Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Green Catalyst-based cardboard waste conversion into biogas

Li Quan Lee, ‡^{a, b} Hui Ling Chan, ‡^{c, d} Hao Zhou, ^{a, e} Hu Zhao, ^a Qingshuo Ao, ^a Hao Huang, ^a Chi Cheng Chong, ^f Yan Zhou, ^d and Hong Li* ^{a, b}

^a School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore. E-mail: ehongli@ntu.edu.sg

^b CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, Singapore

^c Conny Tech Pte Ltd, Singapore.

^d School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. E-mail: <u>zhouyan@ntu.edu.sg</u>

^e Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China

^f School of Chemistry, Chemical Engineering and Biotechnology,

Nanyang Technological University, Singapore

‡These authors contributed equally to this work.

*Corresponding author: ehongli@ntu.edu.sg

Fig. S1 Cardboard waste (CBW) - (a) square pieces of 4 mm x 4 mm before milling and, (b) after milling with milling ZrO2 balls in ZrO2 jar (c) separation of milled cardboard waste from milling balls in a self-made sieve-vortex device, combining water addition through the funnel cover, swirling action of vortex mixer, and collection of pretreated slurry product directly into a centrifuge plastic tube.

Fig.S2 HPLC chromatogram of mixed sugar standards (Glucose, xylose and arabinose) of different concentrations.

Fig.S3 HPLC calibration curves of sugar standards (Glucose, xylose and arabinose)

Fig. S4 The process systems of (1) conventional waste treatment and (2) Mechano-bio-thermochemical of CBW showing (grey) the conventional and (green) the novel mechano-bio-thermochemical treatment route. The raw material and products (yellow) considered include sodium hydroxide, lime and ammonia water as pretreatment chemicals for incineration and ash for the waste product. For CBW mechano-bio-thermochemical process, biogas (methane and carbon dioxide are the product after AD process, generating effluent and other residual waste.

Fig. S5 FE-SEM images of the CBW control sample (milled without catalyst) at different magnifications – (a) $90 \times$, (b) ×40,000; and CBW co-mill 47.4 wt% oxalic acid (OA) sample at different magnifications – (c) $90 \times$, (d) ×40,000; and post microwave hydrothermal treatment (MHT) of CBW co-mill OA sample at different magnifications – (e) $90 \times$, (f) ×40,000.

Fig. S6 Co-milled oxalic acid effect on microcrystalline cellulose (MCC) — (a) particles size distribution of control MCC and co-mill MCC (47.4 wt% OA), and (b) Effect of treatment duration on glucose yield from microwave-assisted hydrothermal treatment (MHT) of co-milled MCC at 180 °C after adding water to dilute to 4.11 wt% OA.

Fig. S7 (a) Hydrogen bond energy and asymmetric index (a/b) derived from the standard frequencies of bonded –OH groups located at $3100-3600 \text{ cm}^{-1}$ from FTIR spectra of samples CBW-control, CBW-OA 15 min and CBW-OA 30 min. (b) Curve fit plot of FTIR spectrum of CBW-OA 30 mins using the Gauss model to separate three distinct carboxylate peaks at 1687 cm⁻¹, 1642 cm⁻¹, and a minor ester peak at 1747 cm⁻¹.

Note: Hydrogen bond energy $(E_H) = (1/K) \times [(v_0-v)/v_0]$, where v_0 is the standard frequency corresponding to the free OH groups, (3600 cm⁻¹); v is the measured frequency of the bonded -OH groups (cm⁻¹), and K is 1.6×10^{-2} kcal⁻¹. Asymmetric index (a/b) is the ratio between segment widths at half height of the OH adsorption band.[1]

Fig. S8 FE-SEM images of the CBW co-mill 47.4 wt% oxalic acid sample at different milling durations — 5 mins at different magnifications (a) \times 500, (b) \times 20,000; and 15 mins at different magnifications – (c) 500 ×, (d) \times 20,000; and 30 mins at different magnifications – (e) 500 ×, (f) \times 20,000.

