Electronic Supplementary Information

Flash recovery of lithium from spent anode graphite by carbonthermal shock and water leaching

Duanmei Song, Beikai Zhang, Hongbiao Du, Jing Wu, Jiadong Yu*, Jinhui Li

[†] State Key Joint Laboratory Environmental Simulation & Pollution Control, School

of Environment, Tsinghua University, Beijing 100084, China

Text S1

Pretreatment: Adequate charge/discharge cycling of the battery is related to the lithium content in the anode graphite. After a continuous charging and discharging process at a discharge rate of 1C¹, the capacity of the NCM battery was severely degraded until more than 20% capacity degradation². To prevent deflagration and explosion caused by the incomplete discharge, the decommissioned NCM battery was immersed in a 5% NaCl aqueous solution for 24 h to ensure complete discharge of any remaining charge and natural drying.³ Then, the NCM battery was manually disassembled and separated within a glovebox to cathode, anode, and separator. The anode sheet was used as raw materials for experiments. For the electrolyte remaining on the anode sheet, we did not consider its removal. Because the lithium in the electrolyte (LiPF₆, LiClO₄) is valuable, it can be recovered with the lithium in graphite by CTS and water leaching to recover the lithium resource sufficiently. LiPF₆ thermally decomposes at high temperatures to produce LiF, as shown in Eq. S1.⁴ LiF can be reacted with the medium (Fig. S2) to recover lithium by water leaching. LiClO₄ begins to decompose at about 400°C, producing oxygen and water-soluble LiCl⁵, as shown in Equation S2. The fluorine gas generated from the pyrolysis of electrolytes can also be absorbed by our auxiliary medium without causing pollution.

$$LiPF_6 \xrightarrow{pyrolysis} LiF + PF_5 \tag{S1}$$

$$LiClO_4 \xrightarrow{pyrolysis} LiCl + 2O_2$$
(S2)

Text S2

We did not consider the effect of the L/S ratio during ultrasonication, which is consistent with the studies of Subramanian et al and Liu et al ⁶⁻⁸. We had the following considerations in mind. Acid leaching of lithium requires investigation of the S/L parameter because the solid-liquid ratio of the acid is related to the H⁺ concentration gradient and viscosity. In contrast, when using water leaching for lithium extraction is not related to the above, the only concern is the solubility. According to the solubility

parameter, the salts Li₂CO₃ (1.29 g/100 mL) and LiF (0.134 g/100 mL) are soluble in water at 25°C, and the solubility increases with decreasing temperature.9, 10 Theoretically, at room temperature, an aqueous solution of 25 mL can dissolve at least 0.3225 g of Li₂CO₃ and 0.0268 g of LiF. The 1 cm² anode piece used in our CTS experiments was about 0.025 g. After CTS and ultrasonic aqueous leaching for 10 s, based on the ICP measured lithium concentration and the range of concentration of the standard curve, we chose 25 mL as the calibration volume. Even if a 1 cm² anode piece consists entirely of Li₂CO₃ (0.025 g), 25 mL of water can completely dissolve 10 anode pieces. The anode sheet is mainly composed of copper foil and graphite with low lithium content. Depending on the charging and discharging state of the battery, the lithium content of the anode piece ranges from 0.5% to 10%. In other words, 25 mL of water is enough to completely dissolve the lithium in hundreds of anode pieces. Therefore, based on the above solubility characteristics, for the recovery of lithium anode, water is a suitable leaching agent for Li recovery, and there is no need to consider the effect of the L/S ratio of water on the lithium leaching rate. The leaching rate of lithium we observed is trustworthy.

Fig. S1 Time-temperature relationship of heating procedure in direct CTS and with added CaCO₃ medium conditions (fast mode, time parameter set to 5s).

No.	Methods	Li leaching rate	Reference
1	Dismantling, Calcination (500°C, 1 h), Leaching	99.4 wt%	11
	with HCl (S/L 1:50 g/mL, 80°C, 90 min)		
2	Dismantling, Crushing, Sieving, Leaching with	98.5 wt%	12
	H ₂ SO ₄ (S/L 60 g/L, 45°C, 40 min)		
3	Dismantling, Leaching with trifluoroacetic acid	1.08% Li,100% Cu	13
	(S/L 60 g/L, 40°C, 30 min)	foil recovery rate	
4	Dismantling, Calcination (600°C, 4 h), Leaching	97.2%	14
	with sulfaminic acid (S/L 5 g/L, 40°C, 45 min)		
5	Dismantling, Calcination (400°C, 2 h)+Alkaline	~100%	8
	roasting (350°C, 2 h), Water leaching		
6	Dismantling, Calcination (450°C, 1.5 h + 500°C,	97.6 wt%	15
	1 h), Leaching with citric acid (S/L 1:50 g/mL,		
	90°C, 50 min)		
7	Dismantling, CTS (800-900°C, 15-20s), Water	99.5% Li, ~100%	This work
	leaching (ultrasound 10s)	Cu foil recovery rate	

