm	1.800 mW	9.000 mW/cm ²

Figure 3. Technical Specifications of the Portable Lumatec SUPERLITE S 04

2. Preparation of substrates

2.1 General procedure for the synthesis of acyl imidazoles 2

Acyl imidazoles **2** were prepared based on the literature^[1]: The appropriate acid (6 mmol, 1.0 equiv) was dissolved in dry dichloromethane (20 ml, 0.3 M), and CDI (Carbonyldiimidazole, 9 mmol, 1.5 equiv) was added slowly. The resulting mixture was stirred at room temperature, overnight. Upon completion, the solution was transferred to a separatory funnel and washed with deionized water (2×10 mL). The organic layer was then dried over MgSO₄. Concentration under reduced pressure yielded the acyl imidazole, which was used in the subsequent reaction without further purification.

2.2 Preparation of Hantzsch Ester 3

Hantzsch ester **3** were prepared based on the literature^[2]: A reaction flask was charged with ethyl acetoacetate (1.3 g, 10.0 mmol, 2.0 equiv.), ammonium acetate (0.5 g, 1.2 equiv.), ethanol (10.0 ml, 0.5 M). To the above solution, the aldehyde (5.0 mmol) was added slowly. After addition, the system was heated at 80 °C with stirring. The reaction was monitored by TLC. When the reaction was completed, the solvent was evaporated, vacuum the crude product, half an hour later add petroleum ether ultrasound, to give the corresponding Hantzsch ester.

3. Complementary reaction optimization Data

NHC Yield (%) Entry 1 a NHC-1 2 a NHC-2 _ 3 ^a 15 NHC-3 4 a NHC-4 26 5 a NHC-5 trace 6 ^a NHC-6 13 7 a NHC-7 trace 8 a NHC-8 10 9 a NHC-9 38 10^a **NHC-10** 30 11^a **NHC-11** 12^a **NHC-12** 13^a **NHC-13** 14^b NHC-9 40 15 ° NHC-9 52 16 ^d NHC-9 43 17^e NHC-9 20 $18^{\rm f}$ NHC-9 _

Table 1. Optimization of Carbene (NHC)

Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), CO (40 bar), MeCN (1.0 mL), K₂CO₃ (0.2 mmol), **PC-1** (2 mol%), **NHC** (10 mol%^a, 20 mol%^b, 25 mol%^c, 30 mol%^d, 50 mol%^e, 100 mol%^f), r.t., 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard. NHC Preparation Method. ^[4]

Entry	PC	Yield (%)
1°	PC-1	52
2°	PC-2	30
3°	PC-3	22
4 ^c	PC-4	trace
5°	PC-5	10
6 ^c	PC-6	-
7 ^a	PC-1	48
8 ^b	PC-1	59
9^{d}	PC-1	56
10	-	-

Table 2 Optimization of photosensitizer (PC)

Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), CO (40 bar), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), **PC** (1 mol%^a, 1.5 mol%^b, 2 mol%^c, 3 mol%^d), **NHC-9** (25 mol%), r.t, 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

Entry	Wavelength (nm)	Yield (%)
1	320-400	-
2	415	32
3	440	42
4	460	48
5	490	55

Table 3. Optimization of wavelength

6	550	-
7	400-500	59
8	400-700	40

Reaction conditions: **1a** (0.1 mmol), **2a** (0.1 mmol), **3a** (0.15 mmol), CO (40 bar), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), r.t., 24 h. Determined by GC with hexadecane as internal standard.

Entry	Pressure(bar)	Yield (%)
1	30	32
2	35	40
3	40	59
4	45	58
5	50	55
6	60	40

Table 4. Optimization of pressure (CO)

Reaction conditions: **1a** (0.1 mmol), **2a** (0.1 mmol), **3a** (0.15 mmol), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), PC-1 (1.5 mol%), NHC-9 (25 mol%), r.t., 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

Table 5. Optimization of temperature

Entry	Temperature (°C)	Yield (%)
1	r.t.	59
2	40	65
3	50	40
4	60	trace

Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), CO (40 bar), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

Entry	Solvent	Yield (%)
1 ^a	MeCN	65
2ª	MeCN/H ₂ O (9/1)	-
3 ^a	DMF	-
4ª	DMAc	-
5 ^a	DMSO	-
	S6	

Table 6. Optimization of solvent

6 ^a	DCM	-
7 ^a	DCE	-
8 ^a	THF	42
9 ^a	PhCF ₃	trace
10 ^a	Tolune	trace
11 ^b	MeCN	55
12 ^c	MeCN	60

Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), CO (40 bar), Solvent (0.1M^a, 0.2M^b, 0.05 M^c), K₂CO₃ (0.2 mmol), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), 40 °C, 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

Entry	Base	Yield (%)
lc	Na ₂ CO ₃	50
2°	K ₂ CO ₃	65
3°	Cs ₂ CO ₃	-
4 ^c	Li ₂ CO ₃	-
5 [°]	NaHCO ₃	trace
6 ^c	KHCO ₃	trace
7°	K ₃ PO ₄	45
8°	KH ₂ PO ₄	34
9°	Na ₂ HPO ₄	22
10 ^c	NaH ₂ PO ₄	20
11 ^c	Na ₃ PO ₄	30
12°	Na ₂ HPO ₄	32
13°	NaH ₂ PO ₄	10
14 ^c	'BuONa	-
15°	DBU	-
16 ^c	NEt ₃	-
17 ^a	K ₂ CO ₃	25
18 ^b	K ₂ CO ₃	40
19 ^d	K ₂ CO ₃	60
20 ^e	K ₂ CO ₃	62
21	-	-

Table 7. Optimization of base

Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), CO (40 bar), MeCN (1.0 mL), Base (0.05 mmol^a, 0.1 mmol^b, 0.2 mmol^c, 0.25 mmol^d, 0.3 mmol^e), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), 40 °C, 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

Entry	1a : 2a : 3a	Yield (%)
1	1.0 : 1.0 : 1.0	10
2	1.0 : 1.5 : 1.0	22
3	1.0 : 1.0 : 1.5	40
4	1.0 : 1.5 : 1.5	51
5	1.0 : 2.0 : 1.5	65
б	1.0:3.0:1.5	64
7	1.0 : 2.0 : 2.0	69
8	1.0 : 2.0 : 2.5	75
9	1.0:2.0:3.0	72

Table 8. Optimization of equivalent ratio

Reaction conditions: CO (40 bar), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), 40 °C, 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

Entry	Time (h)	Yield (%)
1	20	40
2	24	70
3	30	86
4	36	90 (82)
5	48	87

Table 9. Optimization of time

Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), **3a** (0.25 mmol), CO (40 bar), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), 40 °C, 400-500 nm. Determined by GC with hexadecane as internal standard. Isolated yield is shown in parentheses.

Table 10. Optimization of LG and DHP

Entry	LG	DHP	Yield (%)
1	LG-1	DHP-1	20
2	LG-1	DHP-2	52
3	LG-1	DHP-3	30

4	LG-2	DHP-1	trace
5	LG-2	DHP-2	22
6	LG-2	DHP-3	trace
7	LG-3	DHP-1	15
8	LG-3	DHP-2	35
9	LG-3	DHP-3	trace
10	LG-4	DHP-1	trace
11	LG-4	DHP-2	32
12	LG-4	DHP-3	10

Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), **3a** (0.15 mmol), CO (40 bar), MeCN (1.0 mL), K_2CO_3 (0.2 mmol), **PC-1** (1.5 mol%), **NHC-9** (25 mol%), 40 °C, 24 h, 400-500 nm. Determined by GC with hexadecane as internal standard.

4. Characterization and procedure of 1,4-dione products 4 and synthetic transformations products 6

4.1 General diacylation procedure for the synthesis of 1,4-diones 4

A 4 mL screw-cap vial was charged with Hantzsch ester **3** (2.5 equiv), acyl imidazoles **2** (1.5 equiv), **PC-1** (3.3 mg, 1.5 mol%), **NHC-9** (11mg, 25 mol%) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After replacing the nitrogen in the vial three times, acetonitrile (2 mL) was added. Then, styrenes (0.2 mmol, 1.0 equiv) was added using a microinjector. The vial was then moved to a cannula and transferred into a 300 mL photoautoclave (manufactured by Parr Instrument Company®), under a nitrogen atmosphere. At room temperature, the autoclave was washed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was allowed to react at 40 °C under UV-A (400-500 nm) for 36 hours. After the reaction was complete, the pressure of the autoclave was carefully released, and the residual CO was washed away with nitrogen. The solvent was removed under vacuum, and the product was purified by column chromatography on silica gel using petroleum ether and ethyl acetate (30:1 - 20:1) to afford the corresponding product **4**.

4.2 General procedure for the synthesis of 5-cyclohexyl-2,3diphenylfuran 6a^[6]

To a stirred solution of **4a** (32.0 mg, 0.1 mmol) in toluene (2 mL) at room temperature was added *p*-toluenesulfonic acid (3.5 mg, 0.02 mmol). The mixture was stirred vigorously for 13 hours at 60 °C. The crude product was purified by column chromatography on silica gel using petroleum ether and ethyl acetate (50:1) as to afford **6a** (26.6 mg, 88% yield) as a yellow solid. The **6a** was obtained by vacuum drying.

4.3 General procedure for the synthesis of 5-cyclohexyl-1,2,3triphenyl-1H-pyrrole 6b^[7]

Method A: The mixture of **4a** (32.0 mg, 0.1 mmol) and aniline (14.0 mg, 0.15 mmol) in water (1 mL) at 100 °C for 8 hours; Method B: The mixture of **4a** (32.0 mg, 0.1 mmol), *p*-toluenesulfonic acid (3.5 mg, 0.02 mmol) and aniline (14.0 mg, 0.15 mmol) in toluene (1 mL) at 110 °C for 8 hours. The mixture was cooled to room temperature and diluted with ethyl acetate (1 mL) and washed with saturated NaHCO₃ solution (1 mL) and saturated NaCl solution. The organic phase was dried over anhydrous magnesium sulfate and concentrated. The product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (50:1) as eluent to give **8b** (32.1 mg, 85% yield^A; 32.8 mg, 87% yield^B) as a brown solid. The **6b** was obtained by vacuum drying.