Fig. S9 XRD patterns of (a) CBW control sample (black), CBW co-milled with 47.4 wt% oxalic acid -5 mins (red), 15 mins (blue) and 30 mins (green), respectively. (110) and (200) represent crystal face of cellulose and other peaks were identified previously to be from calcium carbonate and oxalic acid, and the corresponding (b) crystallinity index (CrI).

Fig. S10 Comparison of acid effects added during MHT step for hydrolysis of control milled CBW samples. Effect of adding different acids - oxalic acid (OA), tartaric acid (TA), acetic acid (HAc), and sulfuric acid (H₂SO₄) - at equivalent pH levels during MHT (180 °C, 30 min) on: (a) Sugar yield, (b) Sugar degradation product concentration.

Fig. S11 Effect of varying oxalic acid concentration co-milled with CBW in MHT at 180 °C for 30 min on (a) total sugar yield and, (b) small organic byproduct generation.

Fig. S12 Effect of different MHT durations on the product size distribution of CBW-OA from GPC analysis.

Fig. S13 Liquid products of CBW-OA at optimized conditions (MHT at 180 °C, 5 min and co-milled CBW of 4.11 wt% OA): (a) ¹H NMR spectrum (internal standard used was maleic acid with D₂O as solvent), and (b) TOC analysis.

Peaks (cm ⁻¹)	Type of vibration	Related Compounds	Identified in samples	Reference
3500, 1684, 1244	O-H, COOH and C-O	Oxalic acid	COA-30	[2]
3421, 3341, 3312	Stretching of O–H	Polysaccharides	All	[3]
2924, 2900, 2988 2882	Asymmetric vibration –CH ₂ –C–H stretching	Organic compounds (polysaccharides lignin and hydrocarbon derivatives)	All	[3]
1684, 1619, 1665	Carbonyl stretching C=O	Organic compounds (carboxylate, lignin and hydrocarbon derivatives)	All	[4]
1747	C=0	Ester	COA-30	[5]
1422, 874	Asymmetric vibration of carbonate CO ₃ ²⁻	Calcium carbonate	C-Ctrl	[6]
1057	Stretching of secondary alcohols and ether C–O–C	Cellulose backbone	All	[7]

The main infrared peaks identified in the FTIR spectra of CBW samples in Fig. 2e.

COA-30, COA-15 and C-Ctrl represents CBW co-mill OA 30 mins, CBW co-mill OA 15 mins and CBW control samples, respectively.

Cardboard waste composition.

Component	wt.%
Total organic carbon	51.3
Hemicellulose	9.75
Lignin	15.87
Cellulose	55.50
$Ash\left(CaCO_{3}\right)$	17.83

All values are taken from experimental chemical composition analysis done in this work.