Table S1 Study on the recovery of lithium from anodes

Table S2 Comparison of conventional heating and CTS method

Methods	Li recovery	Time	Energy consumption	Environmental
	rate			Impact
Traditional	~98%	1 h	${\sim}2{\times}10^6kWh/ton$	High
thermal furnace				
CTS (this work)	99%	15 s	~9.5×10 ³ kWh/ton	Low

Lithium leaching rate data from traditional method derived from Table S1 literature analysis. The weights of the samples were set at 1.0 g. The powers of the thermal furnaces were set at 2000 W. The maximum energy consumption of the CTSW method was calculated as: E=UIt/m (U: the highest voltage in the heating process, 6 V; I: the current, 95 A; t: the heating time, 15 s; m: the sample mass, 0.25 g).

	190A	220A	240A
1-CTS without medium	755°C	881°C	1049°C
1-CTS with CaCO3 medium	713°C	834°C	935°C
2-CTS without medium	773°C	901°C	982°C
2- CTS with CaCO ₃ medium	745°C	848°C	925°C

Table S3 Current-temperature relationship with and without the auxiliary medium

Table S4 Physicochemical data of metal oxides/hydroxides/carbonates (K, Na, Ca,

Mg, Al, Fe)				
Chemical formula	Melting point (°C)	Boiling point (°C)		
CaCO ₃	1339	~		
Ca(OH) ₂	580	2850		
CaO	2570	2850		
Na ₂ CO ₃	851	1600		
NaOH	318	1388		
K ₂ CO ₃	891	1689		
K ₂ O	490	691		
КОН	360	1327		
Fe ₂ O ₃	1565	3200		
Fe ₃ O ₄	1565	2861		
Fe(OH) ₃	1565	3000		
Al_2O_3	2054	3000		
Al(OH) ₃	300	2850		

Note: K_2CO_3 and Na_2CO_3 undergo carbon thermal shock for 5 s at 800°C, presenting a molten state, which is detrimental to the separation of the anode sheet and the medium, and thus, they are excluded. Table S5 Data on the effect of adding different media on lithium leaching rate and

Added	No. of experiments	Li leaching rate under	Separation rate under
media		different mediums	different mediums
No	1	31.52	68.93
medium	2	34.13	69.99
	3	33.01	70.40
	Standard deviation	1.26	0.80
CaCO ₃	1	72.11	93.21
	2	74.94	95.12
	3	73.30	94.54
	Standard deviation	1.51	1.04
Ca(OH) ₂	1	28.96	87.53
	2	32.22	88.53
	3	31.62	88.41
	Standard deviation	1.64	0.55
CaO	1	33.02	98.04
	2	33.98	100.96
	3	34.61	101.04
	Standard deviation	0.81	1.73
Fe ₂ O ₃	1	45.96	88.52
	2	47.95	91.97
	3	47.41	87.18
	Standard deviation	1.03	2.49
Fe ₃ O ₄	1	40.95	99.52
	2	43.08	99.93
	3	39.69	100.64
	Standard deviation	1.67	0.56
Fe(OH) ₃	1	33.28	89.53
	2	32.05	91.94
	3	32.96	92.04
	Standard deviation	0.67	1.42
Al ₂ O ₃	1	55.00	98.99
	2	49.96	99.32
	3	54.04	100.11
	Standard deviation	2.64	0.51