4.4 General procedure for the synthesis of 4-cyclohexyl-1,2diphenylbutane-1,4-diol 6c^[8]

The mixture of **4a** (32.0 mg, 0.1 mmol) was added dropwise to a solution of sodium borohydride (6.0 mg, 0.15 mmol, 1.5 equiv) in MeOH (1 mL) at 0 °C for 1 hour, then room temperature for 2 hours. The reaction was diluted with ethyl acetate (1 mL), quenched with saturated NH₄Cl solution (1 mL), washed by saturated NaCl solution (1 mL). The organic phase was dried over anhydrous magnesium sulfate and concentrated. The product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) as eluent to give **6c** (29.2 mg, 90% yield) as a white solid. The **6c** was obtained by vacuum drying.

4.5 General procedure for the synthesis of 6-cyclohexyl-3,4diphenylpyridazine 6d^[9]

4a (32.0 mg, 0.1 mmol) was dissolved in hydrazine hydrate (15.0 uL, 0.15 mmol, 1.5 equiv) and MeOH (1 mL) was added. The reaction mixture was stirred at room temperature for 5 hours. The crude product was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (30:1) as eluent to afford **8d** (26.0 mg, 83% yield) as a yellow solid. The **6d** was obtained by vacuum drying.

4.6 General procedure for the synthesis of 5-cyclohexyl-2,3diphenyl-1H-pyrrole 6e^[10]

Method A: The solution of **4a** (32.0 mg, 0.1 mmol) and $(NH_4)_2CO_3$ (12.0 mg, 0.12 mmol) in acetic acid (1 mL) at 100 °C for 20 hours; Method B: The solution of **4a** (32.0 mg, 0.1 mmol) and NH₄OAc (9.3 mg, 0.12 mmol) in acetic acid (1 mL) at 100 °C for 20 hours. The reaction mixture was diluted with ethyl acetate (1 mL) and washed with saturated NaHCO₃ solution (1 mL). The organic phase was dried over magnesium sulfate and concentrated. The product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (50:1) as eluent to give **6e** (28.2 mg, 95% yield^A; 27.0 mg, 90% yield^B) as a white solid. The **6e** was obtained by vacuum drying.

4-cyclohexyl-1,2-diphenylbutane-1,4-dione (4a)

Chromatography Pentane/EA = 20:1 (v/v), 52.6 mg (82%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.41 – 7.09 (m, 8H), 5.05 (dd, *J* = 10.1, 3.9 Hz, 1H), 3.55 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.69 (dd, *J* = 18.0, 3.9 Hz, 1H), 2.33 – 1.08 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 212.1, 199.1, 138.7, 136.4, 132.8, 129.1, 128.8, 128.4, 128.1, 127.2, 50.7, 48.5, 45.4, 29.7, 28.3, 25.8, 25.6, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₂₄O₂ 343.1668, found: 343.1676.

2-(4-chlorophenyl)-4-cyclohexyl-1-phenylbutane-1,4-dione (4b)

Chromatography Pentane/EA = 20:1 (v/v), 49.6 mg (70%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 2H), 7.43 – 7.11 (m, 7H), 5.04 (dd, *J* = 9.8, 4.2 Hz, 1H), 3.51 (dd, *J* = 18.0, 9.9 Hz, 1H), 2.68 (dd, *J* = 18.0, 4.2 Hz, 1H), 2.36 – 1.11 (m, 11H).

¹³C NMR (101 MHz, CDCl₃) δ 211.8, 198.8, 137.2, 136.2, 133.2, 133.1, 129.5, 129.3, 128.8, 128.5, 50.7, 47.7, 45.3, 28.4, 25.8, 25.6, 25.5. HRMS(ESI-TOE) m/z; calcd for [M⁺]H⁺ CarHapClOa 355 1459, found: 355 1458

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{22}H_{23}CIO_2$ 355.1459, found: 355.1458.

4c

2-(4-bromophenyl)-4-cyclohexyl-1-phenylbutane-1,4-dione (4c)

Chromatography Pentane/EA = 20:1 (v/v), 58.4 mg (73%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.45 – 7.04 (m, 7H), 5.02 (dd, *J* = 9.8, 4.1 Hz, 1H), 3.51 (dd, *J* = 18.0, 9.8 Hz, 1H), 2.67 (dd, *J* = 18.0, 4.2 Hz, 1H), 2.35 – 1.08 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 211.8, 198.7, 137.7, 136.1, 133.0, 132.2, 129.8, 128.8, 128.5, 121.3, 50.6, 47.8, 45.2, 28.3, 25.8, 25.6, 25.5.

HRMS(ESI-TOF) m/z: calcd for $[M^+]Na^+ C_{22}H_{23}BrO_2 421.0774$, found: 421.0777.

4-cyclohexyl-1-phenyl-2-(p-tolyl)butane-1,4-dione (4d)

Chromatography Pentane/EA = 20:1 (v/v), 55.6 mg (83%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.40 – 6.71 (m, 7H), 5.00 (dd, *J* = 10.0, 4.1 Hz, 1H), 3.66 (s, 3H), 3.51 (dd, *J* = 17.9, 10.0 Hz, 1H), 2.67 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.33 – 1.11 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 212.3, 199.3, 158.7, 136.5, 132.8, 130.6, 129.2, 128.9, 128.4, 114.5, 55.2, 50.7, 47.6, 45.4, 28.4, 28.4, 25.9, 25.7, 25.6.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{26}O_2 335.2006$, found: 335.2010.

4-cyclohexyl-2-(4-methoxyphenyl)-1-phenylbutane-1,4-dione (4e)

Chromatography Pentane/EA = 30:1 (v/v), 54.6 mg (78%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.87 (m, 2H), 7.42 – 6.71 (m, 7H), 5.00 (dd, *J* = 9.9, 4.1 Hz, 1H), 3.67 (s, 3H), 3.52 (dd, *J* = 17.9, 10.0 Hz, 1H), 2.67 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.34 – 1.08 (m, 11H).

¹³C NMR (101 MHz, CDCl₃) & 212.3, 199.3, 158.7, 136.4, 132.7, 130.6, 129.2, 128.8, 128.4, 114.5, 55.2, 50.7, 47.6, 45.4, 28.4, 28.3, 25.8, 25.6, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₆O₃ 351.1995, found: 351.1960.

4-cyclohexyl-2-(4-isobutylphenyl)-1-phenylbutane-1,4-dione (4f)

Chromatography Pentane/EA = 30:1 (v/v), 52.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.41 – 6.94 (m, 2H), 5.01 (dd, J = 10.1, 4.0 Hz, 8H), 3.53 (dd, J = 17.8, 10.1 Hz, 1H), 2.68 (dd, J = 17.9, 4.0 Hz, 1H), 2.31 (d, J = 7.2 Hz, 2H), 1.87 - 1.12 (m, 12H), 0.77 (d, J = 6.6 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 212.3, 199.2, 140.7, 136.5, 135.8, 132.7, 129.8, 128.8, 128.4, 127.8, 50.7, 48.1, 45.5, 44.9, 30.1, 28.3, 28.3, 25.8, 25.6, 25.5, 22.3.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₆H₃₂O₂ 399.2295, found: 399.2297.

4-cyclohexyl-2-(4-phenoxyphenyl)-1-phenylbutane-1,4-dione (4g)

Chromatography Pentane/EA = 30:1 (v/v), 49.6 mg (60%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.44 – 6.80 (m, 12H), 5.04 (dd, J = 10.0, 4.1 Hz, 1H), 3.53 (dd, J = 17.9, 10.0 Hz, 1H), 2.70 (dd, J = 17.9, 4.1 Hz, 1H), 2.36 – 1.08 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.1, 199.1, 156.8, 156.5, 136.4, 133.6, 132.8, 129.7, 129.4, 128.9, 128.5, 123.4, 119.1, 119.0, 50.7, 47.6, 45.5, 28.3, 28.3, 25.8, 25.6, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₈H₂₈O₃ 435.1931, found: 435.1942.

2-(4-(benzyloxy)phenyl)-4-cyclohexyl-1-phenylbutane-1,4-dione (4h)

Chromatography Pentane/EA = 30:1 (v/v), 52.8 mg (62%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.87 (m, 2H), 7.42 – 6.78 (m, 12H), 5.00 (dd, *J* = 10.0, 4.1 Hz, 1H), 4.91 (s, 2H), 3.51 (dd, *J* = 17.9, 10.0 Hz, 1H), 2.67 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.33 – 1.12 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 212.3, 199.2, 157.9, 136.8, 136.4, 132.7, 130.9, 129.2, 128.8, 128.6, 128.4, 127.9, 127.4, 115.4, 69.9, 50.7, 47.6, 45.4, 28.3, 25.8, 25.6, 25.6. HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₉H₃₀O₃ 449.2087, found: 449.2098.

4-cyclohexyl-2-(4-(difluoromethoxy)phenyl)-1-phenylbutane-1,4-dione (4i)

Chromatography Pentane/EA = 30:1 (v/v), 43.2 mg (56%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.91 – 7.87 (m, 2H), 7.45 – 6.90 (m, 7H), 6.62 – 6.12 (t, 1H), 5.06 (dd, J = 9.9, 4.1 Hz, 1H), 3.53 (dd, J = 17.9, 9.9 Hz, 1H), 2.69 (dd, J = 17.9, 4.2 Hz, 1H), 2.34 – 1.05 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 198.9, 150.2, 136.2, 135.8, 133.0, 129.5, 128.8, 128.5, 120.2, 115.7, 50.7, 47.6, 45.3, 28.3, 25.8, 25.6, 25.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.79, -80.98.

HRMS(ESI-TOF) m/z: calcd for $[M^+]Na^+ C_{23}H_{24}F_2O_3 409.1586$, found: 409.1591.

4-cyclohexyl-1-phenyl-2-(m-tolyl)butane-1,4-dione (4j)

Chromatography Pentane/EA = 20:1 (v/v), 53.6 mg (80%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.42 – 6.91 (m, 7H), 6.93 (dd, *J* = 2.3, 1.3 Hz, 1H), 5.01 (dd, *J* = 10.3, 3.8 Hz, 1H), 3.55 (dd, *J* = 17.9, 10.3 Hz, 1H), 2.66 (dd, *J* = 17.9, 3.8 Hz, 1H), 2.34 – 2.25 (m, 1H), 2.21 (s, 3H), 1.89 – 1.11 (m, 10H).