Process	Operating Conditions/Parameters Description	Туре	Flow	Amount	Unit	References or data sources
	*	In	CBW (TOC: 51.3%)	100.00	kg	
	Conventional ball mill, 0.3 kWh/kg	In	Oxalic acid	90.00	kg	
Knife and	feedstock; 0.5 mol/L Oxalic acid	In	Water	2000.00	kg	[8]
Dall IIIII	CBW	In	Electricity	30.00	kWh	
	02.11	Out	Mixure#1	2190.00	kg	
		In	Mixure#1	2190.00	kg	
Microwave	5000 L H	In	Electricity	447.93	kWh	
hydrolysis	5000 L Heating reactor	Out	Emission to air, CO ₂	7.85	kg	[8]
		Out	Mixure#2	2182.15	kg	
		In	Mixure#2	2182.15	kg	
F :14	Centrifugal dewatering (45 kWh /	In	Electricity	3.63	kWh	101
Filter	100 dry sond); Liquid/Sond rano: 96% · 4%	Out	Residue	87.29	kg	[8]
	<i>y</i> 0/0. 1/0	Out	Mixure#3	2094.86	kg	
	Transport to landfill site;	In	Residue	87.29	kg	
Landfill	transportation distance (assumed): 20 km	In	Transportation	1.75	tkm	[9]
	TT. (1	In	Mixure#3 (18.112% TOC)	2094.86	kg	
	T=35°C; SRT=20d; TOC degradation rate=40%: Biogas	In	Electricity (Stir)	1.26	kWh	
Anaerobic digestion	bbic production=650 Nm3/t TOC ion degraded: Composition of biogas:	Out	Emission to air, CH ₄ (biogas loss)	1.27	kg	
U	60% CH4 and 40% CO2; Biogas loss under normal conditions:	Out	Emission to air, CO ₂ (biogas loss)	2.34	kg	[8]
	3.0 % of generated biogas.	Out	(41.19 kg CH ₄ ; 75.79 kg CO ₂)	116.98	kg	
		Out	Effluent	1977.88	kg	
	Biogas powered engines; The	In	Collected biogas (67.28 kg CH4; 3.79 kg CO ₂)	116.98	kg	
Combined	architectricity recovery efficiency is 37.5%; Emission factors: CH4:434	Out	Emission to air, CO ₂ (biogas combustion)	113.27	kg	
heat and	NO _X :202 g/GJ. Biogas powered engines: The	Out	Emission to air, CH ₄ (biogas combustion)	0.99	kg	[10]
system e	electricity recovery efficiency is 37.5%: Emission factors: CH ₄ :434	Out	Emission to air, CO (biogas combustion)	0.71	kg	[10]
	g/GJ, CO:310 g/GJ, N ₂ O:1.6 g/GJ, NO _X :202 g/GJ.	Out	Emission to air, N ₂ O (biogas combustion)	3.66	g	
		Out	Emission to air, NO _X (biogas combustion)	0.46	kg	
		Out	Recovered electricity	238.13	kWh	

Life cycle inventory of mechano(Oxalic acid)-bio-thermochemical treatment route of CBW.

Table	S4
-------	-----------

Operating References **Conditions/Parameters** Process Type Flow Amount Unit or data Description sources CBW (TOC: 51.3%) 100.00 In kg In Sulphuric acid 39.23 kg Conventional ball mill, 0.3kWh/kg Knife and feedstock; 0.2mol/L Sulphuric acid In Water 2000.00 kg [8] ball mill solution In Electricity 30.00 kWh Out 2139.23 Mixure#1 kg 2139.23 In Mixure#1 kg Microwave In Electricity 512.52 kWh 5000 L Heating reactor hydrolysis Out Emission to air, CO₂ 7.85 kg Out Mixure#2 2131.38 [8] kg Mixure#2 2131.38 In kg Centrifugal dewatering (45kWh / In Electricity 3.63 kWh ton dry solid); Liquid/Solid ratio: Filter 85.86 Out Residue [8] kg 96%: 4% Out Mixure#3 2045.52 kg Transport to landfill site; Residue 85.86 In kg Landfill transportation distance (assumed): In Transportation 1.72 tkm 20 km Mixure#3 (9859 ppm In 2045.52 kg [9] TOC) Up-flow anaerobic sludge blanket; In Electricity (Stir) 1.26 kWh T=35 °C; SRT=20 d; TOC degradation rate=40%: Biogas Emission to air. CH4 Out 0.07 kg Anaerobic production=650 Nm³/t TOC (biogas loss) degraded; Composition of biogas: Emission to air, CO₂ digestion Out 0.12 kg [8] 60% CH₄ and 40% CO₂; Biogas (biogas loss) loss under normal conditions: Collected biogas (2.19 Out 6.22 kg 3.0 % of generated biogas. kg CH4; 4.03 kg CO2) Out Effluent 2039.30 kg Collected biogas (2.19 6.22 In kg kg CH4; 4.03 kg CO2) Emission to air, CO₂ Out 10.05 kg (biogas combustion) Emission to air, CH₄ Out 0.05 kg Biogas powered engines; The (biogas combustion) Combined electricity recovery efficiency is Emission to air, CO heat and Out 0.04 [10] 37.5%; Emission factors: CH₄:434 kg (biogas combustion) power g/GJ, CO:310 g/GJ, N2O:1.6 g/GJ, Emission to air, N₂O system NO_X:202 g/GJ. Out 0.19 g (biogas combustion) Emission to air, NO_X Out 0.02 kg (biogas combustion) Out Recovered electricity 12.66 kWh Out Recovered heat 75.97 MJ