separation rate

			F	e_2O_3			Al ₂ O ₃			CaCO ₃			
	Different	1	2	3	Standard	1	2	3	Standard	1	2	3	Standard
	conditions				deviation				deviation				deviation
Li leaching rate	750°C	20.04	22.97	21.92	1.52	26.96	33.03	30.00	3.00	50.99	55.01	57.78	3.41
under different	800°C	21.96	26.02	26.04	2.32	32.01	36.96	36.72	2.81	60.00	65.05	63.17	2.53
temperatures	850°C	26.93	32.04	28.41	2.58	22.97	28.97	28.34	3.29	47.98	52.03	51.71	2.23
	900°C	40.05	43.96	43.61	2.21	31.03	38.02	38.86	4.31	43.02	49.99	53.90	5.52
	950°С	23.95	19.03	24.31	2.98	19.97	22.96	20.50	1.61	20.95	25.00	23.13	2.00
Li leaching rate	Quick	18.03	21.05	18.91	1.54	16.00	18.04	18.64	1.38	60.04	62.95	61.00	1.53
under different	model-5 s												
holding times	5 s	21.95	22.96	22.03	0.57	16.99	18.94	19.14	1.20	73.20	75.01	70.96	2.00
	10 s	17.03	20.05	19.97	1.72	32.03	34.05	35.56	1.78	92.03	94.50	95.34	1.74
	15 s	7.96	13.02	9.96	2.52	21.95	27.02	24.78	2.51	96.95	99.75	101.78	2.40
	20 s	37.01	38.95	38.43	1.03	52.03	54.95	52.31	1.65	55.01	57.96	56.00	1.53
Li leaching rate	1:1	28.52	31.02	29.31	1.28	27.50	29.03	27.93	0.77	80.05	83.95	82.02	2.00
under different	2:1	35.01	37.04	35.24	1.09	57.95	59.01	57.69	0.68	97.97	100.02	100.58	1.35
mass ratios	3:1	57.96	58.97	58.01	0.57	42.03	49.98	49.35	2.59	58.05	61.95	61.81	2.26
(Media: Anode	4:1	50.50	51.99	51.17	0.75	99.01	100.04	101.00	1.00	68.88	71.03	70.03	1.00
sheet)	5:1	61.05	63.04	62.10	1.00	96.48	97.01	98.16	0.85	77.73	76.89	75.11	1.41
Li leaching rate	1 time	55.00	59.03	58.78	2.25	98.03	99.50	99.93	1.01	99.32	99.84	99.48	0.25
under different	2 times	71.99	75.50	75.41	2.00	49.95	55.02	52.23	2.50	95.00	93.04	94.49	1.04
shock times	3 times	68.98	71.03	70.88	1.12	60.01	61.96	60.44	1.05	63.50	65.01	64.82	0.82

 Table S6 Data on the lithium leaching rate under different experimental conditions

Element	Ionization energy (eV)	Compound	Lattice energy (kJ/mol)
Li	5.3917	LiF	1030
Ca	6.1132	CaF ₂	2640
Al	5.9858	AlF ₃	5924
Fe	7.9025	FeF ₃	5870
Na	5.1391	NaF	910

 Table S7 First ionization energy of metallic elements and lattice energy of the

corresponding metal	fluorides
---------------------	-----------

Note: NIST: Atomic Spectra Database - Ionization Energies Form.

	and calcined mediums				
	С	0	Li	Cu	F
Raw material (SG)	64.4	16.11	6.63	3.65	9.21
Calcined graphite-no medium	81.61	9.19	5.48	1.72	2
Calcined graphite-CaCO ₃	75	14.16	8.11	1.35	1.39
Calcined graphite-Al ₂ O ₃	73.79	16.98	6.92	1.78	2.04
Calcined graphite-Fe ₂ O ₃	81.62	8.37	8.04	1.01	0.97
Calcined medium-CaCO ₃	42.15	32.95	_	_	11.23
Calcined medium-Al ₂ O ₃	12.85	49.52	_	_	4.18
Calcined medium-Fe ₂ O ₃	19.22	60.90	_	_	2.26

Table S8 Contents of different elements in raw materials (wt.%), calcined products,

Peak No.	RT (Min)	Area Percentage (%)	Compounds
1	1.479	1.16	Carbon dioxide
2	4.225	1.01	Cyclopropyl carbinol
3	5.182	0.97	1,2-Benzenediol, O-(3- Cyclopentylpropionyl)-O'-(1-naphthoyl)-
4	13.543	27.14	1,3-Dioxolan-2-one
5	13.724	8.15	Phosphonic acid, (p-hydroxyphenyl)-
6	15.309	4.23	2-Ethyl-1-hexanol
7	15.571	0.71	2-Pyrrolidinone, 1-methyl-
8	19.803	0.63	5-Octadecene, (E)-
9	19.976	1.45	3-Ethyl-6-trifluoroacetoxyoctane
10	20.090	1.69	Dichloroacetic acid, 6-ethyl-3-octyl ester
11	20.208	1.25	1-Hexanol, 3,5,5-trimethyl-
12	20.281	1.79	Formic acid, 2-propylpentyl ester
13	20.363	1.63	5-Tetradecene, (E)-
14	20.511	2.13	2-Hexadecene, 3,7,11,15-tetramethyl-, [R- [R*,R*-(E)]]-
15	20.799	0.68	7-Tetradecanol
16	20.872	0.75	5-Dodecanol
17	20.959	1.36	3,7-Dimethyloctyl acetate
18	21.312	0.97	7-Tridecanol
19	28.287	22.86	Pentanoic acid, 2,2,4-trimethyl-3- carboxyisopropyl, isobutyl ester
20	33.217	0.77	m-Terphenyl