¹³C NMR (75 MHz, CDCl₃) δ 212.2, 199.1, 138.8, 138.6, 136.5, 132.8, 128.9, 128.9, 128.6, 128.4, 127.9, 125.2, 50.7, 48.4, 45.5, 28.4, 25.8, 25.6, 25.6, 21.4.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₆O₂ 335.2006, found: 335.2008.

4-cyclohexyl-2-(2-methoxyphenyl)-1-phenylbutane-1,4-dione (4k)

Chromatography Pentane/EA = 30:1 (v/v), 42.0 mg (60%), pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.86 (m, 2H), 7.39 – 6.72 (m, 7H), 5.46 (dd, J = 10.4, 3.4 Hz, 1H), 3.81 (s, 3H), 3.45 (dd, J = 17.7, 10.4 Hz, 1H), 2.56 (dd, J = 17.7, 3.4 Hz, 1H), 2.39 – 1.09 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.4, 199.7, 155.9, 136.4, 132.6, 128.7, 128.6, 128.4, 128.2, 127.2, 120.9, 110.9, 55.4, 50.7, 43.8, 41.3, 28.4, 28.4, 25.9, 25.7, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₃H₂₆O₃ 373.1774, found: 373.1784.

4-cyclohexyl-2-(3,4-dimethoxyphenyl)-1-phenylbutane-1,4-dione (4)

Chromatography Pentane/EA = 30:1 (v/v), 50.2 mg (66%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.43 – 6.67 (m, 6H), 4.99 (dd, J = 10.0, 4.0 Hz, 1H), 3.75 (d, J = 6.4 Hz, 6H), 3.53 (dd, J = 17.9, 9.9 Hz, 1H), 2.69 (dd, J = 17.9, 4.0 Hz, 1H), 2.35 – 1.08 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 212.3, 199.3, 149.3, 148.2, 136.5, 132.8, 131.1, 128.8, 128.4, 120.5, 111.6, 110.8, 55.9, 55.8, 50.7, 48.2, 45.5, 28.4, 28.3, 25.8, 25.6, 25.6. HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₄H₂₈O₄ 403.1880, found: 403.1886.

2-(benzo[d][1,3]dioxol-5-yl)-4-cyclohexyl-1-phenylbutane-1,4-dione (4m)

Chromatography Pentane/EA = 20:1 (v/v), 51.0 mg (70%), pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.43 – 5.81 (m, 6H), 4.96 (dd, J = 10.0, 4.0 Hz, 1H), 3.50 (dd, J = 17.9, 10.0 Hz, 1H), 2.66 (dd, J = 17.9, 4.0 Hz, 1H), 2.34 – 1.07 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.2, 199.0, 148.1, 146.8, 136.3, 132.8, 132.3, 128.8, 128.4, 121.5, 108.8, 108.3, 101.08, 50.7, 48.0, 45.4, 28.3, 25.8, 25.6, 25.6. HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₃H₂₄O₄ 387.1567, found: 387.1571.

4-cyclohexyl-2-(naphthalen-2-yl)-1-phenylbutane-1,4-dione (4n)

Chromatography Pentane/EA = 20:1 (v/v), 37.0 mg (50%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.71 – 7.23 (m, 10H), 5.22 (dd, *J* = 10.0, 3.9 Hz, 1H), 3.64 (dd, *J* = 18.0, 10.0 Hz, 1H), 2.76 (dd, *J* = 18.0, 3.9 Hz, 1H), 2.37 – 1.07 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.0, 199.0, 136.4, 136.2, 133.6, 132.8, 132.4, 128.9, 128.9, 128.4, 127.7, 127.6, 126.9, 126.3, 126.0, 125.9, 50.7, 48.6, 45.5, 28.4, 28.4, 25.8, 25.6, 25.6. HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₆H₂₆O₂ 393.1825, found: 393.1829.

4-cyclohexyl-2-(perfluorophenyl)-1-phenylbutane-1,4-dione (40)

Chromatography Pentane/EA = 20:1 (v/v), 50.8mg (59%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.75 – 7.07 (m, 2H), 7.47 – 7.07 (m, 3H), 4.95 (dd, *J* = 10.0, 4.0 Hz, 1H), 3.50 (dd, *J* = 18.0, 10.0 Hz, 1H), 2.67 (dd, *J* = 18.0, 4.0 Hz, 1H), 2.33 – 1.11 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 211.8, 197.8, 136.8, 134.9, 133.4, 131.9, 130.3, 129.4, 129.4, 128.3, 50.6, 47.8, 45.2, 28.4, 28.4, 25.8, 25.6, 25.6.

¹⁹F NMR (282 MHz, CDCl₃) δ -140.72 – -140.85 (m, 2F), -154.29 (t, J = 20.9 Hz, 1F), -160.78 – -160.96 (m, 2F).

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₁₉F₅O₂ 453.1823, found: 453.1830.

4p

4 4-cyclohexyl-1,2-diphenylbutane-1,4-dione-2-d (4p)

Chromatography Pentane/EA = 20:1 (v/v), 51.4 mg (80%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.41 – 7.08 (m, 8H), 3.55 (d, J = 17.9 Hz, 1H), 2.68 (d, J = 18.0 Hz, 1H), 2.34 – 1.07 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 212.1, 199.5, 138.6, 136.4, 132.8, 129.1, 128.9, 128.8, 128.4, 128.1, 128.1, 127.2, 50.6, 48.5, 45.3, 28.3, 25.8, 25.6, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₂H₂₃DO₂ 322.1912, found: 322.1915.

4q

4-cyclohexyl-2-methyl-1,2-diphenylbutane-1,4-dione (4q)

Chromatography Pentane/EA = 20:1 (v/v), 56.8 mg (85%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.09 (m, 10H), 3.31 (dd, *J* = 17.2, 0.8 Hz, 1H), 2.93 (d, *J* = 17.2 Hz, 1H), 2.15 – 2.06 (m, 1H), 1.70 (s, 3H), 1.66 – 1.07 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 211.40, 203.19, 143.05, 137.50, 131.15, 129.08, 128.92, 127.81, 127.18, 126.06, 53.04, 51.39, 51.20, 28.32, 28.14, 25.77, 25.58, 25.54, 24.19.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{26}O_2 335.2006$, found: 335.2010.

4r

4-cyclohexyl-1,2,2-triphenylbutane-1,4-dione (4r)

Chromatography Pentane/EA = 20:1 (v/v), 47.6 mg (60%), white solid.

 ${}^{1}\text{H NMR} (300 \text{ MHz}, \text{CDCl}_3) \\ \delta 7.37 - 7.33 \text{ (m, 2H)}, 7.26 - 7.07 \text{ (m, 13H)}, 3.67 \text{ (s, 2H)}, 2.09 - 0.88 \text{ (m, 11H)}. \\ {}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3) \\ \delta 210.1, 201.2, 142.5, 139.0, 130.7, 129.2, 129.1, 128.2, 127.6, 126.9, 61.7, 51.8, 51.1, 27.9, 25.7, 25.4. \\ \end{array}$

HRMS(ESI-TOF) m/z: calcd for $[M^+]Na^+ C_{28}H_{28}O_2$ 419.1982, found: 419.1980.

4s

1-cyclohexyl-2-methyl-3,4-diphenylbutane-1,4-dione (4s)

Chromatography Pentane/EA = 30:1 (v/v), 30.8 mg (46%), white solid. dr = 7:3, slightly sticky white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.84 (m, 2H), 7.45 – 7.08 (m, 8H), 4.81 (d, *J* = 10.6 Hz, 0.69H), 4.76 (d, *J* = 10.6 Hz, 0.31H), 3.73 – 3.48 (m, 1H), 1.92 – 0.86 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 217.3(minor), 200.0(minor), 198.8, 137.1, 137.0(minor), 136.9, 136.7(minor),
133.1, 132.7(minor), 129.9, 129.1(minor), 129.0, 128.9(minor), 128.8, 128.7(minor), 128.6, 128.4, 128.4(minor),
127.4, 56.4(minor), 55.9, 51.7(minor), 49.7, 48.3, 30.2(minor), 29.1(minor), 28.3, 27.9(minor), 26.9,
26.0(minor), 25.9, 25.7(minor), 25.6, 25.6(minor), 25.4, 16.9, 15.1(minor).
HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₃H₂₆O₂ 357.1825, found: 357.1827.

1-cyclohexyl-2,3,4-triphenylbutane-1,4-dione (4t).

Chromatography Pentane/EA = 30:1 (v/v), 39.6 mg (50%), white solid. dr = 8:2, slightly sticky white solid.

 ^1H NMR (300 MHz, CDCl₃) δ 8.04 – 7.73 (m, 2H), 7.43 – 6.85 (m, 13H), 5.52 – 4.61 (m, 2H), 2.43 – 0.91 (m, 11H).

 13 C NMR (75 MHz, CDCl₃) δ 212.99, 211.4, 199.6, 198.1, 136.7, 136.6, 135.8, 132.8, 132.7, 129.3, 129.0, 128.7, 128.6, 128.6, 128.5, 128.4, 128.2, 127.4, 127.3, 127.2, 126.9, 61.4, 60.1, 57.3, 55.8, 51.0, 50.0, 29.3, 28.3, 27.7, 27.6, 25.9, 25.8, 25.6, 25.6, 25.3, 25.1.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{28}H_{28}O_2$ 397.2162, found: 397.2164.

2-(4-chlorophenyl)-4-cyclohexyl-2-methyl-1-phenylbutane-1,4-dione (4u)

Chromatography Pentane/EA = 30:1 (v/v), 53.2 mg (72%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.05 (m, 9H), 3.29 (d, *J* = 17.4 Hz, 1H), 2.91 (d, *J* = 17.4 Hz, 1H), 2.17 – 2.07 (m, 1H), 1.69 (s, 3H), 1.68 – 1.06 (m, 10H).

¹³C NMR (75 MHz, CDCl₃) δ 210.9, 202.8, 141.6, 137.2, 133.2, 131.3, 129.2, 128.8, 127.9, 127.6, 52.6, 51.3, 51.1, 28.3, 28.2, 25.7, 25.5, 24.2.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{25}ClO_2$ 369.1616, found: 369.1618.

