Supporting Information

Regulating the hydrophobic microenvironment of SnS₂ to facilitate the

interfacial CO₂/H₂O ratio towards pH-universal electrocatalytic CO₂ reduction

Zhiwei Dong ^a, Yaling Jia ^{a, *}, Zeyu Wang ^a, Antony Rajendran ^b, Wen-Ying Li ^{a, *}

 ^a State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
^b Department of Chemistry, Mepco Schlenk Engineering College (Autonomous), Sivakasi-626005, Tamil Nadu, India.

* Corresponding author.

Email address: jiayaling@tyut.edu.cn (Yaling Jia), ying@tyut.edu.cn (Wen-Ying Li)

Figure S1. Characterization of SnS_2 electrodes: (a) the XPS and (b) Raman spectra of SnS_2 on CP.

Figure S2. The high-resolution XPS spectra of (a) C 1s and (b) F 1s for SnS_2 +PVDF 50.

Figure S3. High-resolution N 1s XPS spectra of SnS₂+PVP.

Figure S4. Schematic of the flow cell

Figure S5. The result of electrocatalytic CO_2RR liquid products in HPLC

Figure S6. The LSV curves of SnS_2 +PVP, SnS_2 and SnS_2 +PVDF 50 electrodes in CO₂ and Ar-

saturated 1.0 M KOH.

Figure S7. Formic acid standard curve obtained from HPLC.

Figure S8. ECO_2RR performance comparison of (a) the formate FE, (b) the H₂ FE and (c) the

formate production rate in 1 M KOH.

Figure S9. Evaluation of the Effect of different PVDF ratios on CO₂RR Performance: (a) the LSV curves under CO₂ and (b) FE for ECO₂RR at different potentials on SnS₂+PVDF electrodes with different mass ratios of PVDF in the catalyst layer.

To evaluate the influence of SnS_2 's ratio on ECO₂RR, the mass of PVDF is varied and the correlated LSV and FE are evaluated (Figure S9). The activity and selectivity have a rise-then-fall trend with the increase of PVDF mass, reaching a maximum in SnS_2 +PVDF 50.

Figure S10. The variation of SPCE values under different flow rates: The SPCE of SnS_2 +PVDF 50 electrode under different CO₂ flow rates (5 sccm and 15 sccm) in 1 M KOH.

The SPCE of SnS_2 +PVDF 50 electrode under different CO₂ flow rates (5 sccm and 15 sccm) is compared. The SPCE value follows an increasing trend from 15 sccm to 5 sccm.

Figure S11. The LSV curves of SnS_2 +PVP, SnS_2 and SnS_2 +PVDF 50 electrodes in CO_2 and Ar-

saturated 0.5 M KHCO₃.

Figure S12. ECO_2RR performance comparison of (a) the formate FE, (b) the H₂ FE, (c) the formate

production rate, and (d) the SPCE of SnS_2 +PVDF 50, SnS_2 and SnS_2 +PVP in 0.5 M KHCO₃.

Figure S13. The LSV curves of SnS_2 +PVP, SnS_2 and SnS_2 +PVDF 50 electrodes in CO₂ and Ar-

saturated 0.05 M $\rm H_2SO_4{+}0.5$ M $\rm K_2SO_4.$

e S14. ECO₂RR performance comparison of (a) the HCOOH FE, (b) the H₂ FE, (c) the HCOOH production rate of SnS_2 +PVP, SnS_2 and SnS_2 +PVDF 50 electrodes and SnS_2 +PVP in 0.05 M

H₂SO₄+0.5 M K₂SO₄.

Figure S15. The comparison of HCOOH FE in pH universal electrolytes.¹⁻¹⁶

Figure S16. CV curves at different scan rates of $20 \sim 100$ mV s⁻¹ for (a) SnS₂+PVDF 50, (b) SnS₂,

and (c) SnS₂+PVP.

Figure S17. The change of structure and performance during CO₂RR: (a) The XRD patterns of the evolution process from SnS₂ to Sn/SnS₂ with different electroreduction treatment periods; (b) the formate FE of the SnS₂+PVDF 50 during the evolution process.

Figure S18. In-situ ATR-SEIRAS spectra recorded of SnS_2 in a range of different wavelength

segments (a) 4000-3000 cm⁻¹ and 2000-1200 cm⁻¹; (b) 2200-2400 cm⁻¹.