 Table S9 Gas products from CTS anode sheet

Peak No.	RT (Min)	Area Percentage (%)	Compounds
1	4.247	1.65	Cyclopropyl carbinol
2	5.664	1.08	Tetrahydrofuran
3	13.679	10.76	Phosphonic acid, (p-hydroxyphenyl)-
4	15.303	5.98	2-Ethyl-1-hexanol
5	17.833	0.99	Hexanoic acid, 2-ethyl-
6	19.362	0.96	Ethylene diacrylate
7	19.801	0.98	5-Octadecene, (E)-
8	19.793	2.2	3-Ethyl-6-trifluoroacetoxyoctane
9	20.056	1.18	Ethanone, 1-(1-methylcyclopentyl)-
10	20.089	1.3	3-Cyclopropylcarboxy-6-ethyldecane
11	20.207	1.6	1-Hexanol, 3,5,5-trimethyl-
12	20.280	2.69	2-Propyl-1-Pentanol, trifluoroacetate
13	20.361	2.38	5-Tetradecene, (E)-
14	20.509	3.2	1-Octanol, 2,7-dimethyl-
15	20.797	1.06	7-Tetradecanol
16	20.870	1.15	Cyclopropanecarboxylic acid,3-methylbutyl ester
17	20.957	2.11	3,7-Dimethyloctyl acetate
18	21.313	1.73	Cyclohexane, 1-methyl-3-propyl-
19	28.285	24.38	Pentanoic acid, 2,2,4-trimethyl-3- carboxyisopropyl, isobutyl ester
20	31.128	1.39	Benzoic acid, dec-2-yl ester

 Table S10 Gas products from CTS anode sheet with CaCO3

Fig. S2 XRD patterns of spent graphite, HSG without medium, and HSG samples with different mediums.

Fig. S3 Gibbs free energy calculation for possible reactions.

A. Oxygen-free roasting	Boundary of LCA system
Spent batteriesDischarge and collectingDismantling & crushingScreeningCalcination (1000°C, 30 min)	
B. Acid-leaching method	
$\begin{array}{c} \textbf{Spent} \\ \textbf{batteries} \end{array} \rightarrow \begin{array}{c} \text{Discharge} \\ \text{and collecting} \end{array} \rightarrow \begin{array}{c} \text{Dismantling} \\ \& \ \text{crushing} \end{array} \rightarrow \begin{array}{c} \text{Screening} \rightarrow \begin{array}{c} \text{Calcination} \\ (500^\circ\text{C}, 1 \text{ h}) \end{array} \rightarrow \end{array}$	Acid leaching (80 °C, 3 M HCl, 1:50 g/mL, 90 min) → Precipitation → Filtration and dry
C. CTSW recycling method	
$\begin{array}{c} \textbf{Spent} \\ \textbf{batteries} \end{array} \begin{array}{c} \text{Discharge} \\ \text{and collecting} \end{array} \begin{array}{c} \text{Dismantling} \\ \& \ \text{shearing} \end{array} \begin{array}{c} \text{Flash Joule heating} \\ (800 \ ^{\circ}\text{C}, \ 15 \ \text{s}) \end{array} \begin{array}{c} \text{Wat} \\ \text{leach} \end{array}$	$\stackrel{\text{er}}{} \operatorname{Precipitation} \xrightarrow{\rightarrow} \operatorname{Filtration}_{\text{and dry}}$

Fig. S4 The boundary of the system.

Process	Input	Amount	Unit	Output	Amount	Unit	Туре	Flow
Discharge	Spent batteries	1	kg	Discharged battery	1	kg		
	NaCl	0.026	kg	NaCl	0.026	kg		
	H ₂ O	0.52	kg	H ₂ O	0.52	kg		
	Electricity	0.08	kWh					
Dismantling & Crushing	Discharged battery	1	kg	Broken anode products	0.20	kg		
	Electricity	0.1	kWh					
Screening	Broken anode products	0.20	kg	Overflow products (coarse Cu)	0.04	kg	product	sale
	Electricity	1	kWh	Underflow products	0.16	kg		
Calcination	Underflow products	0.16	kg	Calcined graphite	0.12	kg		
	Electricity	64	kWh	Exhaust gas	26.54	kg	waste	
	N ₂	26.07	kg					
Gas	Exhaust gas	26.54	kg	Clean gas	26.13	kg		to air
treatment	Electricity	0.12	kWh	$Ca (OH)_2 (aq)$	0.7105	kg		circulate
	H ₂ O	0.30	kg					
	Ca (OH) ₂	0.0005	kg					

Table S11 Data inventory for the oxygen-free roasting method

Note: N_2 flow rate was based on 50 mL/min.