4v

4-cyclohexyl-2-methyl-1-phenyl-2-(p-tolyl)butane-1,4-dione (4v)

Chromatography Pentane/EA = 30:1 (v/v), 48.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.09 (m, 9H), 3.31 (d, *J* = 17.2 Hz, 1H), 2.89 (d, *J* = 17.2 Hz, 1H), 2.28 (s, 3H), 2.14 – 2.08 (m, 1H), 1.67 (s, 3H), 1.65 – 1.05 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 211.45, 203.4, 140.0, 137.7, 136.9, 131.0, 129.8, 128.9, 127.8, 125.9, 52.7, 51.4, 51.2, 28.3, 28.2, 25.8, 25.6, 25.6, 24.2, 20.9.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₄H₂₈O₂ 349.2162, found: 349.2171.

1-cyclohexyl-2-methyl-4-phenyl-3-(3-(trifluoromethyl)phenyl)butane-1,4-dione (4w)

Chromatography Pentane/EA = 30:1 (v/v), 41.0 mg (51%), white solid. dr = 6:4, slightly sticky white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.83 (m, 2H), 7.55 – 7.28 (m, 7H), 4.93 (d, J = 10.6 Hz, 0.4H), 4.84 (d, J = 10.6 Hz, 0.6H), 3.74 – 3.51 (m, 1H), 2.64 – 0.86 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 216.6, 215.6, 199.5, 198.5, 138.3, 138.1, 136.7, 136.4, 133.5, 133.0, 132.8, 132.3, 129.9, 129.5, 129.2, 128.8, 128.7, 128.6, 128.6, 128.5, 125.5, 125.4, 124.4, 124.4, 55.8, 54.9, 51.3, 49.6, 48.6, 48.4, 29.1, 28.2, 27.7, 27.2, 25.9, 25.8, 25.6, 25.5, 25.4, 16.9, 15.1, 14.2. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₄H₂₅F₃O₂ 403.1879, found: 403.1881.

4x

2-(4-chlorophenyl)-4-cyclohexyl-3-methyl-1-phenylbutane-1,4-dione (4x)

Chromatography Pentane/EA = 30:1 (v/v), 31.8 mg (43%), white solid. dr = 8:2, slightly sticky white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.81 (m, 2H), 7.48 – 7.11 (m, 7H), 4.83 (d, J = 10.6 Hz, 0.8H), 4.74 (d, J = 10.6 Hz, 0.2H), 3.69 – 3.45 (m, 1H), 2.02 – 0.65 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 216.7, 215.9(minor), 199.7(minor), 198.6, 138.6, 136.7(minor), 136.4(minor), 136.4, 135.7(minor), 135.5, 133.3, 132.9, 131.9(minor), 130.4, 130.2(minor), 129.9(minor), 129.5(minor), 129.3, 129.2, 129.0(minor), 128.9, 128.7(minor), 128.6, 128.6(minor), 128.5(minor), 128.4, 55.5(minor), 54.8, 51.3(minor), 50.4, 48.3(minor), 46.4, 38.5, 31.4(minor), 28.1(minor), 28.1(minor), 27.8(minor), 27.2(minor), 25.8, 25.6, 25.5, 17.1, 16.9(minor), 15.0.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₅ClO₂ 369.1616, found: 369.1622.

4y

2-([1,1'-biphenyl]-4-yl)-4-cyclohexyl-3-methyl-1-phenylbutane-1,4-dione (4y)

Chromatography Pentane/EA = 30:1 (v/v), 47.6 mg (58%), white solid. dr = 8:2, slightly sticky white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.87 (m, 2H), 7.47 – 7.23 (m, 12H), 4.86 (d, J = 10.6 Hz, 0.8H), 3.30 (d, J = 10.6 Hz, 0.2H), 3.76 – 3.52 (m, 1H), 1.97 – 0.69 (m, 14H).

¹³C NMR (75 MHz, CDCl₃) δ 217.3(minor), 216.3, 199.9(minor), 198.7, 140.5, 140.4(minor), 140.2, 136.9, 136.1, 135.9(minor), 133.2, 132.7(minor), 129.4, 129.3(minor), 129.1, 128.7(minor), 128.6(minor), 128.4, 127.6(minor), 127.4(minor), 127.3, 127.3(minor), 126.9, 55.9(minor), 55.5, 51.7, 49.7(minor), 48.3, 29.1(minor), 28.3(minor), 27.9, 27.1, 25.9(minor), 25.8(minor), 25.7, 25.6, 25.4, 16.9, 15.2(minor). HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₉H₃₀O₂ 411.2319, found: 411.2327.

1-cyclohexyl-2-methyl-3-(naphthalen-2-yl)-4-phenylbutane-1,4-dione (4z)

Chromatography Pentane/EA = 30:1 (v/v), 30.8 mg (40%), white solid. dr = 9:1, slightly sticky white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.38 – 7.11 (m, 12H), 7.46 – 3.58 (m, 3H), 1.79 – 0.50 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) δ 217.4(minor), 216.0, 198.9(minor), 198.2, 139.9, 137.0, 134.3(minor), 133.4, 132.9(minor), 132.6, 129.5, 128.9, 128.5, 128.4, 128.3, 126.7, 125.8, 125.7, 125.2, 123.7, 51.3, 29.2(minor), 28.1, 26.9(minor), 26.0, 25.9, 25.7, 25.6, 25.6, 25.2, 16.8. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₇H₂₈O₂ 385.2162, found: 385.2164.

4aa

4-cyclohexyl-2-phenyl-1-(p-tolyl)butane-1,4-dione (4aa)

Chromatography Pentane/EA = 20:1 (v/v), 55.6 mg (83%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.20 – 7.06 (m, 7H), 5.03 (dd, *J* = 10.0, 4.1 Hz, 1H), 3.53 (dd, *J* = 17.9, 10.0 Hz, 1H), 2.67 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.35 – 2.28 (m, 1H), 2.26 (s, 3H), 1.88 – 1.07 (m, 10H).

¹³C NMR (75 MHz, CDCl₃) δ 212.1, 198.6, 143.6, 139.0, 133.8, 129.1, 129.0, 129.0, 128.1, 127.1, 50.7, 48.4, 45.3, 28.4, 28.3, 25.8, 25.6, 25.6, 21.6.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{26}O_2$ 335.2006, found: 335:2008.

4ab

4-cyclohexyl-2-phenyl-1-(m-tolyl)butane-1,4-dione (4ab)

Chromatography Pentane/EA = 20:1 (v/v), 46.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.71 – 7.67 (m, 2H), 7.20 – 7.07 (m, 7H), 5.04 (dd, *J* = 10.1, 3.9 Hz, 1H), 3.55 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.67 (dd, *J* = 17.9, 3.9 Hz, 1H), 2.37 – 2.27 (m, 1H), 2.25 (s, 3H), 1.87 – 1.08 (m, 10H).

 ^{13}C NMR (75 MHz, CDCl₃) δ 212.1, 199.2, 138.7, 138.1, 136.4, 133.6, 129.3, 129.0, 128.2, 128.1, 127.1, 126.1, 50.6, 48.4, 45.4, 28.3, 25.8, 25.6, 25.5, 21.3. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₆O₂ 335.2006, found: 335.2003.

4ac

4-cyclohexyl-2-phenyl-1-(o-tolyl)butane-1,4-dione (4ac)

Chromatography Pentane/EA = 20:1 (v/v), 53.6 mg (80%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.76 – .08 (m, 8), 7.03 (dd, *J* = 10.7, 3.5 Hz, 1H), 4.86 (dd, *J* = 10.7, 3.5 Hz, 1H), 3.63 (dd, *J* = 18.0, 10.7 Hz, 1H), 2.65 (dd, *J* = 18.0, 3.5 Hz, 1H), 2.37 – 1.08 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.4, 202.9, 138.4, 137.9, 137.6, 131.3, 130.7, 128.9, 128.3, 128.3, 127.3, 125.4, 51.55, 50.6, 44.7, 28.4, 25.8, 25.6, 25.6, 20.4.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{26}O_2 335.2006$, found: 335.2006.

4ad

4-cyclohexyl-1-(4-(dimethylamino)phenyl)-2-phenylbutane-1,4-dione (4ad)

Chromatography Pentane/EA = 20:1 (v/v), 36.4 mg (50%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.85 – 6.47 (m, 9H), 5.01 (dd, J = 9.6, 4.4 Hz, 1H), 3.50 (dd, J = 17.7, 9.6 Hz, 1H), 2.91 (s, 6H), 2.64 (dd, J = 17.7, 4.4 Hz, 1H), 2.34 – 1.03 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.35, 196.68, 153.15, 140.16, 131.11, 128.87, 128.00, 126.77, 124.20, 110.62, 50.84, 47.77, 45.24, 39.95, 28.33, 28.26, 25.86, 25.67, 25.56. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₄H₂₉NO₂ 364.2271, found: 364.2274.

4-cyclohexyl-1-(4-fluorophenyl)-2-phenylbutane-1,4-dione (4ae)

Chromatography Pentane/EA = 20:1 (v/v), 46.0 mg (68%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.95 – 7.89 (m, 2H), 7.24 – 6.92 (m, 7H), 4.99 (dd, *J* = 10.2, 3.8 Hz, 1H), 3.55 (dd, *J* = 18.0, 10.2 Hz, 1H), 2.68 (dd, *J* = 18.0, 3.8 Hz, 1H), 2.35 – 1.08 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.1, 197.5, 138.5, 131.5, 131.4, 129.2, 128.0, 127.3, 115.7, 115.4, 50.6, 48.5, 45.5, 28.4, 25.8, 25.6, 25.6.

```
<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -105.59 (qd, J = 8.2, 5.6 Hz, 1F).
HRMS(ESI-TOF) m/z: calcd for [M<sup>+</sup>]Na<sup>+</sup> C<sub>22</sub>H<sub>23</sub>FO<sub>2</sub> 361.1574, found: 361.1582.
```


4af

1-(4-chlorophenyl)-4-cyclohexyl-2-phenylbutane-1,4-dione (4af)

Chromatography Pentane/EA = 20:1 (v/v), 48.2 mg (66%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.80 (m, 2H), 7.29 – 7.10 (m, 7H), 4.98 (dd, *J* = 10.2, 3.8 Hz, 1H), 3.55 (dd, *J* = 18.0, 10.2 Hz, 1H), 2.68 (dd, *J* = 18.0, 3.8 Hz, 1H), 2.35 – 1.12 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 212.1, 197.9, 139.2, 138.3, 134.7, 130.3, 129.2, 128.7, 128.0, 127.4, 50.6, 48.6, 45.4, 28.4, 25.8, 25.6, 25.6.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{22}H_{23}CIO_2 355.1460$, found: 355.1468.