Figure S19. (a) δ_{O-H} intensity and (b) CO₂ intensity at different applied potentials from in-situ ATR-SEIRAS spectra.

Through comparison of $\delta_{\text{O-H}}$ intensity and CO₂ intensity at different applied potentials In ATR-SEIRAS spectra, it is clearly shown that the SnS₂+PVDF 50 electrode has a lower intensity of $\delta_{\text{O-H}}$ and a higher intensity of CO₂. This effectively demonstrates that PVDF creates a hydrophobic microenvironment.

pН	Materials	Electrolytes	SPCE _{max}	Ref
2	BiS-1	0.05 M H ₂ SO ₄ +0.5 M K ₂ SO ₄	65.4%	16
1.2	Bi-MOF-TS	0.1 M $K_2 SO_4 + 0.02 \text{ M}$ $H_2 SO_4$	62%	17
14	Nafion/PTFE/S nO ₂ TPB	1 М КОН	29.3%	18
14	BiOON-PTFE	1 M KOH	38%	19
14	Bi ₂ O ₃ nanoparticles	1 М КОН	7.2%	5
	Bi nanoparticles	solid electrolyte	29.1%	20
14	Sn ₃ O ₄ nanosheets	1 M KOH	32.4%	21
14	InP quantum dots	3 М КОН	13%	22
1.44	SnS ₂ +PVDF 50	$0.05 \text{ M H}_2 \text{SO}_4 + 0.5$ M K ₂ SO ₄	72.77%	This work

Table S1. Comparisons of CO₂RR-to-formate SPCE of some advanced catalysts.

		erectionyt			
рН	Materials	Electrolytes	Potentials (V vs. RHE)	FE _{HCOOH} (%)	Ref.
1	Cu ₆ Sn ₅	3M KCl, 0.05 M H ₂ SO ₄ ,	-4	91%	7
3.4	SnO	0.5 M K ₂ SO ₄		88.4	23
1.67	NU-1000-Sn	0.005 M H ₂ SO ₄ and 3 M KCl	-1.8	95	24
3.77	SP SnO/SnO ₂ NP	0.5 M K ₂ SO ₄		~100	23
1.5	SnO ₂ /C	0.1 M H ₂ SO ₄ 0.4 M K ₂ SO ₄	-1.4	88	25
3	Sn(S)-H	0.5 M K ₂ SO ₄ , H ₂ SO ₄	-1.5	92.15	26
3	Sn-SAC	0.5 M K ₂ SO ₄ , H ₂ SO ₄		90.8	11
1	SnBi	0.05 M H2SO4, 3 M KCl	-1.5	95	27
1.44	SnS ₂ +PVDF 50	$0.05 \text{ M H}_2\text{SO4} + 0.1 \text{ M K}_2\text{SO}_4$	-1.9	93	This work

Table S2. Comparisons of CO₂RR-to-formate performances of Sn-based catalysts in acidic

electrolyte.

Materials	Electrolytes	Potentials (V vs. RHE)	FE _{HCOOH} (%)	Ref.	
SnOx/Sn	0.1 M KHCO ₃	-1.05	70	12	
SnS ₂ -derived Sn/rGO	0.5 M KHCO ₃	-1.05	85	13	
Ni doped SnS ₂	0.1 M KHCO ₃	-0.9	93	28	
np-Sn/SnO ₂	0.5 M KHCO ₃	-1.1	80	14	
SrSnO ₃ NWs	NaHCO ₃	-1.3	80	15	
Sn-Bi/SnO ₂	1 M KOH	-0.62	95	29	
Cu-SnO ₂	1 M KOH	-0.9	90	30	
CeOx-Sn	1 M KOH	-1.07	95	31	
Zn/SnO_2	1 M KOH	-0.9	93.2	32	
SnS ₂ +PVDF 50	0.5 M KHCO ₃	-1.2	86	This work	
SnS ₂ +PVDF 50	1 М КОН	-0.8	98	This work	

Table S3. Comparisons of CO2RR-to-formate performances of Sn-based catalysts in neutral and

alkaline electrolytes.