Process	Input	Amount	Unit	Output	Amount	Unit	Туре	Flow
Discharge	Spent batteries	1	kg	Discharged	1	kg		
				battery				
	NaCl	0.026	kg	NaCl	0.026	kg		
	H ₂ O	0.52	kg	H ₂ O	0.52	kg		
	Electricity	0.08	kWh					
Dismantling &	Discharged battery	1	kg	Broken anode	0.20	kg		
Crushing				products				
	Electricity	0.1	kWh					
Screening	Broken anode products	0.20	kg	Overflow	0.04	kg	product	sale
				products				
	Electricity	1	kWh	Underflow	0.16	kg		
				products				
Calcination	Underflow products	0.16	kg	Calcined	0.146	kg		
				graphite				
	Electricity	60	kWh	Exhaust gas	12.33	kg		
	N ₂	10.6	kg					
Gas treatment	Exhaust gas	12.33	kg	Clean gas	10.8	kg		to air
	Electricity	0.45	kWh	Ca (OH) ₂ (aq)	2.62	kg		circulate
	H ₂ O	1.09	kg					
	Ca (OH) ₂	0.0018	kg					
Acid leaching	Calcined graphite	0.146	kg	Graphite	0.1453	kg		
				residue				
	HCl	1.825	kg	Filtrate	7.3007	kg		
	Electricity	27.9	kWh					
	H ₂ O	5.475	kg					
Precipitation	Filtrate	7.3007	kg	$Li_2CO_3(1)$	0.0033	kg		
	Na ₂ CO ₃	0.021	kg	Wastewater	7.3724	kg		
	Electricity	18.6	kWh					
	H ₂ O	0.05	kg					
	NaOH	0.004	kg					
Filtration &	H ₂ O	0.0024	kg					
Dry	$Li_2CO_3(1)$	0.0033	kg	$Li_2CO_3(2)$	0.0032	kg	product	sale
	Electricity	19.24	kWh					

Table S12 Data inventory of the acid leaching method

Note: High-speed multifunctional grinder (SL-350), power 1.4 kW; vibrating sieve

(BO-300SY), power 0.25 kW; N₂ flow rate calculated as 50 mL/min, muffle furnace heating rate at 10°C/min, power 60 kW; mechanical stirrer power 18.6 kW; Na₂CO₃ addition ratio/theoretical ratio = 4, lithium precipitation rate calculated at 90%; circulating water vacuum pump 0.18 kW; oven power 1.6 kW.

Process	Input	Amount	Unit	Output	Amount	Unit	Туре	Flow
Discharge	Spent batteries	1	kg	Discharged battery	1	kg		
	NaCl	0.026	kg	NaCl	0.026	kg		
	H ₂ O	0.52	kg	H ₂ O	0.52	kg		
	Electricity	0.08	kWh					
Dismantling & shearing	Discharged battery	1	kg	Anode sheet	0.20	kg		
	Electricity	0.005	kWh					
СТЅ	Anode sheet	0.20	kg	Calcined anode sheet	0.20	kg		
	CaCO ₃	0.40	kg	CaCO ₃	0.40	kg	waste	circulate
	Electricity (800°C, 15 s)	9.5	kWh	Exhaust gas	0.25	kg	waste	to air
	N ₂	4	kg					
Water leaching	Calcined anode sheet	0.20	kg	Graphite residue	0.1652	kg		
	Electricity (Ultrasonic 10s)	0.001	kWh	Cu	0.034	kg	product	sale
	Water	6	kg	Filtrate	6.0008	kg		
Precipitation	Filtrate	6.0008	kg	$Li_2CO_3(1)$	0.0038	kg		
	Na ₂ CO ₃	0.024	kg	Wastewater	6.077	kg		
	Electricity (95°C,1 h)	18.6	kWh					
	H ₂ O	0.056	kg					
Filtration &	H ₂ O	0.0028	kg	$Li_2CO_3(2)$	0.0037	kg	product	sale
Dry	$Li_2CO_3(1)$	0.0038	kg					
	Electricity (105°C,12 h)	19.24	kWh					

 Table S13 Data inventory of the CTSW method

Note: N₂ flow rate was calculated as 20 mL/min; mechanical stirrer power 18.6 kW; ultrasonic cleaner 0.5 kW; Joule heat heating device 2.85 kW (voltage 30V, current 95A, temperature 800°C, insulation for 15s), for pyrolysis of 0.25 g per cycle; Na₂CO₃ addition ratio/theoretical ratio = 4, lithium precipitation rate calculated at 90%; circulating water vacuum pump 0.18 kW; oven power 1.6 kW.