4ag

1-(4-bromophenyl)-4-cyclohexyl-2-phenylbutane-1,4-dione (4ag)

Chromatography Pentane/EA = 20:1 (v/v), 55.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.72 (m, 2H), 7.45 – 7.09 (m, 7H), 4.97 (dd, *J* = 10.2, 3.8 Hz, 1H), 3.54 (dd, *J* = 18.0, 10.2 Hz, 1H), 2.68 (dd, *J* = 18.0, 3.8 Hz, 1H), 2.34 – 1.12 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 212.0, 198.1, 138.3, 135.2, 131.7, 130.4, 129.2, 128.0, 127.9, 127.4, 50.6, 48.6, 45.4, 28.3, 25.8, 25.6, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₂₃BrO₂ 421.0773, found: 421.0774.

4-cyclohexyl-2-phenyl-1-(4-(trifluoromethyl)phenyl)butane-1,4-dione (4ah)

Chromatography Pentane/EA = 20:1 (v/v), 38.8 mg (50%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.12 (m, 9H), 5.01 (dd, *J* = 10.4, 3.7 Hz, 1H), 3.58 (dd, *J* = 18.1, 10.4 Hz, 1H), 2.72 (dd, *J* = 18.1, 3.7 Hz, 1H), 2.35 – 1.08 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 212.1, 198.3, 139.3, 137.8, 129.3, 129.1, 128.1, 127.5, 125.6, 125.5, 125.5, 125.43, 50.56, 48.88, 45.51, 28.38, 28.36, 25.79, 25.59, 25.55. ¹⁹F NMR (282 MHz, CDCl₃) δ -63.19. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₃F₃O₂ 389.1723, found: 389.1727.

4ai

4-cyclopentyl-1,2-diphenylbutane-1,4-dione (4ai)

Chromatography Pentane/EA = 20:1 (v/v), 48.4 mg (79%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.41 – 7.09 (m, 8H), 5.07 (dd, J = 10.1, 4.0 Hz, 1H), 3.56 (dd, J = 17.9, 10.1 Hz, 1H), 2.83 (p, J = 8.0 Hz, 1H), 2.72 (dd, J = 17.9, 4.0 Hz, 1H), 1.80 - 1.46 (m, 8H).¹³C NMR (75 MHz, CDCl₃) δ 211.2, 199.0, 138.6, 136.4, 132.8, 129.1, 128.8, 128.5, 128.4, 128.3, 128.1, 127.2, 51.2, 48.5, 46.5, 28.7, 28.7, 25.9, 25.9.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₁H₂₂O₂ 307.1693, found: 307.1690.

4aj

4-cyclobutyl-1,2-diphenylbutane-1,4-dione (4aj)

Chromatography Pentane/EA = 20:1 (v/v), 23.8 mg (40%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.43 – 7.07 (m, 8H), 5.07 (dd, J = 10.0, 4.1 Hz, 1H), 3.44 (dd, J = 17.9, 10.0 Hz, 1H), 3.25 - 2.66 (m, 1H), 2.62 (dd, J = 17.8, 4.1 Hz, 1H), 2.28 - 1.19 (m, 7H).¹³C NMR (75 MHz, CDCl₃) δ 209.9, 199.0, 138.7, 136.4, 132.8, 129.1, 128.8, 128.4, 128.1, 127.2, 48.5, 45.3, 44.6, 24.3, 24.1, 17.7.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₀H₂₀O₂ 293.1536, found: 293.1540.

4ak

5-methyl-1,2-diphenylhexane-1,4-dione (4ak)

Chromatography Pentane/EA = 20:1 (v/v), 49.7 mg (88%), pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.42 – 7.09 (m, 8H), 5.06 (dd, *J* = 10.1, 4.0 Hz, 1H), 3.56 (dd, *J* = 17.9, 10.0 Hz, 1H), 2.71 (dd, *J* = 17.9, 4.0 Hz, 1H), 2.58 (dq, *J* = 13.9, 6.9 Hz, 1H), 1.06 (d, *J* = 6.9 Hz, 3H), 1.00 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 212.8, 199.0, 138.6, 136.4, 132.8, 129.1, 128.8, 128.4, 128.1, 127.2, 48.6, 45.2, 40.8, 18.1.

HRMS(ESI-TOF) m/z: calcd for $[M^+]Na^+ C_{19}H_{20}O_2$ 303.1356, found: 303.1364.

1-(4-bromophenyl)-2-(4-chlorophenyl)-4-cyclohexylbutane-1,4-dione (4al)

Chromatography Pentane/EA = 20:1 (v/v), 60.6 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.74 – 7.70 (m, 2H), 7.47 – 7.08 (m, 6H), 4.95 (dd, *J* = 10.0, 4.0 Hz, 1H), 3.50 (dd, *J* = 18.0, 10.0 Hz, 1H), 2.67 (dd, *J* = 18.0, 4.0 Hz, 1H), 2.33 – 1.13 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 211.7, 197.8, 136.7, 134.9, 133.4, 131.8, 130.3, 129.4, 129.4, 128.2, 50.6, 47.7, 45.2, 28.3, 28.3, 25.8, 25.6, 25.5.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{22}H_{22}BrClO_2$ 433.0565, found: 433.0577.

2-(4-chlorophenyl)-4-cyclohexyl-1-(p-tolyl)butane-1,4-dione (4am)

Chromatography Pentane/EA = 20:1 (v/v), 53.8 mg (73%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.75 (m, 2H), 7.18 – 7.08 (m, 6H), 5.02 (dd, *J* = 9.7, 4.3 Hz, 1H), 3.49 (dd, *J* = 17.9, 9.7 Hz, 1H), 2.66 (dd, *J* = 17.9, 4.3 Hz, 1H), 2.36 – 2.29 (m, 1H), 2.27 (s, 3H), 1.90 – 1.11 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 211.8, 198.3, 143.9, 137.8, 133.6, 133.1, 129.4, 129.2, 128.9, 50.7, 47.6, 45.1, 28.3, 25.8, 25.6, 25.5, 21.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₅ClO₂ 391.1616, found: 391.1620.

4an

2-(4-chlorophenyl)-4-cyclohexyl-1-(m-tolyl)butane-1,4-dione (4an)

Chromatography Pentane/EA = 30:1 (v/v), 50.8 mg (69%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.65 (m, 2H), 7.24 – 7.11 (m, 6H), 5.03 (dd, J = 9.9, 4.2 Hz, 1H), 3.51 (dd, J = 18.0, 9.8 Hz, 1H), 2.67 (dd, J = 18.0, 4.2 Hz, 1H), 2.33 – 2.28 (m, 1H), 2.28 (s, 3H), 1.86 – 1.06 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 199.0, 138.3, 137.3, 136.2, 133.8, 129.5, 129.3, 129.2, 128.4, 126.1, 50.7, 47.7, 45.2, 28.3, 25.8, 25.6, 25.5, 21.3.

HRMS(ESI-TOF) m/z: calcd for $[M^+]Na^+ C_{23}H_{25}CIO_2 391.1435$, found: 391.1440.

4ao

2-(4-chlorophenyl)-4-cyclohexyl-1-(4-(dimethylamino)phenyl)butane-1,4-dione (4ao)

Chromatography Pentane/EA = 20:1 (v/v), 36.0 mg (46%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 6.59 (m, 8H), 5.09 (dd, J = 9.2, 4.7 Hz, 1H), 3.54 (dd, J = 17.8, 9.2 Hz, 1H), 3.03 (s, 6H), 2.73 (dd, J = 17.8, 4.7 Hz, 1H), 2.41 – 1.20 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 212.1, 196.3, 153.2, 138.6, 132.7, 131.1, 129.4, 129.0, 124.0, 110.8, 50.8, 46.9, 45.0, 40.1, 28.3, 28.3, 25.8, 25.7, 25.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₄H₂₈ClNO₂ 420.1701, found: 420.1700.

2-(4-chlorophenyl)-4-cyclohexyl-1-(o-tolyl)butane-1,4-dione (4ap)

Chromatography Pentane/EA = 20:1 (v/v), 59.0 mg (80%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.72 (dd, J = 7.6, 1.5 Hz, 1H), 7.23 – 7.03 (m, 7H), 4.85 (dd, J = 10.4, 3.7 Hz, 1H), 3.58 (dd, J = 18.0, 10.4 Hz, 1H), 2.63 (dd, J = 18.0, 3.7 Hz, 1H), 2.38 – 2.29 (m, 1H), 2.16 (s, 3H), 1.90 – 1.09 (m, 10H).

¹³C NMR (75 MHz, CDCl₃) δ 212.0, 202.5, 138.1, 137.9, 136.2, 133.2, 131.4, 130.9, 129.6, 129.1, 128.3, 125.5, 50.8, 50.6, 44.5, 28.4, 28.4, 25.8, 25.6, 25.5, 20.5.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{25}ClO_2$ 369.1616, found: 369.1619.

4aq

5-methyl-2-phenyl-1-(p-tolyl)hexane-1,4-dione (4aq)

Br

Chromatography Pentane/EA = 20:1 (v/v), 52.4 mg (89%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.20 – 7.07 (m, 7H), 5.04 (dd, *J* = 9.9, 4.1 Hz, 1H), 3.54 (dd, *J* = 17.8, 9.9 Hz, 1H), 2.70 (dd, *J* = 17.8, 4.1 Hz, 1H), 2.57 (dq, *J* = 13.9, 6.9 Hz, 1H), 2.26 (s, 3H), 1.05 (d, *J* = 6.9 Hz, 3H), 1.00 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 212.8, 198.5, 143.6, 138.9, 133.8, 129.1, 129.1, 128.9, 128.1 127.1, 48.4, 45.1, 40.8, 21.6, 18.1.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₀H₂₂O₂ 295.1693, found: 295.1691.