Life cycle inventory of mechano(H_2SO_4)-bio-thermochemical treatment route of CBW.

Process	Operating Conditions/Parameters Description	Туре	Flow	Amount	Unit	References or data sources
		In	CBW (TOC: 51.3%)	100.00	kg	
	Fluidized bed combustors; 9.5	In	Electricity	0.95	kWh	
	kWh electricity consumption/ton	In	NaOH	1.22	kg	
Waste	dry solid; 12.2 kg NaOH, 4.96 kg	In	Lime	0.50	kg	
incineration	Lime, 3.72 kg Ammonia	In	Ammonia water	0.37	kg	[11]
power plant	electricity recovery efficiency of	Out	Emission to air, CO ₂	188.10	kg	
•	the sludge incineration is	Out	Recovered electricity	152.60	kWh	
	assumed to be 37.5 %.	Out	Waste heat	915.63	MJ	
		Out	Ash	9.98	kg	
Safe	Transport to landfill site;	In	Residue	9.98	kg	
landfill	transportation distance (assumed): 20 km	In	Transportation	0.20	tkm	[9]

Table S5Life cycle inventory of conventional (*incineration*) treatment route of CBW.

Table	S 6
Lanc	30

Life cycle inventory	of conventional	(landfill) treatment	route of CBW.

Process	Operating Conditions/Parameters Description	Туре	Flow	Amount	Unit	References or data sources
		In	CBW (TOC: 51.3%)	100.00	kg	
		In	Electricity	0.02	kWh	
	Transport to landfill site; transportation distance (assumed):	In	Low density polyethylene	2.7672	g	
Landfill	20 km; Landfill gas	In	Pesticide	1.508	g	[9]
(CO ₂ CH.	$(CO_2:CH_4=1:1)$; The proportion of CU, not evidend before release:	In	Sand	26.24	kg	
	CH_4 not oxidized before release: 0.9;	In	Transportation	2.00	tkm	
		Out	Emission to air, CO ₂	94.05	kg	
		Out	Emission to air, CH4	30.78	kg	

Table S7Choice of background inventory data.

External process	Data source (Ecoinvent 3.5)
	Electricity, low voltage (SG) market for electricity, low voltage Cut-off, S
	Electricity, high voltage (RoW) electricity production, natural gas, combined
	cycle power plant Cut-off, S
	Electricity, high voltage (RoW) electricity production, solar tower power
Flootrigity	plant, 20 MW Cut-off, S
Electricity	Electricity, high voltage (RoW) electricity production, wind, <1MW turbine,
	onshore Cut-off, S
	Electricity, high voltage (RoW) electricity production, hydro, pumped storage
	Cut-off, S
	Recovered Electricity, low voltage (SG) market for electricity, low voltage
	Cut-off, S
Water	Water, decarbonised (RoW} market for water, decarbonised Cut-off, S
Sulphuric acid	Sulfuric acid (RoW) market for sulfuric acid Cut-off, S
Sodium hydroxide	Sodium hydroxide, without water, in 50% solution state (GLO) market for
	Cut-off, S
Lime	Lime, hydrated, packed (RoW) market for lime, hydrated, packed Cut-off, S
Ammonia	Ammonia, liquid (RoW) market for Cut-off, S
Polyethylene	Polyethylene, linear low density, granulate (RoW) production Cut-off, S
Pesticide	Pesticide, unspecified (RoW) production Cut-off, S
Sand	Sand (RoW) market for sand Cut-off, S
Transport	Transport, freight, light commercial vehicle (GLO) market group for transport,
	freight, light commercial vehicle Cut-off, S