	GWP 100	ADP	ADP	AP	EP	FA	НТР	MA	ODP	РО	ТЕТ
	(kg CO ₂	elements	fossil			ЕТР		ЕТР		СР	Р
	eq.)	(kg Sb eq.)	(MJ)								
A. Oxygen-	1.20E-11	-1.79	9.93	4.05	6.54	1.81	8.28	1.97	7.94E-	3.32	2.52
free roasting		E-12	E-12	E-12	E-13	E-13	E-12	E-10	18	E-12	E-13
B. Acid-	2.26E-11	-1.60	1.88	7.63	1.23	3.52	2.01	3.73	1.53E-	6.23	5.36
leaching		E-12	E-11	E-12	E-12	E-13	E-11	E-10	17	E-12	E-13
C. CTSW	8.27E-12	-1.52	6.78	2.79	4.53	1.20	4.90	1.07	5.48E-	2.29	1.62
		E-12	E-12	E-12	E-13	E-13	E-12	E-10	18	E-12	E-13

Table S14 Environmental impact analysis results comparison of different processes

Table S15 Environmenta	l impact analysis	results for the oxy	gen-free roasting by
------------------------	-------------------	---------------------	----------------------

				steps				
	Discharge	Dismantling	Screening	Calcination	Gas	Graphite	Cu	Total
	and	& Crushing			treatmen	recovery	recovery	
	collecting				t			
GWP 100	1.47E-14	1.75E-14	1.75E-13	1.19E-11	2.12E-14	-8.96E-14	-3.62E-14	1.20E-11
ADP								
elements	7.77E-15	7.63E-17	7.63E-16	5.21E-14	1.60E-16	-5.42E-16	-1.85E-12	-1.79E-12
ADP fossil	1.25E-14	1.46E-14	1.46E-13	9.94E-12	1.77E-14	-1.69E-13	-3.39E-14	9.93E-12
AP	5.04E-15	5.96E-15	5.96E-14	4.05E-12	7.19E-15	-1.43E-14	-6.21E-14	4.05E-12
EP	8.69E-16	9.54E-16	9.54E-15	6.48E-13	1.16E-15	-1.49E-15	-4.54E-15	6.54E-13
FAETP	2.70E-16	2.81E-16	2.81E-15	1.91E-13	3.46E-16	-7.23E-15	-6.25E-15	1.81E-13
НТР	1.61E-14	1.96E-14	1.96E-13	1.33E-11	2.37E-14	-3.01E-14	-5.29E-12	8.28E-12
MAETP	2.37E-13	2.90E-13	2.90E-12	1.97E-10	3.50E-13	-4.19E-13	-3.19E-12	1.97E-10
ODP	9.61E-21	1.17E-20	1.17E-19	7.95E-18	1.41E-20	-2.44E-20	-1.32E-19	7.94E-18
POCP	4.09E-15	4.85E-15	4.85E-14	3.29E-12	5.85E-15	-1.14E-14	-2.33E-14	3.32E-12
ТЕТР	4.27E-16	4.69E-16	4.69E-15	3.18E-13	5.84E-16	-4.12E-15	-6.85E-14	2.52E-13

	Discharge	Dismantling	Screening	Calcination	Gas	Acid	Precipitatio	Filtration	Li ₂ CO ₃	Graphite	Cu	Total
	and	& Crushing			treatment	leaching	n	& Dry	recovery	recovery	recovery	
	collecting											
GWP 100	1.47E-14	1.75E-14	1.75E-13	1.08E-11	7.96E-14	5.02E-12	3.26E-12	3.37E-12	-2.82E-15	-1.08E-13	-3.62E-14	2.26E-11
ADP												
elements	7.77E-15	7.63E-17	7.63E-16	4.71E-14	5.92E-16	1.58E-13	2.47E-14	1.47E-14	-3.10E-15	-6.56E-16	-1.85E-12	-1.60E-12
ADP fossil	1.25E-14	1.46E-14	1.46E-13	9.02E-12	6.65E-14	4.26E-12	2.73E-12	2.82E-12	-2.80E-15	-2.05E-13	-3.39E-14	1.88E-11
AP	5.04E-15	5.96E-15	5.96E-14	3.67E-12	2.70E-14	1.69E-12	1.11E-12	1.15E-12	-1.30E-15	-1.74E-14	-6.21E-14	7.63E-12
EP	8.69E-16	9.54E-16	9.54E-15	5.87E-13	4.34E-15	2.75E-13	1.78E-13	1.83E-13	-3.74E-16	-1.81E-15	-4.54E-15	1.23E-12
FAETP	2.70E-16	2.81E-16	2.81E-15	1.73E-13	1.30E-15	8.33E-14	5.23E-14	5.40E-14	-3.78E-17	-8.75E-15	-6.25E-15	3.52E-13
НТР	1.61E-14	1.96E-14	1.96E-13	1.21E-11	8.89E-14	5.54E-12	3.66E-12	3.78E-12	-7.13E-16	-3.64E-14	-5.29E-12	2.01E-11
MAETP	2.37E-13	2.90E-13	2.90E-12	1.79E-10	1.31E-12	8.27E-11	5.40E-11	5.59E-11	-9.47E-15	-5.08E-13	-3.19E-12	3.73E-10
ODP	9.61E-21	1.17E-20	1.17E-19	7.21E-18	5.30E-20	3.59E-18	2.18E-18	2.25E-18	-5.68E-22	-2.96E-20	-1.32E-19	1.53E-17
РОСР	4.09E-15	4.85E-15	4.85E-14	2.99E-12	2.19E-14	1.37E-12	9.03E-13	9.33E-13	-6.49E-16	-1.38E-14	-2.33E-14	6.23E-12
ТЕТР	4.27E-16	4.69E-16	4.69E-15	2.89E-13	2.19E-15	1.35E-13	8.73E-14	9.02E-14	-6.13E-17	-4.99E-15	-6.85E-14	5.36E-13