4ar

1-(4-bromophenyl)-5-methyl-2-phenylhexane-1,4-dione (4ar)

Chromatography Pentane/EA = 20:1 (v/v), 52.6 mg (73%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.73 (m, 2H), 7.45 – 7.10 (m, 7H), 4.97 (dd, *J* = 10.1, 3.9 Hz, 1H), 3.55 (dd, *J* = 18.0, 10.2 Hz, 1H), 2.71 (dd, *J* = 18.0, 3.9 Hz, 1H), 2.57 (dq, *J* = 13.9, 6.9 Hz, 1H), 1.06 (d, *J* = 6.9 Hz, 3H), 1.00 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 212.7, 198.0, 138.2, 135.1, 131.7, 130.4, 129.2, 129.0, 128.3, 128.0, 127.9, 127.4, 48.6, 45.1, 40.7, 18.1.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₁₉H₁₉BrO₂ 359.0641, found: 359.0640.

4as

5-methyl-2-phenyl-1-(m-tolyl)hexane-1,4-dione (4as)

Chromatography Pentane/EA = 20:1 (v/v), 47.0 mg (80%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.67 (m, 2H), 7.23 – 7.08 (m, 7H), 5.05 (dd, *J* = 10.1, 4.0 Hz, 1H), 3.55 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.70 (dd, *J* = 17.9, 4.0 Hz, 1H), 2.60 – 2.49 (m, 1H), 2.26 (s, 3H), 1.02 (dd, *J* = 15.7, 6.9 Hz, 6H).

 ^{13}C NMR (75 MHz, CDCl₃) δ 212.8, 199.2, 138.7, 138.1, 136.4, 133.6, 129.3, 129.1, 128.3, 128.1, 127.2, 126.1, 48.5, 45.2, 40.8, 21.3, 18.9. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₀H₂₂O₂ 295.1693, found: 295.1696.

4at

1-(4-bromophenyl)-4-cyclopentyl-2-phenylbutane-1,4-dione (4at)

Chromatography Pentane/EA = 20:1 (v/v), 53.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H), 7.46 – 7.10 (m, 7H), 4.98 (dd, *J* = 10.1, 3.9 Hz, 1H), 3.55 (dd, *J* = 18.0, 10.1 Hz, 1H), 2.88 – 2.78 (m, 1H), 2.71 (dd, *J* = 18.0, 3.9 Hz, 1H), 1.79 – 1.48 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 211.2, 198.1, 138.2, 135.2, 131.7, 130.4, 129.2, 128.0, 127.9, 127.4, 51.2, 48.6, 46.4, 28.8, 28.7, 26.0, 25.9.

HRMS(ESI-TOF) m/z: calcd for $[M^+]Na^+ C_{21}H_{21}BrO_2 407.0617$, found: 407.0620.

4au

4-cyclopentyl-2-phenyl-1-(p-tolyl)butane-1,4-dione (4au)

Chromatography Pentane/EA = 20:1 (v/v), 45.6 mg (71%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.78 (m, 2H), 7.21 – 7.07 (m, 7H), 5.05 (dd, *J* = 10.0, 4.1 Hz, 1H), 3.54 (dd, *J* = 17.9, 9.9 Hz, 1H), 2.87 – 2.77 (m, 1H), 2.70 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.26 (s, 3H), 1.80 – 1.45 (m, 8H).

¹³C NMR (75 MHz, CDCl₃) δ 211.2, 198.6, 143.6, 138.9, 133.8, 129.1, 129.0, 128.9, 128.1, 127.1, 51.3, 48.4, 46.4, 28.7, 28.7, 25.9, 25.9, 21.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₂₄O₂ 343.1668, found: 343.1669.

4av

1-(4-bromophenyl)-4-cyclobutyl-2-phenylbutane-1,4-dione (4av)

Chromatography Pentane/EA = 20:1 (v/v), 26.0 mg (35%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 2H), 7.47 – 7.13 (m, 7H), 4.98 (dd, J = 10.1, 4.0 Hz, 1H), 3.43 (dd, J = 17.9, 10.1 Hz, 1H), 3.27 - 73.16 (m, 1H), 2.61 (dd, J = 18.0, 4.0 Hz, 1H), 2.30 - 1.72 (m, 6H).¹³C NMR (101 MHz, CDCl₃) δ 209.8, 198.0, 138.2, 135.1, 131.8, 130.4, 129.2, 128.0, 127.4, 48.5, 45.2, 44.6, 24.3, 24.1, 17.8.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₀H₁₉BrO₂ 393.0461, found: 393.0460.

4aw

4-cyclopentyl-2-(4-phenoxyphenyl)-1-phenylbutane-1,4-dione (4aw)

Chromatography Pentane/EA = 20:1 (v/v), 55.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.44 – 6.81 (m, 12H), 5.05 (dd, J = 9.9, 4.1 Hz, 1H), 3.54 (dd, *J* = 17.9, 9.9 Hz, 1H), 2.88 – 2.78 (m, 1H), 2.73 (dd, *J* = 17.9, 4.2 Hz, 1H), 1.82 – 1.45 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 211.2, 199.1, 156.7, 156.5, 136.4, 133.1, 132.9, 129.7, 129.4, 128.9, 128.5, 123.5, 119.1, 119.1, 51.2, 47.7, 46.5, 30.9, 28.7, 25.9, 25.9.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₇H₂₆O₃ 399.1955, found: 399.1954.

4-cyclopentyl-2-(perfluorophenyl)-1-phenylbutane-1,4-dione (4ax)

Chromatography Pentane/EA = 20:1 (v/v), 50.0 mg (60%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.80 – 7.76 (m, 2H), 7.48 – 7.19 (m, 3H), 5.35 (dd, J = 8.8, 4.8 Hz, 1H), 3.60 (dd, J = 17.8, 8.8 Hz, 1H), 2.99 - 2.87 (m, 1H), 2.71 - 2.57 (m, 1H), 1.86 - 1.18 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 209.6, 195.2, 135.3, 133.5, 128.8, 128.2, 128.1, 51.4, 41.5, 38.4, 28.9, 28.8, 25.9, 25.9.

 $^{19}F NMR (282 MHz, CDCl_3) \delta - 136.69 - -146.03 (m, 2F), -154.21 - -157.65 (m, 1F), -160.77 - -162.88 (m, 2F).$ HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₁H₁₇F₅O₂ 439.1667, found: 439.1663.

4av

5-methyl-2-(naphthalen-2-yl)-1-phenylhexane-1,4-dione (4ay)

Chromatography Pentane/EA = 20:1 (v/v), 34.4 mg (52%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.95 – 7.91 (m, 2H), 7.72 – 7.25 (m, 10H), 5.22 (dd, *J* = 9.9, 4.0 Hz, 1H), 3.65 (dd, *J* = 17.9, 10.0 Hz, 1H), 2.79 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.65 – 2.51 (m, 10H), 1.04 (dd, *J* = 19.1, 6.9 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 212.7, 198.9, 136.4, 136.1, 133.6, 132.9, 132.4, 128.9, 128.9, 128.5, 127.7, 127.6, 126.9, 126.3, 126.0, 48.7, 45.2, 40.8, 18.1.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{23}H_{22}O_2$ 331.1693, found: 331.1693.

4az

2-(3-(benzyloxy)-4-methoxyphenyl)-5-methyl-1-phenylhexane-1,4-dione (4az)

Chromatography Pentane/EA = 20:1 (v/v), 48.4 mg (58%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.06 – 6.68 (m, 8H), 5.00 (s, 2H), 4.99 – 4.93 (m, 1H), 3.76 (s, 3H), 3.52 (dd, J = 17.9, 9.9 Hz, 1H), 2.70 (dd, J = 17.9, 4.1 Hz, 1H), 2.73 – 2.51 (m, 1H), 1.02 (dd, J = 15.0, 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 212.95, 199.19, 149.97, 147.41, 136.99, 136.46, 133.70, 132.79, 131.51, 130.16, 128.80, 128.50, 128.46, 128.40, 127.81, 127.20, 120.46, 114.24, 111.35, 70.94, 56.02, 48.13, 45.20, 40.81, 18.09.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₇H₂₈O₄ 417.2060, found: 417.2061.

4ba

2-(4-chlorophenyl)-5-methyl-1-phenylhexane-1,4-dione (4ba)

Chromatography Pentane/EA = 20:1 (v/v), 50.4 mg (80%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.43 – 7.12 (m, 7H), 5.04 (dd, J = 9.8, 4.3 Hz, 1H), 3.52 (dd, J = 17.9, 9.8 Hz, 1H), 2.70 (dd, J = 17.9, 4.2 Hz, 1H), 2.61 – 2.51 (m, 1H), 1.05 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 212.5, 198.7, 137.1, 136.1, 133.2, 133.0, 129.5, 129.3, 128.8, 128.5, 47.8, 44.9, 40.8, 181.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₁₉H₁₉ClO₂ 337.0966, found: 337.0967.

4bb

2-(4-bromophenyl)-5-methyl-1-phenylhexane-1,4-dione (4bb)

Chromatography Pentane/EA = 20:1 (v/v), 59.0 mg (82%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.44 – 7.06 (m, 7H), 5.03 (dd, *J* = 9.8, 4.2 Hz, 1H), 3.52 (dd, *J* = 17.9, 9.8 Hz, 1H), 2.70 (dd, *J* = 17.9, 4.2 Hz, 1H), 2.74 – 2.49 (m, 1H), 1.03 (dd, *J* = 15.2, 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 212.4, 198.6, 137.6, 136.1, 133.0, 132.2, 129.8, 128.8, 128.5, 121.3, 47.8, 44.9, 40.8, 18.1.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₁₉H₁₉BrO₂ 381.0461, found: 381.0466.

4bc

2-(4-bromophenyl)-4-cyclopentyl-1-(p-tolyl)butane-1,4-dione (4bc)

Chromatography Pentane/EA = 20:1 (v/v), 54.8 mg (70%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.75 (m, 2H), 7.34 – 7.05 (m, 6H), 5.02 (dd, *J* = 9.6, 4.3 Hz, 1H), 3.49 (dd, *J* = 17.9, 9.7 Hz, 1H), 2.82 (p, *J* = 7.9 Hz, 1H), 2.69 (dd, *J* = 17.9, 4.3 Hz, 1H), 2.27 (s, 3H), 1.78 – 1.18 (m, 8H), ¹³C NMR (75 MHz, CDCl₃) δ 210.9, 198.2, 143.9, 137.9, 133.6, 132.2, 129.8, 129.2, 128.9, 121.2, 51.3, 47.7, 46.1, 28.7, 28.7, 25.9, 25.9, 21.6.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₂H₂₃BrO₂ 399.0954, found: 399.0958.