Materials	Electrolytes	Potentials (V vs. RHE)	FE _{HCOOH} (%)	Ref.
$1T/1H-SnS_2$	0.1 M KHCO ₃	-1.31	63.4	33
SnS ₂ -derived Sn/rGO	0.5 M KHCO ₃	-1.05	85	13
Ni doped SnS ₂	0.1 M KHCO ₃	-0.9	93	28
S-CuSn	0.5 M KHCO ₃	-2.22	96.4	34
Cu_1/SnS_2	2 М КОН	-1	90.9	35
Sn(S)-H	0.5 M K ₂ SO ₄ , H ₂ SO ₄	-1.5	92.2	26
E-SnS ₂	1 M KOH	-0.84	90	36
SnS _{2-x} O _x /CC	0.5 M KHCO ₃	-0.9	83.5	16
In-O-ultrathin- SnS ₂	0.5 M KHCO ₃	-1.2	88.6	37
SnS ₂ +PVDF 50	0.5 M KHCO ₃	-1.2	86	This work
SnS ₂ +PVDF 50	1 М КОН	-0.8	98	This work
SnS ₂ +PVDF 50	0.05 M H ₂ SO4+0.1 M K ₂ SO ₄	-1.5	93	This work

Table S4. Comparisons of CO_2RR -to-formate performances of SnS_2 -based catalysts.

References:

- 1. Z. Jiang, T. Wang, J. Pei, H. Shang, D. Zhou, H. Li, J. Dong, Y. Wang, R. Cao, Z. Zhuang, W. Chen, D. Wang, J. Zhang and Y. Li, *Energy Environ. Sci.*, 2020, **13**, 2856-2863.
- W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang and F. Jiao, J. Am. Chem. Soc., 2017, 139, 1885-1893.
- 3. X. Zhang, X. Sun, S.-X. Guo, A. M. Bond and J. Zhang, *Energy Environ. Sci.*, 2019, **12**, 1334-1340.
- 4. S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang and X. W. Lou, *Angew. Chem. Int. Ed.*, 2019, **58**, 8499-8503.
- 5. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman and B. Y. Xia, *Angewandte Chemie International Edition*, 2020, **59**, 10807-10813.
- 6. Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin and T. Ma, *Angew. Chem. Int. Ed.*, 2021, **60**, 12554-12559.
- 7. X. Yu, Y. Xu, L. Li, M. Zhang, W. Qin, F. Che and M. Zhong, *Nat. Commun.*, 2024, **15**, 1711.
- 8. Y. Qiao, W. Lai, K. Huang, T. Yu, Q. Wang, L. Gao, Z. Yang, Z. Ma, T. Sun, M. Liu, C. Lian and H. Huang, *ACS Catal.*, 2022, **12**, 2357-2364.
- 9. T. Yan, H. Pan, Z. Liu and P. Kang, *Small.*, 2023, **19**, 2207650.
- 10. T. Dong, H. Li, Z. Wang, Y. Geng, R. Chang, X. Tian, J. Lai, S. Feng and L. Wang, *Nano Res.*, 2024, **17**, 5817-5825.
- 11. B. Sun, Z. Li, D. Xiao, H. Liu, K. Song, Z. Wang, Y. Liu, Z. Zheng, P. Wang, Y. Dai, B. Huang, A. Thomas and H. Cheng, *Angew. Chem. Int. Ed.*, 2024, **63**, e202318874.
- 12. J. E. Pander, III, M. F. Baruch and A. B. Bocarsly, ACS Catal., 2016, 6, 7824-7833.
- 13. F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane and J. Zhang, *Nano Energy.*, 2017, **31**, 270-277.
- 14. S. Liu, F. Pang, Q. Zhang, R. Guo, Z. Wang, Y. Wang, W. Zhang and J. Ou, *Appl. Mater. Today.*, 2018, **13**, 135-143.
- 15. Y. Pi, J. Guo, Q. Shao and X. Huang, *Nano Energy.*, 2019, **62**, 861-868.
- T. Chen, T. Liu, T. Ding, B. Pang, L. Wang, X. Liu, X. Shen, S. Wang, D. Wu, D. Liu, L. Cao, Q. Luo, W. Zhang, W. Zhu and T. Yao, *Nano-Micro Lett.*, 2021, 13, 189.
- X. Chen, R. Lu, C. Li, W. Luo, R. Yu, J. Zhu, L. Lv, Y. Dai, S. Gong, Y. Zhou, W. Xiong, J. Wu, H. Cai, X. Wu, Z. Deng, B. Xing, L. Su, F. Wang, F. Chao, W. Chen, C. Xia, Z. Wang and L. Mai, *Nature Communications*, 2025, 16, 1927.
- 18. H. Liu, Y. Su, Z. Liu, H. Chuai, S. Zhang and X. Ma, *Nano Energy.*, 2023, 105, 108031.
- 19. Z. Xing, X. Hu and X. Feng, ACS Energy Lett., 2021, 6, 1694-1702.
- 20. L. Fan, C. Xia, P. Zhu, Y. Lu and H. Wang, Nat. Commun., 2020, 11, 3633.
- 21. L.-X. Liu, Y. Zhou, Y.-C. Chang, J.-R. Zhang, L.-P. Jiang, W. Zhu and Y. Lin, *Nano Energy.*, 2020, **77**, 105296.
- I. Grigioni, L. K. Sagar, Y. C. Li, G. Lee, Y. Yan, K. Bertens, R. K. Miao, X. Wang, J. Abed, D. H. Won, F. P. García de Arquer, A. H. Ip, D. Sinton and E. H. Sargent, *ACS Energy Lett.*, 2021, 6, 79-84.
- 23. M. Oßkopp, A. Löwe, C. M. S. Lobo, S. Baranyai, T. Khoza, M. Auinger and E. Klemm, *J. CO2 Util.*, 2022, **56**, 101823.
- 24. H. Xue, Z.-H. Zhao, P.-Q. Liao and X.-M. Chen, J. Am. Chem. Soc., 2023, 145, 16978-16982.
- 25. J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener and X. Hu, Nat Catal., 2022, 5, 268-276.
- 26. Z. Ma, Z. Yang, W. Lai, Q. Wang, Y. Qiao, H. Tao, C. Lian, M. Liu, C. Ma, A. Pan and H.