 Table S16 Environmental impact analysis results for the acid leaching method by steps

	Discharge and	Dismantling &	CTS	Water	Precipitation	Filtration &	Li ₂ CO ₃	Graphite	Cu	Total
_	collecting	Shearing		leaching		Dry	recovery	recovery	recovery	
GWP 100	1.47E-14	8.76E-16	1.77E-12	2.70E-15	3.26E-12	3.37E-12	-3.26E-15	-1.23E-13	-3.08E-14	8.27E-12
ADP	7.77E-15	3.82E-18	7.77E-15	1.37E-15	2.51E-14	1.47E-14	-3.59E-15	-7.46E-16	-1.58E-12	-1.52E-12
elements										
ADP fossil	1.25E-14	7.32E-16	1.48E-12	2.60E-15	2.73E-12	2.82E-12	-3.24E-15	-2.33E-13	-2.88E-14	6.78E-12
AP	5.04E-15	2.98E-16	6.02E-13	8.49E-16	1.11E-12	1.15E-12	-1.51E-15	-1.97E-14	-5.28E-14	2.79E-12
EP	8.69E-16	4.77E-17	9.64E-14	2.70E-16	1.79E-13	1.83E-13	-4.32E-16	-2.06E-15	-3.86E-15	4.53E-13
FAETP	2.70E-16	1.40E-17	2.84E-14	1.72E-16	5.23E-14	5.40E-14	-4.37E-17	-9.95E-15	-5.31E-15	1.20E-13
НТР	1.61E-14	9.82E-16	1.99E-12	2.71E-15	3.66E-12	3.78E-12	-8.24E-16	-4.14E-14	-4.50E-12	4.90E-12
MAETP	2.37E-13	1.45E-14	2.94E-11	3.67E-14	5.40E-11	5.59E-11	-1.09E-14	-5.77E-13	-2.71E-12	1.36E-10
ODP	9.61E-21	5.85E-22	1.19E-18	1.43E-21	2.18E-18	2.25E-18	-6.57E-22	-3.36E-20	-1.12E-19	5.48E-18
РОСР	4.09E-15	2.42E-16	4.90E-13	6.76E-16	9.04E-13	9.33E-13	-7.51E-16	-1.57E-14	-1.98E-14	2.29E-12
ТЕТР	4.27E-16	2.34E-17	4.75E-14	2.73E-16	8.73E-14	9.02E-14	-7.09E-17	-5.68E-15	-5.82E-14	1.62E-13

 Table S17 Environmental impact analysis results for the CTSW method by steps

Fig. S5 Comparison of environmental impact between CTS, acid leaching, and conventional roasting process for utilizing spent graphite based on life cycle assessment (a. acidification potential; b. eutrophication potential)

This study adopted the TEA-LCA coupling method to conduct a techno-economic analysis of the innovative approach. The economic costs and quality parameters of each process are shown in the table below.

Impact	Oxygen-free	roasting	Acid lea	ching	CTSV	V
Category	Dosage	Cost	Dosage	Cost	Dosage	Cost
	(kg or kWh)	(CNY)	(kg or kWh)	(CNY)	(kg or kWh)	(CNY)
NaCl	0.026	1.3	0.026	1.3	0.026	1.3
N_2	26.07	52.14	10.6	21.2	4	8
HC1			1.825	65.7		
Water	0.82	0.0034	7.1374	0.0293	6.5788	0.0270
Na ₂ CO ₃			0.021	0.924	0.024	1.056
Ca (OH) ₂	0.0005	0.027	0.0018	0.0972		
NaOH			0.004	0.136		
CaCO ₃					0.4	34.4
SUM of		53.4704		89.3865		44.783
Materials						
Discharge	0.08	0.12	0.08	0.12	0.08	0.12
Crushing &	0.1	0.15	0.1	0.15	0.005	0.0075
Shearing						
Screening	1	1.5	1	1.5		