Process	Туре	Flow	Amount	Unit
	In	Electricity	0.678	kWh
	In	Natural gas	0.807	MJ
	In	Water	5.000	kg
Oxalic acid	In	Sugar	0.591	kg
production	In	Oxygen	0.510	kg
	In	Sulfuric acid	0.048	kg
	In	Hydrogen peroxide	0.017	kg
	Out	Oxalic acid	1.000	kg

Table S8Background inventory data of oxalic acid production.[12]

Environmental impact categories in ReCiPe 2016 midpoint method and their normalization factors (World (2010) H).

Environmental impact	Unit	Normalization factors				
Environmental impacts relate	Environmental impacts related to air quality					
GWP	kg CO ₂ eq ⁻¹	1.25×10 ⁻⁴				
ODP	kg CFC-11 eq ⁻¹	1.67×10^{1}				
PMFP	kg PM _{2.5} eq ⁻¹	3.91×10 ⁻²				
EOFP	kg NO _x eq ⁻¹	5.63×10 ⁻²				
Environmental impacts relate	ed to water quality					
FEP	kg P eq ⁻¹	1.54×10^{0}				
MEP	kg N eq ⁻¹	2.17×10 ⁻¹				
FETP	kg 1,4-DCB eq ⁻¹	8.15×10 ⁻¹				
METP	kg 1,4-DCB eq ⁻¹	9.69×10 ⁻¹				
WCP	$m^3 eq^{-1}$	3.75×10 ⁻³				
Environmental impacts relate	ed to soil quality					
TAP	kg SO ₂ eq ⁻¹	2.44×10 ⁻²				
TETP	kg 1,4-DCB eq ⁻¹	9.65×10 ⁻⁴				
LU	m ² a crop eq ⁻¹	1.62×10 ⁻⁴				
Environmental impacts relate	ed to human health					
HCTP	kg 1,4-DCB eq ⁻¹	3.61×10 ⁻¹				
HNCTP	kg 1,4-DCB eq ⁻¹	6.71×10 ⁻³				
IR	kBq Co-60 eq ⁻¹	2.08×10 ⁻³				
HOFP	kg NO _x eq ⁻¹	4.86×10 ⁻²				
Environmental impacts relate	ed to resource usage					
MDP	kg Cu eq ⁻¹	8.33×10 ⁻⁶				
FDP	kg oil eq ⁻¹	1.02×10 ⁻³				

Sample	Speed (RPM)	Time (mins)	Molecular weight of CTC (x 10⁴)	DP of cellulose
Control	1000	30	14.60	422
Co-mill OA	1000	30	3.54	102

Effect of Control Milling and Oxalic Acid Co-Milling on Cellulose Molecular Weight and Degree of Polymerization (isolated cellulose of cardboard waste after treatment).

*CTC refers to cellulose tricarbanilate. The average molecular weight (Mw) of CTC was obtained by converting from a universal calibration curve of polystyrene standards [13]. The CTC DP was then calculated by dividing Mw by 519. This value was normalized to DP of cellulose by multiplying by 1.5, correcting for a degree of substitution of 2. [14]