4bd

2,5-dimethyl-1,2-diphenylhexane-1,4-dione (4bd)

Chromatography Pentane/EA = 20:1 (v/v), 51.2 mg (87%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.11 (m, 10H), 3.32 (dd, *J* = 17.2, 0.8 Hz, 1H), 2.93 (d, *J* = 17.2 Hz, 1H), 2.43 – 2.33 (m, 1H), 1.30 – 0.87 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 212.1, 203.2, 142.9, 137.4, 131.2, 129.1, 128.9, 127.8, 127.2, 126.1, 53.1, 51.0, 41.4, 24.1, 18.1, 17.9.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₀H₂₂O₂ 317.1512, found: 317.1505.

4be

2-(4-chlorophenyl)-2,5-dimethyl-1-phenylhexane-1,4-dione (4be)

Chromatography Pentane/EA = 20:1 (v/v), 51.8 mg (79%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.13 (m, 9H), 3.29 (dd, *J* = 17.4, 0.8 Hz, 1H), 2.92 (d, *J* = 17.4 Hz, 1H), 2.45 – 2.36 (m, 1H), 1.70 (s, 3H), 0.90 (dd, *J* = 6.9, 3.5 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 211.7, 202.8, 141.6, 137.1, 133.2, 131.4, 129.2, 128.9, 127.9, 127.6, 52.7, 50.9, 41.3, 24.1, 18.1, 17.9.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{20}H_{21}ClO_2$ 329.1303, found: 329.1308.

4bf

1-(4-bromophenyl)-4-cyclohexyl-2-methyl-2-(p-tolyl)butane-1,4-dione (4bf)

Chromatography Pentane/EA = 20:1 (v/v), 51.2 mg (60%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.02 (m, 8H), 3.26 (d, *J* = 17.7 Hz, 1H), 2.91 (d, *J* = 17.3 Hz, 1H), 2.28 (s, 3H), 2.16 – 1.05 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 211.4, 202.3, 139.6, 137.1, 136.3, 131.1, 130.6, 129.9, 125.9, 125.9, 52.6, 51.4, 51.1, 28.3, 28.2, 25.8, 25.6, 24.2, 20.9.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{24}H_{27}BrO_2 427.1267$, found: 427.1269.

4bg

4-cyclohexyl-2-methyl-2-phenyl-1-(p-tolyl)butane-1,4-dione (4bg)

Chromatography Pentane/EA = 20:1 (v/v), 34.8 mg (50%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.32 – 6.91 (m, 9H), 3.40 – 3.08 (m, 1H), 2.90 (d, *J* = 16.9 Hz, 1H), 2.21 (s, 3H), 2.13 – 1.07 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) δ 211.6, 202.5, 143.4, 141.8, 134.3, 129.3, 129.0, 128.5, 127.1, 126.1, 53.3, 51.5, 51.3, 28.3, 28.1, 25.8, 25.6, 25.6, 24.0, 21.4. HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₂₄O₂ 371.1982, found: 371.1987.

4bh

4-cyclohexyl-1-(4-methoxyphenyl)-2-methyl-2-phenylbutane-1,4-dione (4bh)

Chromatography Pentane/EA = 20:1 (v/v), 47.4 mg (65%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 6.70 (m, 9H), 3.78 (s, 3H), 3.30 (d, J = 16.8 Hz, 1H), 2.99 (d, J = 16.8 Hz, 1H), 2.21.34 - 1.13 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 211.8, 201.1, 162.1, 143.7, 131.7, 129.3, 129.1, 127.1, 126.1, 113.1, 55.3, 53.4, 51.7, 51.4, 28.4, 28.2, 25.8, 25.7, 25.6, 24.1. HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₄H₂₈O₃ 387.1931, found: 387.1938.

1-(4-bromophenyl)-4-cyclohexyl-2-methyl-2-phenylbutane-1,4-dione (4bi)

Chromatography Pentane/EA = 20:1 (v/v), 62.0 mg (75%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.12 (m, 9H), 3.28 (dd, J = 17.2, 0.8 Hz, 1H), 2.93 (d, J = 17.2 Hz, 1H), 2.16 - 1.09 (m, 14H).

¹³C NMR (75 MHz, CDCl₃) δ 211.3, 202.1, 162.2, 142.7, 136.2, 131.1, 130.5, 129.2, 127.4, 126.0, 53.0, 51.4, 51.1, 31.5, 31.4, 30.2, 30.1, 28.3, 28.2, 25.8, 25.6, 25.6, 24.1.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₃H₂₅BrO₂ 413.1111, found: 413.1115.

2-([1,1'-biphenyl]-4-yl)-4-cyclopentyl-3-methyl-1-phenylbutane-1,4-dione (4bj)

Chromatography Pentane/EA = 20:1 (v/v), 31.0 mg (39%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.19 (m, 9H), 4.89 (d, *J* = 10.6 Hz, 0.7H), 4.81 (d, *J* = 10.6 Hz, 0.3H), 3.72 -0.93 (m, 13H).

¹³C NMR (75 MHz, CDCl₃) δ 216. 9(minor), 215.9, 199.9(minor), 198.8, 140.4, 140.4(minor), 140.2(minor), 136.9, 136.1(minor), 133.2, 132.7, 129.4, 129.3(minor), 128.7, 128.6(minor), 128.4, 127.6, 127.4(minor), 127.3, 126.9, 55.9(minor), 55.4, 52.0, 50.1, 49.5(minor), 49.4, 30.2(minor), 28.7(minor), 28.1, 27.9(minor), 26.1, 25.9(minor), 25.8, 25.5(minor), 16.9, 15.2(minor). HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₈H₂₈O₂ 397.2162, found: 397.2162.

4bk

2-(4-chlorophenyl)-4-cyclopentyl-3-methyl-1-phenylbutane-1,4-dione (4bk)

Chromatography Pentane/EA = 20:1 (v/v), 29.8 mg (42%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.03 – 7.12 (m, 9H), 4.80 (dd, J = 30.4, 10.6 Hz, 1H), 3.64 – 0.88 (m, 13H). ¹³C NMR (75 MHz, CDCl₃) δ 216.6(minor), 215.1, 199.7(minor), 198.6, 136.7, 136.5(minor), 135.7, 135.5(minor), 133.4, 132.9(minor), 130.4, 130.2(minor), 129.3, 129.2(minor), 129.0, 128.9, 128.7, 128.6, 128.5, 128.5(minor), 55.5(minor), 54.7, 51.8, 50.0(minor), 49.4, 49.3(minor), 30.9, 30.2(minor), 28.7, 28.2(minor), 27.9, 26.1(minor), 25.9(minor), 25.8, 25.6, 16.8, 15.0(minor). HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₂₃ClO₂ 377.1279, found: 377.1276.

4bl

3,5-dimethyl-1,2-diphenylhexane-1,4-dione (4bl)

Chromatography Pentane/EA = 20:1 (v/v), 30.0 mg (35%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.06 (m, 10H), 4.81 (d, *J* = 10.6 Hz, 0.7H), 4.76 (d, *J* = 10.6 Hz, 0.3H), 3.74 – 0.46 (d, *J* = 6.9 Hz, 11H).

¹³C NMR (101 MHz, CDCl₃) δ 218.1(minor), 217.1, 199.9(minor), 198.7, 137.0, 136.9(minor), 136.9, 136.6(minor), 133.1, 132.7(minor), 129.9, 129.4(minor), 129.1, 129.0(minor), 128.9, 128.9(minor), 128.8, 128.7(minor), 128.6, 128.5(minor), 128.4, 128.4(minor), 127.4, 127.4(minor), 56.4(minor), 56.0, 48.3, 41.7, 39.5(minor), 19.2(minor), 18.9(minor), 18.2, 17.6(minor), 16.9, 16.7, 15.2(minor). HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{20}H_{22}O_2$ 295.1693, found: 295.1696.

5-cyclohexyl-2,3-diphenylfuran (6a)

Chromatography Pentane/EA = 50:1 (v/v), 26.6 mg (88%), yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.07 (m, 10H), 6.04 (s, 1H), 2.66 – 1.17 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ 160.2, 146.4, 135.0, 131.8, 128.7, 128.7, 128.4, 127.1, 127.0, 126.1, 122.9, 107.5, 37.4, 31.7, 26.3, 26.1.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+C_{22}H_{22}O$ 303.1743, found: 303.1744.

5-cyclohexyl-1,2,3-triphenyl-1H-pyrrole (6b)

Chromatography Pentane/EA = 20:1 (v/v), Method A: 32.0 mg (85%); Method B: 32.9 mg (87%), white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.22 – 6.90 (m, 15H), 6.23 (s, 1H), 2.37 – 1.03 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ 141.1, 138.8, 136.7, 133.0, 131.2, 129.1, 128.5, 128.1, 128.0, 127.7, 127.4, 126.3, 125.0, 122.2, 104.8, 35.7, 34.0, 26.6, 26.1.

HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₈H₂₇N 378.2216, found: 378.2220.

4-cyclohexyl-1,2-diphenylbutane-1,4-diol (6c)

Chromatography Pentane/EA = 20:1 (v/v), 29.2 mg (90%), white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.12 (m, 10H), 4.71 (dd, J = 9.8, 7.4 Hz, 1H), 3.21 – 3.15 (m, 1H), 2.96 – 2.85 (m, 1H), 1.79 – 0.69 (m, 15H).

¹³C NMR (101 MHz, CDCl₃) δ 142.4, 140.8, 129.0, 128.8, 128.6, 128.5, 128.2, 127.6, 126.9, 126.9, 78.8, 73.5, 50.5, 44.2, 36.2, 30.9, 28.9, 27.9, 26.1, 26.0.

HRMS(ESI-TOF) m/z: calcd for [M⁺]Na⁺ C₂₂H₂₈O₂ 347.1981, found: 347.1989.

