## **Supporting Information**

## Full conversion of Grass Biomass into Sustainable Functional Antimicrobial Bioplastics

José David Estrada-Sotomayor<sup>1</sup>, Łukasz Łopusiewicz<sup>2,3</sup>, Erlantz Lizundia<sup>4,5</sup>, Sebastian Guenther<sup>3</sup> &

Danila Merino<sup>1, 6\*</sup>

<sup>1</sup>Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque

Country (UPV/EHU), Avenida de Tolosa 72, 20018, Donostia-San Sebastian Spain.

<sup>2</sup>School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw,

59 Okopowa Str. Warszawa, 01-043, Poland

<sup>3</sup>Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-

Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany

<sup>4</sup>Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of

Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013 Spain

<sup>5</sup>BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science

Park, Leioa, 48940 Spain

<sup>6</sup>Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.

\*Corresponding author: Dr. Danila Merino. Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque Country (UPV/EHU), Avenida de Tolosa 72, 20018, Donostia-San Sebastian, Spain. Email: <u>danila.merino@ehu.eus</u>

**Table S1.** Material and energy inventory for "*GPL20*" processing. Energy is highlighted in yellow. Wastes are highlighted in light orange. Outputs are highlighted in blue.

| Comment                          | ltem                           | Amount<br>(g)   | Source/provider                                                                                                                                       |  |
|----------------------------------|--------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Step 1: washing                  |                                |                 |                                                                                                                                                       |  |
| Biomass<br>source                | Grass                          | 0.8888          | Burden free according to cut-off                                                                                                                      |  |
| 10 km to the processing site     | Transport                      | 0.0089<br>kg×km | transport, freight, lorry, 3.5-7.5 metric ton,<br>diesel, EURO 5   transport, freight, lorry, 3.5-7.5<br>metric ton, diesel, EURO 5   Cutoff, U - RER |  |
| For washing                      | Water                          | 10.0000         | market for water, deionised   water, deionised  <br>Cutoff, U - Europe without Switzerland                                                            |  |
| -                                | Wastewater                     | 9.0000          | treatment of wastewater, unpolluted,<br>wastewater treatment   wastewater, unpolluted<br>  Cutoff, U - CH                                             |  |
| Step 2: drying                   |                                |                 |                                                                                                                                                       |  |
| At 60 ºC for<br>24h              | Energy <sup>a</sup>            | 37.60 Wh        | market for electricity, medium voltage,<br>renewable energy products   electricity,<br>medium voltage, renewable energy products  <br>Cutoff, U - CH  |  |
|                                  | Evaporated<br>H <sub>2</sub> O | 1.0000          | Emission to air / unspecified                                                                                                                         |  |
| Step 3: grinding                 |                                |                 |                                                                                                                                                       |  |
| 5 min blender                    | Energy <sup>b</sup>            | 0.12 Wh         | market for electricity, medium voltage,<br>renewable energy products   electricity,<br>medium voltage, renewable energy products  <br>Cutoff, U - CH  |  |
| Step 4: sieving                  |                                |                 |                                                                                                                                                       |  |
| 2 h sieving                      | Energy <sup>c</sup>            | 1.12 Wh         | market for electricity, medium voltage,<br>renewable energy products   electricity,<br>medium voltage, renewable energy products  <br>Cutoff, U - CH  |  |
| 10 wt% is lost<br>during sieving | Waste                          | 0.0888          | treatment of biowaste, industrial composting  <br>biowaste   Cutoff, U - CH                                                                           |  |
| Step 5: hydrolysis               |                                |                 |                                                                                                                                                       |  |
| 1 M NH <sub>3</sub>              | Ammonia                        | 0.3406          | ammonia production, steam reforming, liquid  <br>ammonia, anhydrous, liquid   Cutoff, U - Europe<br>without Russia                                    |  |

| (20 mL)                        | Water                          | 19.3000  | water production, deionised   water, deionised<br>  Cutoff, U - Europe without Switzerland                                                           |  |
|--------------------------------|--------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Plasticizer                    | ε-polylysine                   | 0.2000   | From Agrybalise v3.1.1                                                                                                                               |  |
| For stirring, 24<br>h at 40 ºC | Energy <sup>d</sup>            | 50.82 Wh | market for electricity, medium voltage,<br>renewable energy products   electricity,<br>medium voltage, renewable energy products  <br>Cutoff, U - CH |  |
| Step 6: casting                |                                |          |                                                                                                                                                      |  |
| 48 h at the<br>fume hood       | Energy <sup>e</sup>            | 82.20 Wh | market for electricity, medium voltage,<br>renewable energy products   electricity,<br>medium voltage, renewable energy products  <br>Cutoff, U - CH |  |
|                                | Evaporated<br>NH <sub>3</sub>  | 0.3406   | Emission to air / unspecified                                                                                                                        |  |
|                                | Evaporated<br>H <sub>2</sub> O | 19.3000  | Emission to air / unspecified                                                                                                                        |  |
|                                | Bioplastic                     | 1.0000   | Process output                                                                                                                                       |  |

<sup>a</sup>: An oven with a power of 1400 W with capacity to dry 0.5 kg (ONH 60). Estimated workload of 70%.

<sup>b</sup>: AMZCHEF blender with a power of 2000 W with capacity of 2 L. Estimated workload of 70%.

<sup>c</sup>: sieve shaker with 350 W (<u>https://www.mrclab.com/sieve-shaker-for-200mm-sieves</u>). It can hold approximately 0.350 kg of grass at a time. Estimated workload of 70%.

<sup>d</sup>: Instrument power: 605 W (Fisherbrand<sup>™</sup> Isotemp<sup>™</sup> Hot Plate Stirrer). 4 L capacity. Estimated workload of 70%.

<sup>e</sup>: considering that a conventional laboratory fume hood consumes 30000 kWh anualy (<u>https://fumehoodcalculator.lbl.gov/</u>). It has room to dry 2 kg of material in 2 days.



Figure S1. Grass-derived bioplastic films obtained at different hydrolysis time and  $NH_3$  concentration.



Figure S2. Cross section of grass biofilms obtained after alkaline hydrolysis and cryofracture.







Figure S4. TGA and DTGA of grass-derived bioplastic films obtained at different concentration of NH<sub>3</sub> (0.1, 0.5, 2 M) and different hydrolytic times (8, 24, and 43 h). A) TGA of films obtained

with 0.1M NH<sub>3</sub>, **B)** DTGA of films obtained with 0.1M NH<sub>3</sub>; **C)** TGA of films obtained with 0.5M NH<sub>3</sub>, **D)** DTGA of films obtained with 0.5M NH<sub>3</sub>; **E)** TGA of films obtained at 2M NH<sub>3</sub>; F) DTGA of films obtained at 2M NH<sub>3</sub>.



Figure S5. FTIR spectra of PL-grass bioplastics containing different PL content.



Figure S6. DTGA curves of PL-grass bioplastics containing different PL content.



**Figure S7. Antimicrobial assay of PL-grass bioplastics against gram positive** *Staphylococcus aureus.* Agar diffusion test using 2 replicates (top right and top left in disc), antibiotic control (bottom left) and positive control (bottom right).







Figure S9. Cradle-to-gate environmental impacts of "Grass bioplastic" and its packaging plastic

films competitors.