Catalyst	Feedstock	Temperature (°C)	Time (h)	Loading	Xylose Yield (%) ^a	Glucose Yield (%) ^b	Total sugar (g/100g dry mass) ^c	Reference
H_2SO_4	Aspen	160, 175, and 190	0.53	0.05	85.0	12.0	18.70	[15]
(0.25-1.00 wt%) H ₂ SO ₄ (0.25-1.00 wt%)	Basswood	160, 175, and 190	0.53	0.05	80.0	12.0	17.53	[15]
$\frac{(0.25 - 1.00 \text{ wt/v})}{\text{H}_2 \text{SO}_4}$ (0.25-1.00 wt%)	Red maple	160, 175, and 190	0.53	0.05	82.0	13.0	20.12	[15]
H_2SO_4 (0.25–1.00 wt%)	Switchgrass	160, 175, and 190	0.53	0.05	94.0	10.0	22.69	[15]
H ₂ SO ₄ (0.34 wt%)	Sugarcane bagasse	210	Two-step: 1) 0.17 2) 0.67	0.05	91.0	36.0	37.80	[16]
H ₂ SO ₄ (0.20 wt%)	Paulownia	Two-step <i>MHT</i> : 1) 180 2) 210	Two-step: 1) 0.50 2) 0.50 *Ramp	0.05	100.0	53.0	38.10	[17]
H_2SO_4 (1.50 wt%)	Corncob	125	1.50	0.10	83.4	7.8	31.76	[18]
H ₂ SO ₄ (1.00 wt%)	Oil palm empty fruit bunch	190 MHT	0.05 *Ramp	0.10	77.5	17.3	20.30	[19]
Weak acid Carbon (0.10 g)	Japanese cedar wood	210	1.00	0.01	34.7	25.3	5.10	[20]
Biochar (0.20 g)	Switch grass	100	6	0.05	28.2	11.2	27.00 ^d	[21]
Oxalic acid (1.10 w/v%)	Oil palm empty fruit bunch	190 MHT	0.05	0.10	40.0% of total yield ^e		27.12	[22]
Oxalic acid (0.50 wt%)	Maple wood	160	0.46	0.10	73.9	1.7	19.30	[23]
Oxalic acid (0.73 wt%)	Yellow poplar	158	0.22	0.25	72.0	Not tested	12.25	[24]
H ₂ SO ₄ (10.00 wt%)	Cardboard waste	96	3	0.04	6.09 g/L of reducing sugars		15.22	[25]
Oxalic acid (4.11 wt%)	Cardboard waste	140 MHT	0.08	0.05	100.0	19.4	25.42	This work
Oxalic acid (4.11 wt%) ^a Yield % calculation	Cardboard waste	180 MHT	0.08	0.05	84.3	69.8	52.32	This work

Table S11 Benchmark of dilute acid hydrothermal conversion of different feedstocks to sugar.

^c g/100g dry mass calculated from total mass of glucose and xylose measured per 100g of dry biomass, ^d g/100g dry mass calculated from total mass of glucose, xylose, galactose, arabinose and mannose measured per 100g of dry biomass, ^e Total reducing sugar yield%.

MHT: Microwave hydrothermal treatment.