6-cyclohexyl-3,4-diphenylpyridazine (6d)

Chromatography Pentane/EA = 20:1 (v/v), 50.9 mg (78%), yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.09 (m, 11H), 3.03 – 2.93 (m, 1H), 2.08 – 1.17 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 157.8, 139.1, 137.3, 137.0, 129.9, 129.0, 128.5, 128.4, 128.4, 128.0, 125.6, 44.4, 32.7, 26.4, 25.9. HRMS(ESI-TOF) m/z: calcd for [M⁺]H⁺ C₂₂H₂₂N₂ 315.1856, found: 315.1851.

S35

5-cyclohexyl-2,3-diphenyl-1H-pyrrole (6e)

 ^{1}H NMR (300 MHz, CDCl_3) δ 7.86 (s, 1H), 7.29 – 7.04 (m, 10H), 6.02 (s, 1H), 2.57 – 2.48 (m, 1H), 2.03 – 1.14 (m, 10H).

¹³C NMR (75 MHz, CDCl₃) δ 138.6, 136.9, 133.7, 128.5, 128.3, 128.2, 127.3, 126.3, 126.2, 125.5, 121.7, 106.1, 36.8, 33.1, 26.2, 26.1.

HRMS(ESI-TOF) m/z: calcd for $[M^+]H^+ C_{22}H_{23}N$ 302.1903, found: 302.1906.
5. Mechanistic investigation

5.1 Radical trapping experiment by 2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO)

Scheme 1 Radical capture experiments by TEMPO

A 4 mL screw-cap vial was charged Hantzsch ester **3a** (83.0 mg, 0.25 mmol, 2.5 equiv), acyl imidazoles **2a** (34.4 mg, 0.2 mmol, 2.0 equiv), PC-1 (2.6 mg, 1.5 mol%), **NHC-9** (5.6 mg, 25 mol%), TEMPO (48.0 mg, 0.2 mmol, 2.0 equiv), and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After replacing the nitrogen in the vial three times, acetonitrile (1 mL) was added. Then, styrene (15.6 mg, 0.1 mmol, 1.0 equiv) was added using a microinjector. The vial was then moved to a cannula and transferred into a 300 mL photoautoclave (manufactured by Parr Instrument Company®), under a nitrogen atmosphere. At room temperature, the autoclave was washed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was allowed to react at 40 °C under UV-A (400-500 nm) for 36 hours. After the reaction was complete, the pressure of the autoclave was taken for GC-MS analysis. The result is shown in **Figure 4**. When TEMPO were added to the reaction, no products were detected, and alkyl radical was trapped by TEMPO. Data in agreement with that reported previously.^[5]

File :D:\MassHunter\GCMS\1\data\202412\yml-1215-3.D Operator : Acquired : 17 Dec 2024 09:11 using AcqMethod wfp-23 min.M Instrument : GCMS Sample Name: yml-1215-3 Misc Info : Vial Number: 41

Figure 4 GC-MS of reaction system

6. References

[1]. a) Ishii, T.; Kakeno, Y.; Nagao, K.; Ohmiya, H. N-Heterocyclic Carbene-Catalyzed Decarboxylative Alkylation of Aldehydes. *J. Am. Chem. Soc.* **2019**, *141*, 3854–3858; b) Zhuo, J.; Zhang, Y.; Li, Z.; Li, C. Nickel-catalyzed direct acylation of aryl and alkyl bromides with acylimidazoles. ACS Catal. 2020, 10, 3895-3903.

[2]. G. Li, R. Chen, L. Wu, Q. Fu, X. Zhang, Z. Tang, Angew. Chem. Int. Ed. 2013, 52, 8432 - 8436.

[3]. http://www.lumatec.de/de/produkte/uv-lichtquelle-superlite-s04/.

[4]. a) L. Myles, N. Gathergood, S. J. Connon, *Chem. Commun.*, **2013**, *49*, 5316 – 5318; b) J. Pesch, K. Harms, T. Bach, *Eur. J. Org. Chem.* **2004**, 2025 – 2035; c) Y. Kakeno, M. Kusakabe, K. Nagao, H. Ohmiya, *ACS Catal.* **2020**, *10*, 8524 – 8529; d) F. Romanov-Michailidis, C. Besnard, A. Alexakis, *Org. Lett.* **2012**, *14*, 4906 – 4909.

[5]. a) D. Liu, Y. Li, X. Qi, C. Liu, Y. Lan, A. Lei, *Org. Lett.* **2015**, *17*, 998 – 1001; b) F. Zhao, X.-W. Gu, R. Franke, X.-F. Wu, *Angew. Chem. Int. Ed.* **2022**, *61*, e202214812.

[6]. Z.-H. Liu, X.-Y. Zhang, M. Virelli, G. Zanoni, E. A. Anderson, X.-H. Bi, *iScience* 2018, 8, 54 - 60.

[7]. Y.-H. He, G.-Q. Wang, Z. Guan, Heterocycles 2020, 47, 486 - 489.

[8]. J. de la Zerda, G. Barak, Y. Sasson, Tetrahedron 1989, 45, 1533 - 1536.

[9]. a) M. A. I. Salem, H. M. F. Madkour, E. A. Soliman, N. F. H. Mahmoud, *Heterocycles* 2000, *53*, 1129 – 1143;
b) P. Lenden, D. A. Entwistle, M. C. Willis, *Angew. Chem. Int. Ed.* 2011, *50*, 10657 – 10660.

[10]. R. Kuwano, M. Kashiwabara, M. Ohsumi, H. Kusano, J. Am. Chem. Soc. 2008, 130, 808 - 809.

7. NMR Spectra

4a ¹H NMR (400 MHz, CDCl₃)

4b ¹H NMR (400 MHz, CDCl₃)

K:/nmr/AV400/data/2411/nmr/241106.402/10/fid
 K:/nmr/Av400/fid
 K:/nmr/Av400/fi

4c ¹H NMR (300 MHz, CDCl₃)

— K:/nmr/AV300/data/2411/nmr/241118.323/10/fid

S44

S48

$\textbf{4i}^{\scriptscriptstyle 13} \mathsf{F} \; \mathsf{NMR} \; (\mathsf{282} \; \mathsf{MHz}, \mathsf{CDCI}_{\mathsf{3}})$

S52

40 ¹³F NMR (282 MHz, CDCl₃)

4q ¹H NMR (300 MHz, CDCl₃)

4r ¹H NMR (300 MHz, CDCl₃)

— K:/nmr/AV300/data/2412/nmr/241209.311/10/fid
 — K:/nmr/AV300/data/2412/nmr/241209.311/10/fid
 — Section 1
 — K:/nmr/AV300/data/2412/nmr/241209.311/10/fid
 — Section 2
 — S

120 110 f1 (ppm)

120 110 f1 (ppm)

S63

4w ¹H NMR (300 MHz, CDCl₃)

S65

4z ¹H NMR (300 MHz, CDCl₃) - K:/nmr/Fourier300/data/2412/nmr/241206.f321/10/fid

4aa ¹H NMR (300 MHz, CDCl₃)

- K:/nmr/Fourier300/data/2412/nmr/241210.f321/10/fid

2,8106 2,1207 2,1207 2,1208 2,2208 2,

4ab ¹H NMR (300 MHz, CDCl₃)

H:/nmr/AV300/data/2412/nmr/241202.309/10/fid
 K:/nmr/AV300/data/2412/nmr/241202.309/10/fid
 K:/solution
 K:/solution

120 110 f1 (ppm)

4ae ¹³F NMR (282 MHz, CDCl₃)

— K:/nmr/AV400/data/2411/nmr/241125.412/10/fid

-100 -110 f1 (ppm) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -170 -180 -190 -200 -210 -130 -140 -150 -160

-105.5527 -105.5662 -105.5744 -105.5880 -105.5861 -105.5061 -105.6097 -105.6097 4af ¹H NMR (300 MHz, CDCl₃)

— K:/nmr/AV300/data/24111/nmr/241122.308/10/fid
 — K:/nmr/AV300/data/24111/nmr/241122.308/10/fid
 — Signal and a straight of the straight

4ag ¹H NMR (300 MHz, CDCl₃)

S75

4ah ¹H NMR (300 MHz, CDCl₃)

4i¹³F NMR (282 MHz, CDCl₃)

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

4ai ¹H NMR (300 MHz, CDCl₃)

S80

S88

4at ¹H NMR (300 MHz, CDCl₃)

— K:/nmr/Fourier300/data/2412/nmr/241202.f328/10/fid
 — K:/nmr/Fourier300/fid
 — K:/nmr/Fourier300/fid
 — K:/nmr/Fourier300/fid
 — K:/nmr/Fourier300/fid
 — K:/nmr/Fourier300/fid
 = K:/nmr/Fourier300/fid
 =

S90

4av ¹H NMR (400 MHz, CDCl₃)

120 110 f1 (ppm)

4z ¹³F NMR (382 MHz, CDCl₃)

4az ¹H NMR (300 MHz, CDCl₃)

S97

4bb ¹H NMR (300 MHz, CDCl₃)

4bc ¹H NMR (300 MHz, CDCl₃)

K:/nmr/AV300/data/2412/nmr/241209.315/10/fid
 K:/nmr/AV300/data/2412/nmr/241209.315/10/fid
 K:/starting/attarter/attart

4bd ¹H NMR (300 MHz, CDCl₃)

4be ¹H NMR (300 MHz, CDCl₃)

4bg ¹H NMR (300 MHz, CDCl₃)

4bh ¹H NMR (400 MHz, CDCl₃)

— K:/nmr/AV400/data/2412/nmr/241211.401/10/fid
— K:/nmr/AV400/data/2412/nmr/241211.401/10/fid
— Signal and a straight of the straight of the

4bi ¹H NMR (300 MHz, CDCl₃)

3.3068 3.2961 3.2963 3.2965 3.2965 1.6778 1.1758 1.1158 1.

4bj ¹H NMR (300 MHz, CDCl₃)

4bk ¹H NMR (300 MHz, CDCl₃)

4bl ¹H NMR (400 MHz, CDCl₃)

— K:/nmr/AV400/data/2412/nmr/241203.406/10/fid

6a ¹H NMR (300 MHz, CDCl₃)

6b ¹H NMR (300 MHz, CDCl₃)

6c ¹H NMR (400 MHz, CDCl₃)

— K:/nmr/AV400/data/2407/nmr/240719.404/10/fid

6d ¹H NMR (300 MHz, CDCl₃)

6e ¹H NMR (300 MHz, CDCl₃)

- K:/nmr/Fourier300/data/2407/nmr/240710.f312/10/fid