Table S18 Cost evaluation of various methods

Calcination	64	96	60	90	9.5	14.25
Gas treatment	0.12	0.18	0.45	0.675		
Leaching			27.9	41.85	0.001	0.0015
Precipitation			18.6	27.9	18.6	27.9
Filtration and			19.24	28.86	19.24	28.86
Dry						
SUM of		97.95		191.055		71.139
Energy						
Cu	0.04	2.242	0.04	2.242	0.034	2.04
Graphite	0.12	5.1	0.1453	6.1752	0.1652	7.021
Li ₂ CO ₃			0.0032	0.389	0.0038	0.463
SUM of		7.342		8.8062		9.524
Revenue						
SUM		144.078		271.635		106.398

Note: The consumed energy was assumed to be from electricity.

In this study, raw material costs were based on commercial product prices, including NaCl (50 CNY/kg), N₂ (2 CNY/L), HCl (36 CNY/L), Na₂CO₃ (44 CNY /kg), NaOH (34 CNY/kg), Ca (OH)₂ (54 CNY/kg), CaCO₃ (86 CNY/kg), water (0.0041 CNY/L), coarse copper (56.05 CNY/kg,¹⁶), Cu sheet (60 CNY/kg), graphite (42.5 CNY/kg,¹⁶), Li₂CO₃ (121.86 CNY/kg). Some price data was sourced from EverBatt 2023, reagent prices are sourced from the China National Pharmaceutical Reagent website. Energy consumption costs were based on the industrial electricity price in China (Beijing), which is 1.5 CNY/kWh. Operating costs are calculated as the sum of material and energy costs, excluding labor costs. Notably, this study calculated only the costs and benefits of anode recovery, excluding the cathode, separator, and other components. Moreover, since the mass of functional unit products was low while equipment operating costs were high, the cost calculation results in generally low returns.

Reference

1. K. Jia, J. Wang, Z. Zhuang, Z. Piao, M. Zhang, Z. Liang, G. Ji, J. Ma, H. Ji, W.

Yao, G. Zhou and H. M. Cheng, J Am Chem Soc, 2023, 145, 7288-7300.

- H. Gao, Q. Yan, P. Xu, H. Liu, M. Li, P. Liu, J. Luo and Z. Chen, ACS Appl Mater Interfaces, 2020, 12, 51546-51554.
- R. Shi, N. Zheng, H. Ji, M. Zhang, X. Xiao, J. Ma, W. Chen, J. Wang, H. M. Cheng and G. Zhou, *Adv Mater*, 2024, 36, e2311553.
- Y. Zhang, X. Zhang, P. Zhu, W. Li and L. Zhang, *J Hazard Mater*, 2023, 460, 132445.
- R. Younesi, M. Hahlin, F. Björefors, P. Johansson and K. Edström, *Chemistry of Materials*, 2012, 25, 77-84.
- 6. S. Natarajan, A. B. Boricha and H. C. Bajaj, *Waste Manag*, 2018, 77, 455-465.
- H. Jin, J. Zhang, D. Wang, Q. Jing, Y. Chen and C. Wang, *Green Chemistry*, 2022, 24, 152-162.
- D. Liu, X. Qu, B. Zhang, J. Zhao, H. Xie and H. Yin, *Acs Sustainable Chemistry* & Engineering, 2022, 10, 5739-5747.
- 9. C. B. Stubblefield and R. O. Bach, *Journal of Chemical and Engineering Data*, 1972, **17**, 491-492.
- 10. H. Feuer, *Science*, 1954, **119**, 1254.
- 11. Y. Guo, F. Li, H. Zhu, G. Li, J. Huang and W. He, *Waste Management*, 2016, **51**, 227-233.
- 12. X. Z. Wang Guowei, *Chinese Journal of Rare metals*, 2023, 47, 1005-1012.
- 13. Z. J. Cheng Qian, *Materials Review*, 2018, **32**, 3667-3672.
- L. W. Cheng Qian, *Environmental Protection of Chemical Industry*, 2018, 38, 236-241.
- J. B. Yang, E. S. Fan, J. Lin, F. Arshad, X. D. Zhang, H. Y. Wang, F. Wu, R. J. Chen and L. Li, *Acs Applied Energy Materials*, 2021, 4, 6261-6268.
- 16. J. Yu, J. Li, S. Zhang, F. Wei, Y. Liu and J. Li, *Proceedings of the National* Academy of Sciences of the United States of America, 2023, **120**.