Reference

- [1] D. Ciolacu, F. Ciolacu, and V. I. Popa, "Amorphous cellulose-structure and characterization," *Cellulose chemistry and technology*, vol. 45, no. 1, p. 13, 2011.
- [2] A. Sarifudin *et al.*, "Evaluation of some analytical methods for determination of calcium oxalate in Amorphophallus muelleri flour," *Food Science and Technology*, vol. 42, p. e09522, 2022.
- [3] R. Silverstein, F. Webster, and D. Kiemle, "Spectrometric Identification of Organic Compounds, 7th editio John Wiley & Sons," *New York*, 2005.
- [4] R. S. Tipson, "Infrared spectroscopy of carbohydrates:: a review of the literature," 1968.
- [5] S.-D. Zhang, Y.-R. Zhang, H.-X. Huang, B.-Y. Yan, X. Zhang, and Y. Tang, "Preparation and properties of starch oxalate half-ester with different degrees of substitution," *Journal of polymer research*, vol. 17, pp. 43-51, 2010.
- [6] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004.
- [7] B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, and O. Krim, "Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study," *World J. Environ. Eng*, vol. 3, no. 4, pp. 95-110, 2015.
- [8] F. Piccinno, R. Hischier, S. Seeger, and C. Som, "From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies," *Journal of Cleaner Production*, vol. 135, pp. 1085-1097, 2016.
- [9] H. Zhou, L. Wei, D. Wang, and W. Zhang, "Environmental impacts and optimizing strategies of municipal sludge treatment and disposal routes in China based on life cycle analysis," *Environment International*, vol. 166, p. 107378, 2022.
- [10] M. Nielsen, O.-K. Nielsen, and M. Thomsen, "Emissions from decentralised CHP plants 2007-Energinet. dk Environmental project no. 07/1882. Project report 5-Emission factors and emission inventory for decentralised CHP production," 2010.
- [11] X. Hao, Q. Chen, M. C. van Loosdrecht, J. Li, and H. Jiang, "Sustainable disposal of excess sludge: Incineration without anaerobic digestion," *Water research*, vol. 170, p. 115298, 2020.
- [12] S. Arfelis, "Life Cycle Analysis of Oxalic Acid industrial production plant."
- [13] R. Cohen, K. A. Jensen, C. J. Houtman, and K. E. Hammel, "Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose," *FEBS letters*, vol. 531, no. 3, pp. 483-488, 2002.
- [14] A. Mittal, R. Katahira, M. E. Himmel, and D. K. Johnson, "Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility," *Biotechnology for biofuels*, vol. 4, pp. 1-16, 2011.
- [15] S. C. Yat, A. Berger, and D. R. Shonnard, "Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass," *Bioresource technology*, vol. 99, no. 9, pp. 3855-3863, 2008.
- [16] L. Q. Lee *et al.*, "Green hydrogen generation assisted by electroreforming of raw sugarcane bagasse waste," *Green Chemistry*, vol. 25, no. 19, pp. 7707-7720, 2023.
- [17] L. Q. Lee, H. Zhao, J. Ge, Y. Zhou, and H. Li, "Valorization of fast-growing Paulownia wood to green chemicals and green hydrogen," *Green Chemistry*, vol. 26, no. 4, pp. 1949-1963, 2024.
- [18] B.-Y. Cai, J.-P. Ge, H.-Z. Ling, K.-K. Cheng, and W.-X. Ping, "Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production," *Biomass and Bioenergy*, vol. 36, pp. 250-257, 2012.
- [19] Y. H. Jung, I. J. Kim, H. K. Kim, and K. H. Kim, "Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation," *Bioresource technology*, vol. 132, pp. 109-114, 2013.
- [20] I. Kurnia *et al.*, "Hydrolysis of cellulose and woody biomass over sustainable weak-acid carbon catalysts from alkaline lignin," *Fuel Processing Technology*, vol. 196, p. 106175, 2019.
- [21] S. Li, Z. Gu, B. E. Bjornson, and A. Muthukumarappan, "Biochar based solid acid catalyst hydrolyze biomass," *Journal of Environmental Chemical Engineering*, vol. 1, no. 4, pp. 1174-1181, 2013.
- [22] S. H. Anita *et al.*, "Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars," *Waste and biomass valorization*, vol. 11, pp. 2673-2687, 2020.
- [23] T. Zhang, R. Kumar, and C. E. Wyman, "Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water," *Carbohydrate polymers*, vol. 92, no. 1, pp. 334-344, 2013.
- [24] H.-Y. Kim, J.-W. Lee, T. W. Jeffries, and I.-G. Choi, "Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides," *Bioresource technology*, vol. 102, no. 2, pp. 1440-1446, 2011.

[25] E. S. da Silva *et al.,* "Sugar Production from Cardboard Waste by Two-Step Acid Hydrolysis Using Ionic Liquid," *Waste and Biomass Valorization,* vol. 15, no. 5, pp. 2637-2649, 2024.