Huang, Nat Commun., 2022, 13, 7596.

- 27. L. Li, Z. Liu, X. Yu and M. Zhong, Angew. Chem. Int. Ed., 2023, 62, e202300226.
- 28. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu and J. Zeng, *Angew. Chem. Int. Ed.*, 2018, **57**, 10954-10958.
- 29. L. Li, A. Ozden, S. Guo, F. P. García de Arquer, C. Wang, M. Zhang, J. Zhang, H. Jiang, W. Wang, H. Dong, D. Sinton, E. H. Sargent and M. Zhong, *Nat Commun.*, 2021, **12**, 5223.
- 30. B. Li, J. Chen, L. Wang, D. Xia, S. Mao, L. Xi, S. Ying, H. Zhang and Y. Wang, *Appl. Catal. B Environ.*, 2025, **363**, 124784.
- 31. Y. Zhu, X. Sun, R. Zhang, X. Feng and Y. Zhu, *Small.*, 2024, 20, 2400191.
- 32. X. Hu, G. Mei, X. Chen, J. Liu, B. Y. Xia and B. You, *Angew. Chem. Int. Ed.*, 2023, **62**, e202304050.
- 33. Y. Kawabe, Y. Ito, Y. Hori, S. Kukunuri, F. Shiokawa, T. Nishiuchi, S. Jeong, K. Katagiri, Z. Xi, Z. Li, Y. Shigeta and Y. Takahashi, *ACS Nano.*, 2023, **17**, 11318-11326.
- 34. K. Li, J. Xu, T. Zheng, Y. Yuan, S. Liu, C. Shen, T. Jiang, J. Sun, Z. Liu, Y. Xu, M. Chuai, C. Xia and W. Chen, *ACS Catal.*, 2022, **12**, 9922-9932.
- 35. R. Chen, J. Zhao, X. Zhang, Q. Zhao, Y. Li, Y. Cui, M. Zhong, J. Wang, X. Li, Y. Huang and B. Liu, *J. Am. Chem. Soc.*, 2024, **146**, 24368-24376.
- Z. Liu, C. Liu, J. Zhang, S. Mao, X. Liang, H. Hu and X. Huang, *Appl. Catal. B Environ.*, 2024, 341, 123274.
- 37. X. Zhang, M. Jiao, Z. Chen, X. Ma, Z. Wang, N. Wang, X. Zhang and L. Liu, *Chem. Eng. J.*, 2022, **429**, 132145.